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Background

G protein-coupled receptors (GPCRs) form one of the
largest gene families in the human genome and partici-
pate in a wide range of physiological and sensory func-
tions. Their ability to mediate specific signals over the cell

Abstract

Background: GPR 25 belongs to the family of Adhesion G protein-coupled receptors (GPCRs). A
single copy of GPRI25 was found in many vertebrate genomes. We also identified a Drosophila
sequence, DmCGI5744, which shares a common ancestor with the entire Group Il of Adhesion
GPCRs, and also contains Ig, LRR and HBD domains which were observed in mammalian GPR125.

Results: We found specific expression of GPRI25 in cells of the choroid plexus using in situ
hybridization and protein-specific antibodies and combined in situ/immunohistochemistry co-
localization using cytokeratin, a marker specific for epithelial cells. Induction of inflammation by LPS
did not change GPRI25 expression. However, GPRI25 expression was transiently increased
(almost 2-fold) at 4 h after traumatic brain injury (TBI) followed by a decrease (approximately 4-
fold) from 2 days onwards in the choroid plexus as well as increased expression (2-fold) in the
hippocampus that was delayed until | day after injury.

Conclusion: These findings suggest that GPRI25 plays a functional role in choroidal and
hippocampal response to injury.

membrane contributes to the fact that about 25% of the
100 top-selling pharmaceutical targets are GPCRs [1].
However, many of these receptors are still orphans with
unknown functions. GPCRs can be classified into five
main families; Glutamate, Rhodopsin, Adhesion, Frizzled/
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Tas2 and Secretin [2]. The characteristic 7TM domain is the
hallmark of all GPCRs and the members within each of
the five families are likely to share common descent.
These main families can also be distinguished by different
types of N-termini. Most of the receptors from the Gluta-
mate, Secretin, Frizzled and the Adhesion families have long
N-termini with functional domains while very few of the
Rhodopsin receptors have such domains. The N-termini of
the Adhesion family, also known as family B2 [3] or LNB-
TM7 [4], are very different from those of the other groups
since these consist of long stretches rich in serine and thre-
onine which produce a stalk-like formation projecting
from the cell membrane. This structure is probably very
important for cell-to-cell interactions. Interestingly, these
N-termini frequently contain multiple functional
domains such as epidermal growth factor (EGF), cad-
herin, lectin, laminin, olfactomedin, immunoglobulin or
trombospondin that are most commonly found in other
types of protein such as integrins, cadherins and tyrosine
kinases. While the Rhodopsin family is by far the largest
GPCR family with many well studied amine and peptide
binding receptors, the Adhesion family is the second larg-
est family with 33 members in the human genome. Sev-
eral of them were identified recently [5,6] and the
functional roles of these are not well understood. The
Adhesion GPCRs can be further subdivided into groups I-
VIII based on phylogeny (sequence similarity) and virtu-
ally all of them contain the GPCR proteolytic site (GPS)
domain [6].

We previously identified three novel receptors; GPR123,
GPR124 and GPR125, which phylogenetically cluster
together with the Adhesion GPCR family [5]. These recep-
tors form Adhesion Group III [6]. GPR123 is highly
expressed in cortical layer 5 pyramidal neurons and in
most parts of the thalamus and the spinal cord [7].
GPR124 and GPR125 are also known as tumor endothe-
lial marker 5 (TEM5) and TEMb5-like, respectively [8].
Members of the tumor endothelial marker family were
originally identified by searching for genes with both ele-
vated expression under tumor angiogenesis [9] and cell
surface expression to facilitate the drug design process
[10]. Originally, TEM5 (GPR124) was classified as GPCR-
like while TEM5-like (GPR125) has only been discussed
in [8]. Expression of both TEM5 and TEMS5-like are ele-
vated in human tumors and proteins for these genes were
found to bind the human homologue of the Drosophila
discs large tumor suppressor gene (hDIlg) which localizes
receptors to the cell surface [8]. With respect to localiza-
tion by Northern blot analysis, GPR125 (TEM5-like) was
identified throughout many peripheral human tissues
with a low expression in the brain but high expression in
human brain tumors [8]. A second study suggested a
developmental role for GPR125 [11]. GPR125 is found in
highly proliferative adult spermatogonial progenitor cells
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(SPCs) and multipotent adult spermatogonial-derived
stem cells (MASCs) but is downregulated after differentia-
tion, thus suggesting GPR125 as a marker for cultivation
of SPCs or MASCs which may later be used for transplan-
tation therapies [11].

The purpose of this study was to describe the evolutionary
history of GPR125 and map the mRNA expression pattern
using in situ hybridization and real-time RT-PCR on
mouse brain and peripheral tissues. Additionally, we used
immunohistochemistry to localize GPR125 to a given cell
type and animal models to determine whether expression
of this new GPCR changes in response to pathophysiolog-
ical stimuli.

Methods

Sequence retrieval and editing

Full-length Adhesion-sequences for human (Hs), mouse
(Mm) [6] and chicken (Gg) [12] were downloaded from
previously published articles. The sequence for rat (Rn)
corresponded to accession number XP_223485.4. The
human sequences were truncated to include only the TM
regions according  to rps-blast at  http://
www.ncbi.nlm.nih.gov/BLAST (conserved domain data-
base, CDD - 12589 PSSMs) and served as probes against
Tetraodon nigroviridis (Tn), Takifugu rubripes (Tr) and Dro-
sophila melanogaster (Dm). Tn and Tr were both investi-
gated using BLAST-like alignment tool (BLAT) searches
against their genome at http://genome.ucsc.edu/cgi-bin/
hgBlat. Dm, on the other hand, was searched against its
proteome  with  blastp  searches at  http://
www.ncbi.nlm.nih.gov/BLAST. To rule out further hits,
the previously obtained sequences were used as probes in
new BLAT-searches against their respective genomes. The
potential sequences were manually assembled in Editseq
from the DNA-star package version 5.07 (DNASTAR,
Madison, Wisconsin, United States) according to the
canonical splice site GT...AG. The assembled sequences
were then aligned with their probes in the Windows ver-
sion of ClustalW 1.83 [13] to confirm consistency of
splice sites. The N-terminals of the selected sequences
were assembled in the same manner as mentioned above
but with the full-length human protein as probes. They
were then searched for their domain extent in rps-blast
with a cutoff value of 0.1.

Adhesion confirmation

To confirm that the sequences of interest were Adhesion
GPCR members, an in-house program was applied. The
program searched the sequences against a blast database
comprised of all human GPCR families (in-house dataset)
and additional sequences from the Methuselah family [3]
and the cAMP family [14]. The sequences had to fulfill the
following criteria; that the first three hits were indeed
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Adhesion and that an overall of five of the first ten hits were
Adhesion.

Phylogenetic analysis

The newly discovered sequences related to GPR125 and
their homologs were collected into a FASTA file. The entire
human Adhesion GPCR repertoire together with Gg and
Mm members of group III, according to previous division
of the Adhesion family conducted by Bjarnadottir and col-
leagues [6], additional Methuselah sequences [3] and the
complete human Secretin family (in-house data) was also
included in the file. Subsequent multiple alignments were
performed on the file using the Windows version of Clus-
talW 1.83 [13] with default parameter settings. Using seq-
boot from the Win32 version of the PHYLIP 3.65 package
[15], the alignment was bootstrapped 1000 times. The
output file from segboot was then subjected to protdist
from the Win32 version of the PHYLIP 3.65 package using
the Jones-Taylor-Thornton matrix [16]. The neighbour
command with default settings, from the Win32 version
of the PHYLIP 3.65 package, was then used to construct
neighbour-joining trees from the distance file produced
by protdist. In order to combine the trees into a consensus
tree, the command consense from the Win32 version of
the PHYLIP 3.65 package was used with the majority rule
and then plotted in the Win32 version of TreeView 1.6.6
[17]. The consensus tree was then weighted in TreePuzzle
version 5.2 [18] with the settings; Tree reconstruction,
evaluate user-defined trees, exact (slow) parameter esti-
mates, Mueller-Vingron model of substitution, gamma
distributed rates as model of heterogeneity estimated
from the data set and eight categories of gamma rate. The
remaining parameters were kept default.

Experimental subjects

All experiments were approved by the institutional animal
care and use committees in Sweden, Portugal and the
United States. Animal care procedures followed the guide-
lines of Swedish regulation (Animal Welfare Act
SFS1998:56) and EU legislation (Convention ETS123 and
Directive 86/609/EEC).

Gene expression using qPCR

Tissue collection

To prepare the mouse tissue panel, 4 adult, male Sv129
(Alab, Sollentuna, Sweden) were housed in a climate-con-
trolled facility (12 hr light/dark cycle with lights on at
07.00) with constant temperature (22-23°C) and 55%
humidity. Animals were given 7 days to acclimatize to the
local conditions and had free access to water and R36
food pellets (Labfor Lactamin, Vadstena, Sweden).
Between 3 and 6 hours into the light period, animals were
decapitated for dissection of brains and various peripheral
tissues. Brains were placed in a brain matrix for dissection
into areas indicated in Figure 4 while peripheral organs
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were taken in their entirety. All samples were frozen on a
dry ice block before immersion into RNALater solution
(Ambion). Following 1 hr of incubation at room temper-
ature to allow complete penetration of the tissue, samples
were stored at -80°C until further processing.

RNA extraction and cDNA synthesis

Tissue samples were homogenized in TRIzol reagent (Inv-
itrogen, Sweden) using a Branson sonicator. Total RNA
was extracted according to the manufacturer's protocol
(Invitrogen, Sweden). To remove contamination, samples
were treated with DNase I (Roche Diagnostics, Sweden) at
37°C for 4 hours followed by 15 minutes at 75°C to inac-
tivate the enzyme. To confirm that there was no DNA con-
tamination, a PCR was performed on the RNA sample
using reference gene GAPDH as a positive control. If
bands were detected after this PCR, DNase I treatment was
repeated until no amplification was observed in the RNA.
The concentration of RNA was measured with the Nano-
drop® ND-1000 spectrophotometer (NanoDrop Technol-
ogies, Delaware, USA). cDNA was then synthesized
according to the manufacturer's protocol with M-MLV
reverse transcriptase (GE Healthcare, Sweden) and ran-
dom hexamers (GE Healthcare, Sweden). To ensure pres-
ence of cDNA in the samples, a PCR was run (again with
GAPDH as positive control) but this time a band was
expected for each sample.

Primer Design

Primers were designed using Beacon Designer v4.0 (Pre-
mier Biosoft, USA) and specificity was verified via a BLAST
search against the genome. Mouse primers (F = forward, R
= reverse) were as follows: GPR125 (F - atg ctt gtg aac ctg
tge ttt ¢, R - cgc tgg cat ttc tgg tct gg), reference genes (glyc-
eraldehyde-3-phosphate-dehydrogenase (GAPDH), F -
gcc tte gt gtt cct ace, R - gec tge tte acc acc ttc; B-tubulin, F
- agt gct cct ctt cta cag, R - tat ctc cgt ggt aag tgc; ribosomal
protein L19, F - aat cgc caa tgc caa ctc, R - gga atg gac agt
cac agg; histone H3b, F - cct tgt ggg tct gtt tga g, R - cag ttg
gat gtc ctt ggg; cyclophilin, F - ttt ggg aag gtg aaa gaa gg, R
- aca gaa gga atg gtt tga tgg; B-actin, F - cct tct tgg gta tgg
aat cct gtg, R - cag cac tgt gtt ggc ata gag g; succinate dehy-
drogenase complex subunit B, F - tgg tgg aac gga gac aag,

R - cag cgg tag aca gag aag g).

qPCR

Quantitative PCR was performed in 96-well plates with
the MylIQ iCycler real-time detection instrument (Bio-
Rad, Sundbyberg, Sweden). SYBR Green I (Invitrogen)
dissolved in Tris-EDTA (pH 8) was used as the fluorescent
reporter. The 20 pl reaction volume consisted of 2 pl 10x
PCR buffer, 20 mM dNTP, 50 mM MgCl,, 0.05 ul forward
and reverse primer (100 pmol/ul), 1 ul DMSO, 1:50000
SYBR Green 1, 0.08 pl (5 units/ul) Tag DNA polymerase
(Biotools, Spain) and 9.52 ul RNase-free water mixed with
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5 ul (5 ng/ul) of cDNA template. For each primer pair, 50
PCR cycles were run with parameters of 95°C for 15 s,
58.2-62°C (depending on primer) annealing for 30 s fol-
lowed by extension at 72°C for 30 s. A melting curve anal-
ysis was performed following the cycles to ensure that a
single PCR product was formed in the reaction. Primers
were originally optimized by running a temperature gradi-
ent (annealing temperature from 52°C to 62°C across the
rows of the plate) to give an optimal temperature of 62°C
for mouse GPR125.

Normalization and data analysis

Data was obtained using the MylQ software (Bio-Rad)
and a normalization factor was calculated using the 7 ref-
erence genes and the GeNorm method [19]. Primer effi-
ciency was calculated using the LinRegPCR method and
corrected Ct values were calculated using the assumption-
free analysis method of [20]. Expression in the tissue with
the smallest value was set to 1 and all other values were
expressed relative to this minimum. Samples were run in
duplicate and repeated if necessary.

Gene expression using free floating tissue section in situ
hybridization

Tissue collection and sectioning

Adult, male Sv129 mice were anaesthetized with a 1:1
mixture of Dormitor (70 pg/g, Orion) and Ketalar (7 pg/
g, Pfizer) and transcardially perfused with PBS followed
by 4% formaldehyde. Brains were dissected and then fixed
overnight in 4% formaldehyde. After washing in PBS,
brains were embedded in 4% agarose and sectioned (70
pm) on a Leica vibratome. Slices were then dehydrated
through a series of methanol washes and stored in 100%
methanol at -20°C until use.

Synthesis of riboprobes

Antisense and sense probes for GPR125 were synthesized
from the BMAP clone ID# 5718990 (Invitrogen). DNA
was prepared with the JETstar 2.0 Plasmid Purification
Midi Kit/50 (Genomed, Germany) and the clone was then
sequenced at MWG http://www.eurofinsdna.com/ to ver-
ify the accuracy of the clone. The antisense probe was syn-
thesized with T3 RNA polymerase and restriction enzyme
Spel (Fermentas, Sweden) while the sense probe was syn-
thesized using T7 RNA polymerase after restriction with
Aflll (New England Biolabs, Sweden). Both types of
probes were labeled with digoxigenin-11-UTP (Roche
Diagnostics, Sweden). Probe concentration was measured
with the Nanodrop® ND-1000 spectrophotometer (Nano-
Drop Technologies, Delaware, USA) before storage at -
80°C.

In situ hybridization
Sections were re-hydrated through a series of methanol
solutions (75%, 50%, 25%) dissolved in PBT (phosphate-
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buffered saline (PBS) with 0.1% Tween-20 (Sigma-
Aldrich)). Sections were bleached in 6% hydrogen perox-
ide, permeated with 0.5% Triton X-100 (Sigma-Aldrich),
digested in proteinase K (20 pg/ml; Invitrogen) and post-
fixed in 4% formaldehyde with PBT washes between the
steps. Sections were pre-hybridized at 55°C in hybridiza-
tion buffer (50% formamide, 5x SSC (pH 4.5), 1% SDS,
50 pg/ml tRNA and heparin (both Sigma-Aldrich) and
0.1% DEPC-treated water. DIG-labeled probes were heat
denatured at 80°C for 5 min before cooling on ice for 5
min. For GPR125, 400 ng probe/ml was added to each
section and hybridization was performed overnight at
55°C. Unbound probe was washed using a series of wash-
ing steps of 3 x 30 min each buffer. The first wash buffer
(50% formamide, 2x SSC (pH 4.5), 0.1% Tween-20 in
DEPC-treated water) was followed by a second (50% for-
mamide, 0.2x SSC (pH 4.5), 0.1% Tween-20 in DEPC-
treated water). Sections were then washed in Tris-buffered
saline with 0.1% Tween-20 (TBST) followed by a 2 hr
incubation in blocking solution (Roche Diagnostics, Swe-
den). Anti-DIG antibody conjugated to alkaline phos-
phatase (Roche Diagnostics, Sweden) was diluted 1:5000
in blocking solution and sections were incubated at 4°C
overnight. Sections were washed 5 x 10 min in TBST with
2 nM levamisol (GTF Fisher, Sweden) to block endog-
enous alkaline phosphatase activity followed by 10 min
in NTMT (100 mM NaCl, 10 mM Tris-HCI (pH 9.5), 50
mM MgCl,, 0.1% Tween-20) with 2 nM levamisol. Sec-
tions were then developed at 37°C using the BM Purple-
AP enzyme substrate (Roche Diagnostics, Sweden).

Image acquisition

Sections were mounted in 50% glycerol and photo-
graphed with a Leica MZ16F microscope (Leica Microsys-
tems, Germany), Leica DFC300 FX camera and FireCam
software.

Co-localization using combined in situ hybridization/
immunohistochemistry

Antibodies

Primary antibody dilutions were as follows: 1:400 mouse
anti-pan cytokeratin (Sigma-Aldrich), 1:500 chicken anti-
GFAP (Chemicon) and 1:1000 for nucleic acid stain 4,6-
diamidino-2-phenylindole (DAPI) (Roche Diagnostics,
Sweden). Secondary antibodies were diluted as follows
(all from Invitrogen): 1:800 anti-Mouse-Alexa 488, and
1:200 anti-Chicken-Alexa 647.

Modifications to the in situ protocol

Primary antibodies were incubated at 4°C overnight
simultaneously with the anti-DIG antibody. Sections were
developed using the red fluorescent enzyme substrate Fast
Red according to the manufacturer's instructions (Roche
Diagnostics, Sweden). Slices were stained for 5 minutes in
1:1000 diluted 4,6-diamidino-2-phenylindole (DAPI;
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Roche Diagnostics, Sweden) in DEPC-treated water and
then placed on Superfrost Plus glass slides (Menzel-Gla-
ser, Germany) and protected from light. Secondary anti-
bodies were added to the glass and incubated for 2 hours
followed by mounting with coverslip and the antifade
DTG mounting medium (2.5% DABCO (Sigma-Aldrich
D-2522), 50 mM Tris pH 8.6, 90% glycerol).

Image acquisition

Slides were photographed using the Zeiss Laser Scanning
Microscope LSM510 confocal microscope system version
4.2 and Zeiss LSM Image Examiner software. All 4 fluoro-
phores were acquired together via customization of track
settings and filter/mirror positions and channels were
overlayed by the software. When necessary, the z-stack
function was used to acquire images of several layers of
the tissue which was rendered 3-dimensionally by the
software to aid in visualization of the co-localization.

Immunohistochemistry using GPR125 antibody

The rabbit polyclonal antibody against GPR125 was
obtained from the Swedish Human Proteomics Resource
project [21]. Two naive Wistar rats were sacrificed at 3
weeks of age by decapitation and the brain was dissected
and rapidly frozen in isopentane at -22°C followed by
storage at -80° C until sectioning. Sections of 25 um were
made using a cryostat, thaw-mounted onto SuperFrost
Plus slides (Menzel-Glaser, Germany) and stored at-20°C
until analysis. Sections were re-hydrated in PBS and fixed
in methanol at -20°C followed by treatment with 0.1%
Triton X-100. Sections were then incubated in blocking
solution (0.45% fish skin gelatin (Sigma-Aldrich)) for 1.5
hr and incubated overnight with primary antibodies (anti-
GPR125 in rabbit at 1:100; anti-cytokeratin in mouse at
1:400 (Sigma); anti-MCT-2 in chicken at 1:250 (Chemi-
con)). After PBS wash, sections were incubated with sec-
ondary antibodies (anti-rabbit-Alexa 488 at 1:500; anti-
mouse-Alexa 546 at 1:500 or anti-rabbit-Alexa 546 at
1:500; anti-chicken-Alexa 488 at 1:500; all from Invitro-
gen). Finally, DAPI nuclear stain (Sigma-Aldrich) was
added and sections were mounted in DTG medium as
described previously.

Induction of inflammatory response by LPS

Inflammation was induced by intraperitonial injection of
lipopolysacharide (LPS) as described previously [22].
Briefly, animals were injected i. p. with 5 pg/g body weight
LPS (Escherichia coli serotype O55:B5, Sigma-Aldrich) or
saline (0.9% NaCl). At 1, 3, 6, 12, 24 and 72 hours after
injection, the choroid plexus was rapidly removed and
stored at -80°C until further processing. A minimum of
five pools of choroid plexus from n = 4 animals were pre-
pared and analyzed for each time point.

http://www.biomedcentral.com/1471-2202/9/97

The rat traumatic brain injury (TBI) model

Adult male Long-Evans rats weighing 280-320 g were pur-
chased from Harlan Sprague-Dawley (Indianapolis, USA).
The controlled cortical impact model of TBI was used as
previously described [23]. Rats were anesthetized with
pentobarbital sodium (60 mg/kg, i. p.) and were placed in
a stereotactic frame. A 4-mm craniotomy was performed
on the right side of the skull to expose the dura, with the
center of the opening located 3 mm posterior to bregma
and 2.5 mm lateral to the midline. The velocity of impact
was 5 m/sec and the duration of impact was 50 msec. The
diameter of impactor's tip was 2.5 mm and the depth of
brain deformation was set at 3 mm. Immediately after the
insult, the scalp was closed with a nylon suture and the
rats were allowed to recover in their cages. At 2, 4, 6, 24,
48 and 96 h after injury (n = 3-6 animals per time point),
samples of the lateral ventricle choroid plexus and the
hippocampus ipsilateral and contralateral to the injury
side were collected for qPCR analysis. qPCR results are
presented as the mean number of copies of GPR125
mRNA per 100 copies of cyclophilin A mRNA + S.E.M.
Results were analyzed by ANOVA followed by the Neu-
man-Keuls test for multiple comparisons. Comparisons in
GPR125 expression were made for ipsilateral vs contralat-
eral tissues and over time within the ipsilateral and con-
tralateral sides.

Results

Sequence retrieval and phylogenetic analysis

A phylogenetic tree was prepared using the Adhesion,
Secretin, and Methuselah families (Figure 1A). GPR123,
GPR124 and GPR125 grouped together (shaded grey in
Figure 1A) and the Drosophila receptor DmCG15744
branches before the cluster of these three receptors.
Domains were identified through the conserved domain
database (rps-blast) and the N-terminal regions with each
domain are illustrated in Figure 1B. The GPCR proteolytic
site (GPS) domain is conserved in all sequences except
DmCG15744. Rodent GPR125 have longer N-terminal
regions than human GPR125 but all contain hormone
binding domains (HBD), immunoglobulin (Ig) and leu-
cine-rich-repeat (LRR) domains. In contrast, teleosts
either have an HBD and Ig domain (Takifugu rubripes) or
Ig and LRR domain (Tetraodon nigroviridis) but not all
three. DmCG15744, however, contained all three
domains and was therefore consistent with rodent
GPR125. An analysis of the conservation of intron-exon
boundaries is provided in Additional file 1. Intron-exon
boundaries were conserved between human, rat and
mouse GPR125 and between the two teleost sequences
but there was no conservation of boundaries between
these and DmCG15744.

GPR125 was present in the teleosts (Tetraodon nigroviridis

(Tn) and Takifugu rubripes (Tr)) as well as the chicken and
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A) A consensus neighbour-joining tree calculated in protdist and neighbour from the Phylip package version
3.66 with default settings and 1000 replicates. Methuselah-like/Drosophila and Secretin/B| sequences were downloaded
from (Harmar, 2001). The Adhesion group has been named Il according to Bjarnadottir and colleagues (Bjarnadottir et al.,
2004) and is indicated by the shaded circle. B) Representation of Adhesion Group Ill N-terminals and their incorporated
domains identified via rps-blast at http://www.ncbi.nlm.nih.gov with a cutoff value of 0.1. The sequences are grouped according

to Bjarnadottir and colleagues division in group I-VIIl. Represented sequences are H — Homo sapiens, Tn — Tetraodon nigroviridis,
Tr — Takifugu rubripes and Dm — Drosophila melanogaster. Possible domains are GPS — GPCR proteolytic site, HBD — hormone
binding domain, LRR — leucine rich repeats, Ig — immunoglobulin and 7TM — seven transmembrane domains. The numbers
above the N-terminal indicate the length in number of amino acids.

mammals. The full alignment of these sequences is pre-
sented in Additional file 2. Amino acid similarity in the
transmembrane regions was high between human and
mouse (94.3%) and also human and chicken (85.2%)
and human versus the teleosts (Tn 68.5% and Tr 66.8%).
DmCG15744 had a 17.8% amino acid similarity with the
human GPR125 and similarity to Tn and Tr was 31.3%
and 28.5% respectively.

GPRI125 expression via qPCR

To obtain an overview of the expression of mRNA for
GPR125, qPCR was performed on a panel of mouse brain
regions and peripheral organs (Figure 2A). To simplify
presentation, values were normalized to the tissue with
minimum expression of GPR125 (colliculus = 1). Expres-

sion in most brain tissues was approximately 2-fold that
of the colliculus such that no differential pattern of
expression was observed between striatum, hippocampus
or thalamus. In particular, cortical expression of GPR125
was nearly 8-fold higher than that of the colliculus while
hypothalamic expression was roughly 3.5-fold higher.
Expression in the periphery was higher compared to the
brain (numbers in parentheses denote fold-values with
respect to colliculus); heart (2.5), liver (3.6), kidney (6.8)
and pancreas (7). Highest overall expression for GPR125
was observed in the lungs (18-fold that of colliculus).

GPRI125 expression via in situ hybridization
For localization, in situ hybridization was performed
using the visible enzyme substrate BM-Purple and 400 ng
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Figure 2

A) Localization of GPRI125 using qPCR in mouse brain and peripheral tissues. Values are expressed relative to the
minimum expression value for this analysis (colliculus). B) GPR125 expression was not changed following induction of an
inflammatory response via LPS injection. C) GPR125 expression was affected by TBI. GPR125 in the choroid plexus was upreg-
ulated at 4 h after injury while the upregulation in the hippocampus did not occur until | day post-TBI, suggesting a role of the
CSF pathways in post-traumatic regulation of GPR125 expression in the choroid plexus and hippocampus.

of digoxigenin-labeled GPR125 probe. The complete
series of this can be seen in Additional file 3. Staining was
limited to two key areas; the choroid plexus and neigh-
bouring cerebral cortex (Figure 3A and 3B) and the piri-
form cortex area 2 (Additional file 3) while no staining
was observed in the hippocampus. A sense probe for
GPR125 did not stain these areas (data not shown).

Cellular localization of GPRI25

To co-localize GPR125 expression to a given cell type, a
combined in situ hybridization/immunohistochemistry
protocol was used. GPR125 was labeled with the fluores-

cent enzyme substrate Fast Red and could be localized to
the cytoplasm around the cell nuclei labeled with DAPI
(indicated in white in Figure 4). GPR125 was co-localized
to cells of the choroid plexus (Figure 4A and 4B) using the
epithelial-cell-specific antibody pan-cytokeratin (green).
An enlargement using a 63x objective (Figure 4B) clearly
indicates co-localization of GPR125 in choroid plexus
cells. Localization of GPR125-positive staining in the
choroid plexus itself was confirmed using an antibody
against glial fibrillary acidic protein (GFAP, dark blue)
which stains GFAP-positive ependymal cells that line the
ventricle walls (Figure 4C).
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Figure 3
In situ hybridization staining on free floating sections using 400 ng of digoxigenin (D1G)-labeled mouse GPR125
antisense probe (A and B) and sense probe (C) as control with the enzyme substrate BM-Purple. Sagittal section
in A and coronal sections in B and C.

http://www.biomedcentral.com/1471-2202/9/97

To demonstrate localization of the GPR125 protein in the
choroid plexus, sections were labeled with the GPR125
antibody (Figure 5). Using the epithelial cell-specific
cytokeratin antibody and the z-stack function of the con-
focal microscope, GPR125 staining (green) was observed
in the central portion of the choroid plexus with some
overlap with the cytokeratin staining (red) which marks
the barrier region of the choroid plexus (Figure 5,

merged). Localization of this in the choroid plexus from a
3-week-old animal also indicates central nervous system
expression in pre-adolescence. GPR125 did not, however,
co-localize with the cerebral vasculature (Additional file
4) as illustrated by double staining with the monocarbox-
ylate transporter MCT-2 which labels the cerebral vascula-
ture and the walls of the ventricle [24].
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Figure 4 (see previous page)

In situ hybridization combined with immunohistochemistry on free floating sections using 400 ng of digoxi-
genin (DIG)-labeled mouse GPRI125 antisense probe stained with Fast Red enzyme substrate (A-C), white cell
nucleus staining with (1:1000) DAPI (A), green staining with the (1:400) epithelial-cell-specific pan-cytokeratin
antibody (A and B) and dark blue (1:500) glial fibrillary acidic protein (GFAP) staining (B and C). A) The z-stack
function of the confocal microscope rendered 9 layers together to form this 3-dimensional image illustrating GPR 125 expres-
sion in the cytoplasm around the DAPI-stained nuclei. Separate images are provided for the 3 channels followed by the merged
images in the final panel. B) At higher magnification (63* objective), staining for the cytokeratin protein follows the edge of
GPR125-labeled cells which illustrates co-localization. C) To show that GPR125 staining is predominantly in the choroid
plexus, GFAP was used to stain ependymal cells which line the walls of the ventricle.

Expression of GPRI25 after induction of inflammation

To determine whether GPR125 may have an immune
function, inflammation was induced by injection of LPS
and choroid plexus samples were collected at various
times after injection. Expression of GPR125, as measured
by qPCR, is illustrated in Figure 2B. No differences were
observed (1-way ANOVA; F = 0.63, p=0.71), thus indicat-
ing that induction of inflammatory response does not
change GPR125 mRNA expression in the choroid plexus.

Expression of GPR125 after TBI

To determine whether GPR125 expression changes in
response to brain injury, GPR125 mRNA in the choroid
plexus and hippocampus was measured after TBI (Figure
2C). GPR125 expression in the choroid plexus signifi-
cantly changed after injury (ANOVA; F=22.1, p < 0.001).
At 4 h post-TBI, the level of expression of GPR125 in both
the ipsilateral and contralateral plexuses was higher than
those observed at 2 and 4 days (p < 0.01-0.05) post-TBI.
Furthermore, the expression of GPR125 in the ipsilateral
choroid plexus at 6 h after injury was elevated compared
to the levels found in both the contralateral and ipsilateral
plexuses at 2 (p < 0.01) and 4 days (p < 0.05) post-TBI. In
addition, a significant difference (p < 0.05) in GPR125
mRNA between the ipsilateral and contralateral plexuses
was observed at 6 h post-TBI. GPR125 expression in the
hippocampus was also significantly affected by injury
(ANOVA; F=13.7, p < 0.001). The expression of GPR125
in the contralateral hippocampus at 1 day post-TBI was
increased compared to the expression levels observed in
both the contralateral and ipsilateral hippocampi at 2 (p
<0.01) and 4 h (p < 0.01) after injury. Additionally, a sig-
nificant difference (p < 0.01) in GPR125 expression
between the ipsilateral and contralateral hippocampi was
observed at 1 day post-TBI. Overall, GPR125 expression
transiently increased in the choroid plexus at 4 h post-TBI
followed by a delayed transient increase in the hippocam-
pus at 1 day post-TBI.

Discussion

GPR125 is evolutionarily conserved in vertebrate
genomes. We found this gene to be present in fish, the two
teleosts (Tetraodon nigroviridis and Takifugu rubripes), as

well as chicken, suggesting that this gene appeared at least
450 million years ago. It is, therefore, likely to be present
in most vertebrates. Moreover, all the vertebrate species
we investigated had a single copy of a GPR125 gene with-
out any duplicates. This is in contrast to GPR123 which is
present in fish together with an extra copy termed
GPR123-like [7] and some other Adhesion GPCRs that
show differences in gene repertoire between mammals
[25]. GPR124, however, does not seem to be present in
teleosts while it is found in chicken. Interestingly, our evo-
lutionary mining and phylogenetic analysis identified a
Drosophila sequence, DmCG15744, which is a common
ancestor for the entire Group III of Adhesion GPCRs.
DmCG15744 did not group with other Drosophila
sequences, other Adhesion GPCRs or the Methuselah-like
GPCRs found in Drosophila [3], further supporting the
notion that this is an ancestral gene to Group III.
DmCG15744 had approximately 20% sequence identity
to GPR123, GPR124 and GPR125 but has few introns
and, thus, less complex genomic structure than its
descents in fish and mammals (see Additional file 2). The
fish genes have lower genomic complexity which suggests
an increase over evolution in the number of introns in this
lineage which concurs with the hypothesis that intron
numbers in GPCRs are increasing through the evolution
[26]. Interestingly, DmCG15744 shares Ig, LRR and HBD
domains with the fish and mammalian GPR125 as well as
the mammalian GPR124 (see Figure 1B), providing fur-
ther strong support for the suggestion that this is a com-
mon ancestor to this group. A 17.8% amino acid sequence
similarity was observed to human GPR125 and both
genes contain HBD, Ig and two LRR domains in the N-ter-
minal regions. However, DmCG15744 does not contain a
GPS domain which is surprising as the GPS domain is
likely to be found in common ancestors to all the Adhesion
GPCRs [27]. In addition to this, we performed a second
analysis using the Amphioxus sequence published from
our recent report [28] and this branch coincided with
DmCG15744, suggesting similar conclusions with respect
to ancestry and conservation.

The study on a wide tissue panel shows that the mRNA for

GPR125 was expressed in the periphery (particularly in
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Figure 5

Immunohistochemistry using an antibody directed
against the GPRI125 protein (green). GPRI25 was again
localized to the choroid plexus cells using the epithelial cell-
specific marker cytokeratin (red). This specific staining was
observed in sections from the brain of a 3 week old rat, thus
confirming expression of GPR125 in pre-adolescence.

http://www.biomedcentral.com/1471-2202/9/97

the lung, kidney and pancreas) but also in the brain which
is in line with previous studies by Yamamoto and col-
leagues [8]. Our more detailed mapping of the brain
found highly specific expression of GPR125 in cells of the
choroid plexus in the mouse brain. The choroid plexus is
the major source of cerebrospinal fluid (CSF) and is a site
of the blood-CSF barrier [29]. Choroid plexus cells are of
epithelial origin [29] and were therefore immunopositive
for cytokeratin which is a protein specific for epithelial
cells [30]. In the choroid plexus, the pattern of staining for
GPR125 was similar to that found for cytokeratin staining
and its filamentous appearance suggests a role of this
receptor in cell-cell adhesion or choroid plexus barrier
function. Immunostaining for GPR125 in 3-week-old rats
also confirms the expression of this receptor in the pre-
adolescence period and suggests a functional role in post-
natal development in addition to the previously reported
early developmental properties [11]. Interestingly, a
choroid plexus and cerebrospinal fluid is present in all
vertebrate species but not Amphioxus [31]. Therefore,
selective localization of GPR125 in the choroid plexus
concurs with our evolutionary findings and suggests a
conserved function important for vertebrates.

With knowledge of the evolutionary history and localiza-
tion of GPR125, it is possible to search for the function of
this GPCR. The search for Adhesion receptor function is
difficult and the function of very few of these receptors
have been determined compared to other GPCR classes
[32]. Brain-specific angiogenesis inhibitor I (BAI1) is one
Adhesion receptor of known function which recognizes
phosphatidylserine on apoptotic cells and subsequently
promotes engulfment of these cells [33]. The involvement
of BAI1 in tumor growth [34] and the report of elevated
GPR125 in human tumors [8] suggests one line of
research to decipher the function of GPR125. Consulta-
tion of protein-protein interaction databases (for exam-
ple, STRING; http://string.embl.de) suggests interaction
of GPR125 with synapse-associated protein 97 (SAP-97 or
hDIg) which was previously reported in [8] and latrophi-
lin, a protein involved in synaptic function and carbohy-
drate binding [35]. We observed a hormone binding
domain in GPR125 but it is difficult to speculate which
hormone may bind to this. However, this does suggest a
role of GPR125 in the transfer of a message from the
periphery via some circulating hormone, thus forming the
basis of our study of inflammation and response to brain

injury.

Very few genes are expressed selectively in specific brain
structures [36] or brain cell types, but our results show
abundant and specific expression in cells of the choroid
plexus as determined by in situ hybridization and immu-
nohistochemistry. Although we also found some expres-
sion in the cortex and periphery, it is likely that GPR125
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may serve as a specific marker for choroid plexus cells and
may thus be useful for the specific targeting of choroid
plexus function in transgenic animals. We have previously
described the selective production of transthyretin in the
choroid plexus and this protein binds the B-amyloid pep-
tide which is known to accumulate during Alzheimer's
disease [37]. The selective localization of GPR125 to the
choroid plexus may also suggest a role for this in the eti-
ology of Alzheimer's.

The choroid plexus expresses a wide range of receptors
and neuropeptides capable of signaling and immunolog-
ical defense [29] and we hypothesized that GPR125 could
be involved in one of these processes. We have previously
shown that induction of an inflammatory response by
peripheral injection of LPS increases mRNA expression of
cytokines IL-18 and TNF-a in the choroid plexus [22].
Inflammation itself induces expression of ICAM-1 [38]
and this adhesion molecule is thought to mediate influx
of T-cells from the blood to the brain [39,40]. However,
induction of inflammation by LPS did not change
GPR125 expression at any of the time points investigated,
suggesting a lack of GPR125 regulation by changes in
peripheral inflammatory mediators. Despite these find-
ings, GPR125 could be involved in signal transduction of
peripheral inflammation to the brain through the choroid
plexus via mechanisms not requiring alterations in gene
expression.

Function of the choroid plexus declines with age [29] and
these differences are even more pronounced in neurode-
generative diseases. For example, patients with Alzhe-
imer's disease have a 22% greater choroid plexus
epithelial cell atrophy compared to controls [41] and the
decrease in cerebrospinal fluid (CSF) production with age
[29] may lead to the accumulation of B-amyloid peptides
in the brain which could eventually form plaques [42].
Additionally, cerebral ischemia produced by middle cere-
bral artery occlusion induces apoptotic cell death in the
choroid plexus which spreads to the neighbouring hip-
pocampus [43]. Changes in GPR125 expression were
measured after traumatic brain injury (Figure 2C).
Whereas no differences between the contralateral and
ipsilateral expression (except at 6 h post-TBI) were
observed in the choroid plexus, the expression transiently
increased at 4 h after injury followed by a decrease from 2
days onwards. Increased expression in the hippocampus,
a brain structure having a close contact with CSF, was
delayed until 1 day after injury. These observations sug-
gest that the CSF pathways may play a role in the injury-
mediated regulation of GPR125 expression in both the
choroid plexus and hippocampus [44]. These results illus-
trate an important difference in sensitivity between in situ
hybridization and qPCR since the hippocampus was pos-
itive for mRNA of GPR125 even though expression was

http://www.biomedcentral.com/1471-2202/9/97

considerably less than the cortex. Nonetheless, TBI caused
a significant induction of GPR125 mRNA in the hippoc-
ampus after initial increases in the choroid plexus (2-fold
increase over basal levels). This suggests that despite low
basal levels of GPR125 expression in many brain regions,
the gene can be upregulated in response to challenges
such as brain injury.

Real-time RT-PCR data identified mRNA for GPR125 in
small quantities throughout the brain. This was con-
firmed by in situ hybridization data as scattered expression
across the cortex (Figure 3B). The expression pattern of
GPR125 is very different compared to GPR123 [7] despite
the similarity of these receptors and classification together
as Group II Adhesions. GPR125 is expressed in select
regions of the brain and more widely in the peripheral
organs while GPR123 was selectively expressed in the
brain [7]. A difference in function is also suggested by the
presence of HBD, Ig and GPS domains on GPR125 and
the absence of these in GPR123 (Figure 1B). The expres-
sion pattern of GPR125, in human tissues corresponds
somewhat to the expression pattern observed in mouse
[8]. Major differences include a lower expression in the
human brain and virtually no expression in the human
lung [8]. However, it is difficult to compare and quantify
differences between Northern blot measurements and
qPCR results. Importantly, GPR125 is highly upregulated
in tumor samples from human brains [8], which also sug-
gests a role for GPR125 in cancer or an upregulation of
this in relation to cancer progression.

Conclusion

In summary, GPR125 is an Adhesion GPCR which has a
long evolutionary history in vertebrates. In contrast to
GPR123 which is selectively expressed in the brain,
GPR125 is expressed both in the brain and periphery. We
have demonstrated that GPR125 expression is increased
after TBI whereas no changes were observed after periph-
eral induction of inflammation. The connection of
GPR125 expression to brain injury suggests a functional
role of this receptor in response to and/or recovery from

injury.
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Additional material

Additional file 1

Genomic structure of selected Adhesion GPCRs from human (Hs),
mouse (Mm), rat (Rn), tetraodon (Tn), fugu (Tr) and drosophila
(Dm) where exons are indicated by boxes and introns as lines.
Domains were identified through the conserved domain database (rps-
blast) against CDD -12589PSSMs with threshold value 0.1, and are
depicted with different colours; Gal_Lectin (yellow), leucine-rich-repeats
(green), immunoglobulins (purple), hormR — hormone binding domain
(light blue), GPS - G protein-coupled receptor proteolytic site (blue), 7tm
— transmembrane domain (red). Immunoglobulins consist of the domains
IG and IGcam whereas leucine-rich-repeats consist of LRRCT, LRR_RI,
LRR_TYP and COG4886. Exon-phases are displayed with 0 for zeroth
phase, + for first phase and ++ for second phase. Interruptions in the
sequence are indicated by //// for truncated intron sequence. The
sequences have been aligned according to the second exon of the 7TM (see
vertical line) since this location is present in all sequences.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2202-9-97-S1.doc]

Additional file 2

Alignment from ClustalW 1.83 of human members of Adhesion
Group III together with Gprl25-sequences from Mus musculus, Rat-
tus norvegicus, Tetraodon nigroviridis, Takifugu rubripes and
Drosophila melanogaster. The alignment has been edited in Jalview
2.2.1 and coloured according to percentage identity where darker colours
indicate higher percentage identity.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2202-9-97-S2.doc]

Additional file 3

In situ hybridization panel of GPR125 expression. In situ hybridiza-
tion panel of GPR125 expression in the mouse brain on free floating sec-
tions using 400 ng of digoxigenin (DIG)-labeled mouse GPR125
antisense probe on coronal sections using BM-purple visible enzyme sub-
strate.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2202-9-97-S3.jpeg|

Additional file 4

GPR125 co-localization with vasculature. Labelling of the GPR125
protein (red) did not co-localize with monocarboxylate transporter MCT-
2 (green) which is transporter found in the cerebral vasculature and the
walls of the ventricle.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2202-9-97-54.tiff]
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