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Abstract

Background: The pre-Botzinger complex (preBo6tC) is a central pattern generator within the
ventrolateral medulla oblongata's ventral respiratory group that is important for the generation of
respiratory rhythm. Activation of adenosine A, receptors (A,R) depresses preBotC
rhythmogenesis. Although it remains unclear whether A|R activation is important for organisms in
a normal metabolic state, A|R activation is important to the response of the preB6tC to metabolic
stress, such as hypoxia. This study examined mechanisms linking AR activation to depression of
preBotC rhythmogenesis in medullary slice and island preparations from neonatal mice.

Results: Converting medullary slices to islands by cutting away much of the medullary tissue
adjacent to the preBotC decreased the amplitude of action potential bursts generated by a
population of neurons within the preBotC (recorded with an extracellular electrode, and
integrated using a hardware integrator), without noticeably affecting burst frequency. The AR
agonist Né-Cyclopentyladenosine (NCPA) reduced population burst frequency in slices by ca. 33%
and in islands by ca. 30%. As in normal (drug-free) artificial cerebrospinal fluid (aCSF), NCPA
decreased burst frequency in slices when GABA sergic or GABA sergic and glycinergic transmission
were blocked, and in islands when GABA ,ergic transmission was antagonized. Converting slices to
island preparations decreased synaptic input to inspiratory neurons. NCPA further decreased the
frequency of synaptic inputs to neurons in island preparations and lowered the input resistance of
inspiratory neurons, even when chemical communication between neurons and other cells was
impeded.

Conclusion: Together these data support the suggestion that depression of preB6tC activity by
AR activation involves both decreased neuronal excitability and diminished inter-neuronal
communication.

Background latory (inspiratory) rhythmogenesis [1,2]. Even within a
The pre-Botzinger complex (preB6tC) within the medulla  1/2-mm thick transverse slice of medulla the preB6tC pro-
oblongata's ventral respiratory group (VRG) contains a  duces rhythmic bursts of neuronal activity that resemble
network of neurons important for the generation of venti-  various patterns of inspiration such as eupneic inspira-
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tion, gasps, and sighs [2-7]. Modulation of preBotC rhyth-
mogenesis represents a central focus of research into this
region's function. Within transverse medullary slice prep-
arations from neonatal mice, preBotC rhythmogenesis
and pattern formation are thought to result from the activ-
ity of a heterogeneous population of interneurons, which
includes a variety of intrinsically-bursting pacemaker neu-
rons as well as a variety of follower neurons [1,7-10].
Accordingly, modulation of preBstC rhythmogenesis
likely involves regulation of multiple aspects of network
function, including the modulation of membrane proper-
ties and of synaptic interactions [6,11-13].

Adenosine is an important modulator of neuronal net-
work function throughout the CNS [14-17]. For instance,
antagonizing adenosine A, receptors (A;R) inhibits
hypoxic depression of synaptic transmission between hip-
pocampal neurons [15]. Adenosine and A, R agonists tend
to depress respiratory thythmogenesis in a variety of neo-
natal mammals. This finding holds true at the level of the
whole organism as well as for in vitro preparations con-
taining the preBotC [18-23]. For instance, activation of
AR depresses inspiration-related network activity
recorded from hypoglossal (XII) nerve rootlets of brain-
stem-spinal cord preparations obtained from embryonic
and neonatal rats, as well as within medullary slice prepa-
rations from neonatal mice [22-24]. Depression of respi-
ratory rhythmogenesis by A;R may be mediated by its
effects on membrane properties, such as increasing con-
ductance of leak K+ channels in preB6tC neurons [24].
Network-level depression by A;R may also involve
reduced synaptic release. Activation of A;R pre-synapti-
cally suppresses evoked glutamatergic EPSCs [16] and gly-
cinergic IPSCS [25] in hypoglossal neurons by roughly 42
and 72%, respectively.

Although its role or roles appear to evolve through ontog-
eny, fast inhibitory synaptic transmission is important in
the functioning of central respiration-related networks in
mammals ranging from neonatal through adult. In adult
mammals inhibitory synaptic transmission appears to be
necessary for respiratory rhythmogenesis. For instance, in
adult cats antagonism of glycine receptors can block preB-
6tC rhythmogenesis, and injection of the GABA, antago-
nist bicuculline into the preBo6tC slows respiratory rhythm
and induces apneusis [26]. By contrast, the glycine recep-
tor antagonist strychnine injected into the preBotC of
adult rats is ineffective in altering phrenic nerve discharge
[27]. Within in situ preparations from juvenile rats block-
ing glycinergic transmission can contribute to changing
burst shape from incrementing to decrementing [28].
Antagonizing GABA,-ergic and glycinergic transmission
increases the frequency respiration-related bursts of neu-
ronal activity generated by brainstem slices from neonatal
mice [29-31] and brainstem spinal cord preparations
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[29]. Moreover, blocking GABA, and glycine receptors
increases the amplitude of integrated bursts generated by
brainstem slices [30], increases the area of integrated
bursts produced by brainstem spinal cord preparations
and medullary slice preparations [29], increases the excit-
ability in the medullary slice preparation [31], and allows
medullary slice preparations to generate rhythmic bursts
when bathed in 3 mM K, rather than 8 mM K+ [32]. Acti-
vation of GABA, receptors in brainstem spinal cord and
slice preparations from embryonic (on or after embryonic
day 19) and neonatal rats slows respiration-related burst-
ing when the preparations are bathed in artificial cerebro-
spinal fluid (aCSF) containing 3 mM K*, but increases
burst frequency when the preparation are bathed in aCSF
with elevated extracellular K+ (9 mM) [33]. Thus, within in
vitro preparations from neonatal mice and rats, inhibitory
synaptic transmission affects the pattern of respiration-
related output, rather than being required for rhythmo-
genesis.

The purpose of this study was to examine factors that may
contribute to, or interact with, A;R-mediated depression
of preBotC rhythmogenesis including effects of A;R acti-
vation on synaptic transmission and membrane proper-
ties. Since GABA ,ergic and glycinergic transmission affect
the pattern of pre-B6tC output, the effect of A;R activation
on inputs via these transmitters was examined as proxy for
the effects of A;R activation on fast chemical transmission
in general. Although the pattern of respiration-related
bursting in medullary slice preparations from neonatal
mice is altered during GABA, and glycine receptor antag-
onism its persistence provides the opportunity to deter-
mine  whether baseline  GABA,ergic/Glycinergic
transmission and the effects of AR activation interact.
That is, when GABA ,ergic or GAB,Aergic and glycinergic
transmission are left intact, is the network-level depres-
sion observed during AR activation more extensive than
when synaptic input is reduced or when GABA, or GABA
and glycine receptors are extensively antagonized?

Whereas this study used GABA,ergic and glycinergic
antagonists to extensively block these forms of fast chem-
ical transmission, the effects of less severe reduction in
intra- and/or inter-network synaptic transmission on the
preBotC's population-level response to A;R activation
were examined by comparing the actions of the A;R ago-
nist N°-Cyclopentyladenosine (NCPA) in medullary slice
preparations and preBotC island preparations. Reducing
the medullary slice to an island preparation removes
regions including the inferior olivary complex (IO), spinal
trigeminal tract (SP5), nucleus tractus solitarius (NTS),
medullary raphe, XII nucleus, facial nucleus, and contral-
ateral preBotC [34]. As with the medullary slice prepara-
tion, portions of the VRG abutting the preB6tC (along the
rostro-caudal axis) remain in the island. Conversion to
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the island preparation severs the axons of many neurons
projecting to the preB6tC, and may reduce intra-network
communication, with the net effect being a reduction in
the amount of input received by preB6tC neurons as show
in the results section below [c.f. [34]]. Thus, many or most
of the currents observed in preBotC neurons within the
island preparation are likely evoked by transmitters
released from preB6tC neurons, or from other VRG neu-
rons.

The data presented herein demonstrate that A;R activa-
tion depresses preBotC rhythmogenesis similarly in other-
wise untreated slice preparations, when synaptic input is
reduced by converting the slice to an island, and in slice
preparations within which GABA,ergic or GABA,ergic
and glycinergic receptors were antagonized. This study
further demonstrates that during its depression of preB-
o0tC rhythmogenesis A;R activation decreases synaptic
input to preBotC neurons and alters resting membrane
properties in a manner consistent with decreased neuro-
nal excitability. Together these findings support the
notion that although the synaptic currents/potentials
evoked by baseline levels of GABA and glycine may inte-
grate with the modulatory effects of A;R activation, their
contribution is too small to be noticed at the level of pop-
ulation level recordings. Rather the effects of A;R activa-

Table I: Effects of AR activation on population burst parameters
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tion on membrane properties and/or synaptic release are
sufficient to cause substantial depression of the preBotC.

Results

Effects of A;R agonism/antagonism on preB6tC
population activity in slice preparations

Pharmacological manipulation of A;R affected the gener-
ation of population bursts by the preBotC (Repeated
Measures ANOVA P < 0.001; Table 1). The A;R agonist
NCPA (1 pM) decreased population burst frequency by
27.3% (P < 0.001; Fig. 1A, B. Subsequent addition of the
AR antagonist 1,3-Dipropyl-8-cyclopentylxanthine
(DPCPX; 1 uM, n = 12) returned population bursting to
essentially baseline frequency (P < 0.001 vs. NCPA; Fig.
1A, B). The amplitude of population bursts generated dur-
ing NCPA treatment was statistically indistinguishable
from that of bursts generated during baseline recording
(Repeated Measures ANOVA, P > 0.1; Table 1).

Effects of A;R manipulation on slice rhythmogenesis during
GABA , receptor antagonism

A second set of experiments determined whether the post-
synaptic effects of GABA ,ergic transmission integrate with
(effectively sum with) the effects of AR activation to
increase the level of network-level depression of preB6tC
rhythmogenesis in the medullary slice preparation. Note:

Slice Island
Treatment Group Stage of Experiment n Frequency Amplitude n Frequency Amplitude
(bursts'sec’!) (bursts'sec’!)
aCSF control |. Baseline 12 0.33 £0.02 201 +£024 9 0.37 £ 0.04 1.39 £0.25
2. aCSF 0.33 £0.03 2.03 £ 0.25 0.36 + 0.04 1.50 £ 0.31
3. NCPA 0.24 + 0.03 2.13+£0.24 0.26 £ 0.042 > 1.57 + 0.40
4. DPCPX 0.31 £0.02 1.81 £0.22 0.37 £ 0.03 1.48 + 0.44
Bicuculline |. Baseline I 0.36 £ 0.03 1.65+023 7 0.44 + 0.06 1.13+0.19
2. Bicuculline 0.33 £ 0.02 2.27 £ 0.352 0.43 £ 0.05 1.77 £ 0.292
3. NCPA 0.22 £ 0.032° 2.33 £ 0.352 041 £0.05 1.55 £ 0.212
4. DPCPX 0.31 £0.03 1.93 £ 0.30 0.48 + 0.07 1.81 £0.372
Gabazine |. Baseline 7 0.34 + 0.07 3.0+ 1.14 6 0.27 £ 0.04 0.89 £0.10
2. Gabazine 0.33 £ 0.06 348+ 1.24 0.29 £ 0.03 0.86 £ 0.10
3. NCPA 0.25 £ 0.072> 2.56 + 0.89 0.18 £ 0.052 0.89 £ 0.15
4. DPCPX 0.32 £ 0.06 337 £ LI 0.30 £ 0.05 0.76 £ 0.09
Gabazine & Strychnine |. Baseline 8 0.33 £ 0.05 097 £ 0.16 6 0.40 + 0.06 I.I15+0.16
2. Gabazine + Strychnine 0.30 £ 0.04 1.40 £ 0.20 0.40 + 0.05 1.46 + 0.232
3. NCPA 0.24 £ 0.032° 1.31 £0.23 0.34 £ 0.05 .51 £0.262
4. DPCPX 0.30 £ 0.03 1.10 £0.17 0.38 £ 0.04 1.45 + 0.262

Slices were superfused with one of four solutions prior to treatment with NCPA (aCSF alone, aCSF with bicuculline, aCSF with gabazine, or aCSF

with gabazine and strychnine).
IAll values presented as mean + SEM.

aDifferent from baseline (pre-treatment) value at P < 0.05 (Tukey post-hoc tests)

bDifferent from control (aCSF only) at P < 0.05 (Tukey post-hoc tests)
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Figure |

Effects of AR activation on preB6tC rhythmogenesis in medullary slice preparations. A. Representative effects of
bath-applied NCPA (I 1uM) alone, NCPA in the presence of gabazine (20 uM), or NCPA in combination with gabazine (20 uM)
and strychnine (1 uM). B. Whether applied (i) alone, (ii) with gabazine, or (iii) with gabazine and strychnine, NCPA decreased
burst frequency (a, value different from baseline at P < 0.05, Tukey post-hoc test; b, value different from step 2 of treatment —
either continued aCSF, application of gabazine, or application of gabazine and strychnine — at P < 0.05, Tukey post-hoc test).
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an alternative hypothesis could be that A;R activation
substantially increases extracellular levels of GABA and/or
glycine thereby depressing the activity of postsynaptic
neurons and thus depressing network activity. However,
given that AR activation tends to depress synaptic trans-
mission throughout the nervous system [16,25], such an
effect is unlikely. Due to potential non-specific effects of
bicuculline on neuronal properties, a subset of experi-
ments used gabazine (20 uM), rather than bicuculline to
antagonize GABA, receptors. NCPA decreased the overall
frequency of population bursts in slices by ~33% during
bicuculline treatment (n = 11; P < 0.001; Table 1) and by
~24.2% during gabazine treatment (n = 7; P < 0.05; Fig.
1A, Bii). These changes in frequency were indistinguisha-
ble from the ~27.3% decrease observed in slices treated
with NCPA alone. As with slices treated with NCPA alone,
DPCPX applied during treatment with NCPA and bicucul-
line returned population burst frequency to a level (0.31
+ 0.03 Hz) statistically indistinguishable from baseline.
Similarly, in slices treated with gabazine and NCPA,
DPCPX increased population burst frequency to a level
indistinguishable from treatment with gabazine alone
(Table 1).

Population burst amplitude varied between treatments in
slice preparations treated with the GABA, receptor antag-
onist bicuculline (Repeated measures ANOVA, P =0.002),
but not in slices treated with gabazine (Repeated Measures
ANOVA, P = 0.815; Table 1). Bicuculline increased the
amplitude of population-level bursting (Tukey Post-Hoc
Test, P = 0.009; Table 1). Agonism/antagonism of AR
during antagonism of GABA, receptors with bicuculline
or gabazine produced no statistically detectable change in
mean burst amplitude (Table 1).

Effects of A|R manipulation on slice rhythmogenesis during
GABA, and glycine receptor antagonism

In all 8 slices examined, a cocktail of gabazine (20 uM)
and strychnine (1 pM) induced seizure-like bursting at
1.36 + 0.22 siezures-min'! (Fig. 2. During subsequent
agonism of A;R with NCPA seizures occurred at 0.71 +
0.47 seizures - min-! (P > 0.05, Tukey Test). Blockade of Cl-
-mediated transmission did not discernibly affect the
overall frequency of population bursting. Even with
GABA,ergic and glycinergic transmission antagonized,
NCPA decreased the frequency of population bursts rela-
tive to baseline (Fig. 1A, B; P = 0.002, Tukey Test). This
change in frequency was indistinguishable from the
~27.2% decrease observed in slices treated with NCPA
alone. Although a repeated measures ANOVA indicated
significant overall variation in amplitude between all
treatments (in slices treated with gabazine and strychnine;
P = 0.044), Tukey post-hoc tests demonstrated that none
of the individual pairs of treatments were distinguishable
from each other (Table 1).
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Block of chloride-mediated inhibition inducesseizure-
like activity in medullary slice preparations. Three
sequential sample recordings of integrated preBotC activity
from a single medullary slice preparation. A. Activity
recorded in recorded in drug free aCSF. B. Gabazine (20 pM)
and Strychnine (I pM) induce seizure-like bursting (brackets)
characterized by increased burst frequency and elevated
baseline, while slightly decreasing the frequency of population
bursts generated between seizure-like bursts. C. Antagonism
of AR with NCPA (I pM) eliminated seizures for this slice
and decreased population burst frequency.

Effects of AR agonism/antagonism on preBotC
population activity in island preparations

The slices from which island preparations were excised
and the islands generated from them produced popula-
tion bursts at similar frequencies (Fig. 3. However, popu-
lation burst amplitude decreased with conversion from
slice to island preparation (n = 9; P < 0.001; Fig. 3). As
with slice preparations, NCPA decreased the frequency of
population bursts generated by islands, in this case from
0.37 £ 0.04 t0 0.26 + 0.04 Hz (n = 9; P < 0.001; Table 1).
This decrease (~29.8%) was indistinguishable from the
27.3% decrease observed in slices treated with NCPA
alone. Subsequent application of DPCPX, in the contin-
ued presence of NCPA, increased the frequency of popu-
lation bursting to a level indistinguishable from baseline
(0.37 + 0.03 Hz; Tukey Test, P < 0.001, vs. NCPA; Fig. 4.
Population burst amplitude remained similar between
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Effects of slice to island conversion onpopulation
burst parameters. A. The frequency of population bursts
generated by the preBstC was unchanged by cutting away
regions of the slice preparation adjacent to the preBotC (see
text), thereby converting the section to an island preparation
(frequency = 0.33 £ 0.02 Hz in slices vs. 0.37 £ 0.04 Hz in
islands; n = |3 of each; paired t-test, P = 0.73). B. By contrast,
the amplitude of integrated population bursts decreased by
30.1% with conversion of the slice to the island preparation
(*, P < 0.05, paired t-test).
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treatments in island preparations (Repeated measures
ANOVA, P = 0.547; Table 1).

Effects of A;R manipulation on island rhythmogenesis
during GABA , receptor antagonism

The frequency of population bursts generated by island
preparations remained near baseline levels following
addition of bicuculline (Tukey Test, n =7, P = 0.981; Table
1). By contrast to slices, NCPA applied to islands in the
presence of bicuculline failed to change population burst
frequency relative to baseline (Tukey test, n = 7, P =
0.493). As in slice preparations, bicuculline increased
population burst amplitude in island preparations (Tukey
test, P = 0.027; Table 1), which effectively remained
unchanged during subsequent treatment with NCPA
(Tukey test, P = 0.695; Table 1).

By contrast to its effects in the presence of bicuculline,
NCPA applied in the presence of gabazine decreased the
frequency of population bursting in island preparations
(Tukey test, n = 6, P < 0.001; Fig. 4). Moreover, AR acti-
vation reduced burst frequency to a greater extent in
gabazine-treated islands than in gabazine-treated slices
causing a ~37.9% decrease in island burst frequency com-
pared to a 24.2% decrease in gabazine treated slices (t-test,
P = 0.0002). As with bicuculline, gabazine caused no
detectable change in population burst frequency in island
preparations (Fig. 4A, Bii). Unlike bicuculline, gabazine
caused no discernible change in the amplitude of popula-
tion bursts in island preparations. However, in the pres-
ence of gabazine burst amplitude remained relatively
constant during treatment with NCPA (Table 1).

Effects of A;R manipulation on island rhythmogenesis
during GABA , and glycine receptor antagonism
Population burst frequency was seemingly unaffected by
combined GABA, and glycine receptor antagonism, with
islands generating population bursts at 0.40 + 0.09 Hz
under baseline conditions and at 0.40 + 0.08 Hz in the
presence of gabazine and strychnine (n = 6; Fig. 4A, Biii).
By contrast to medullary slices, the combination of
gabazine and strychnine evoked no seizures in island
preparations. In the presence of gabazine and strychnine,
NCPA failed to cause a statistically detectable change in
population burst frequency or amplitude (Repeated meas-
ure ANOVA, n = 6, P =0.16; Table 1).

Effects of AR activation on synaptic inputs

With the solutions used during this study all synaptic
inputs appeared to evoke inward currents in neurons volt-
age-clamped at -60 mV (Fig. 5A. Thus, to discriminate
between inhibitory inputs and excitatory inputs inspira-
tory neurons were voltage clamped at -35 mV, at which CI-
-mediated currents appeared as outward events and exci-
tatory currents appeared as inward events (Fig. 5B). Dur-
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Figure 4

Effects of AR activation on preB6tC rhythmogenesis in island preparations. A. Representative effects of NCPA (|
M) alone, with gabazine (20 uM) and in combination with 20 1M gabazine and | uM strychnine. B. As with slice preparations,
NCPA alone (i) or in combination with gabazine (ii) decreased burst frequency. By contrast to slices, NCPA applied in combi-
nation with gabazine and strychnine (iii) failed to affect burst frequency (a, value different from baseline at P < 0.05, Tukey
post-hoc test; b, value different from the second step of treatment — either continued aCSF, application of gabazine, or applica-
tion of gabazine and strychnine — at P < 0.05, Tukey post-hoc test).
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A. Vigiq = -60 mV

Figure 5

Synaptic inputs to preBo6tC neurons. A. Spontaneous postsynaptic currents from an inspiratory neuron voltage clamped
at -60 mV. Note both iPSCs from ePSCs appear as inward currents. B. The same neuron as in A, but voltage clamped at -35
mV. Note that chloride-mediated synaptic currents now appear as outward currents (arrows). Although it is impossible to
accurately measure the amplitude or frequency of excitatory or inhibitory inputs during inspiration-related bursts of synaptic
input it is possible to distinguish between excitatory and inhibitory inputs during the interburst interval. Vertical scale: 50 pA.
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ing population bursts inhibitory and excitatory inputs
occurred at a high enough frequency that the resultant
summation/interference prohibited evaluation of synap-
tic inputs during this period. Rather, sSEPSC and sIPSC fre-
quencies were evaluated during the period between
population bursts.

During baseline recording, inspiration-related neurons
(those receiving increased excitatory input during the
population burst) within slice preparations received sEP-
SCsat 15.6 + 3.6 Hz, and sIPSCs at 17.5 + 5.3 Hz (Fig. 6B.
Strychnine eliminated almost all sIPSCs, reducing their
frequency to 0.6 + 0.1 Hz (n = 8; P = 0.001), without
noticeably affecting sEPSC frequency (Fig. 6A, C). NCPA
further decreased the frequency of sIPSCs to 0.3 + 0.1 Hz
(n = 8 P = 0.001). In each of the 8 neurons treated
sequentially with strychnine and then NCPA, subsequent
treatment with bicuculline eliminated all remaining sIP-
SCs. As with sIPSCs, NCPA decreased the frequency of
SEPSCs received by inspiratory neurons, in this case from
15.6 £+ 3.6 t0 4.0 + 1.4 Hz (n = 8, P = 0.004; Fig. 6C).

Reducing slice preparations to islands reduced the com-
bined frequency of sIPSCs and sEPSCs received by inspi-
ration-related neurons by 59%, (n = 13 of each type of
preparation; P = 0.004, Mann-Whitney Rank Sum Test;
Fig. 6A, B). Reducing medullary slices to island prepara-
tions decreased sEPSC frequency in inspiration-related
neurons from 19.8 + 3.8 (n = 13 slices) to 8.1 + 2.4 Hz (n
= 13 islands; P < 0.001, Mann-Whitney Rank Sum Test).
Conversion from medullary slice to island preparation
also appeared to reduce sIPSC frequency in inspiration-
related neurons (from 17.5 + 5.3 Hz to 7.6 + 2.8 Hz).
However, this change failed to attain statistical signifi-
cance (n = 13 of each type or preparation, P = 0.167; Fig.
6B).

Although island preparations received synaptic inputs at
lower frequencies than slice preparations, their response
to NCPA, in this regard, was much the same. Within
island preparations, strychnine reduced sIPSC frequency
from 7.6 + 2.8 t0 0.5 + 0.1 Hz (n = 6, P < 0.001; Fig. 6C).
Addition of NCPA further decreased GABA,ergic sIPSC
frequency to 0.2 + 0.1 Hz (Mann-Whitney Rank Sum Test,
P =0.041), and decreased sEPSC frequency to 2.0 + 1.2 Hz
(n = 6, Two Sample t-test, P = 0.035).

Effects of A|R activation on membrane properties

Since A, R activation is known to affect membrane proper-
ties, and in some neurons overall excitability, we exam-
ined the effects of NCPA on the R,,, I, (only without
synaptic isolation) and Iy, of inspiratory preBotC neu-
rons. In slice and island preparations (n = 10) bathed in
normal aCSF, NCPA decreased R;,, from 389.2 + 130.0 to

287.7 + 113.3 MQ (Paired t-test, P < 0.05). After 15 min
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of recording, the R;, of one of these neurons increased by
8% and in two others R, remained essentially unchanged
from baseline (<5% change). Overall, steady state out-
ward currents evoked by voltage steps applied in 10 mV
increments between -80 mV and +20 mV were unaffected
by NCPA (Paired t-test, P > 0.1). Similarly, in the presence
of NCPA voltage steps from -60 mV to -40 mV evoked I,
(-4192.2 + 919.8 pA) similar to that evoked by identical
voltage steps under baseline conditions (-5291.2 + 1387.9
pA; n=5,P=0.53).

To verify that NCPA directly affected AR activation in the
cells examined, rather than affecting release of other sub-
stances onto the patched cells, we repeated the preceding
set of experiments (minus the measurement of I, ) in the
presence of TTX, Cd++, elevated Mg*+ and minimal extra-
cellular Cat+ (as close to no Ca** as possible). Whereas
input resistance remained nearly constant in the modified
aCSF (15 min control for NCPA treatment period; Fig.
7Ai, addition of NCPA decreased R, from 306.9 + 38.4 to
200.8 + 34.0 MQ (n = 7, Paired t-test, P = 0.018). By con-
trast to its effects on R,,, NCPA produced no detectable

n’/

effect on (leak-corrected) I (n = 5; Fig. 7B, C).

Discussion

In preparations representing levels of biological organiza-
tion from tissue through whole-organism, AR activation
depresses neuronal-network activity underlying respira-
tory thythmogenesis [23,24]. Although GABA,ergic and
glycinergic transmission affect the patterning and excita-
bility of the respiratory network within in vitro prepara-
tions from neonatal mammals, the data presented herein
show that the depression of preB6tC rhythmogenesis by
AR activation is unaffected by reducing the overall level
of synaptic input received by preBo6tC neurons, or by
antagonizing GABA, or GABA, and glycine receptors.
Thus, while the postsynaptic currents/potentials caused
by GABA,/glycine receptor activation may integrate with
the modulatory effects of A;R activation, the relative con-
tribution of such integration to the combined effect is
minor. The intracellular data presented herein are consist-
ent with the notion that A;R-mediated depression of net-
work activity may involve modulation of resting
membrane properties as well as suppression of synaptic
release.

The preBo6tC receives synaptic input from other regions
within the slice preparation. Modulation of at least some
of these inputs, such as the contralateral preB6tC, can
affect the pattern of preBotC output [10,34]. Converting
the slice to an island preparation removes the somata of
many neurons sending axons to the preBotC. In excised
preparations representing a variety of CNS regions, axon
terminals severed from their somata continue to release
messenger for a period of time after being cut away. In
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Figure 6

Manipulation of AR affects synaptic input to preB6tC neurons. A. Representative current traces from slice (left) and
island preparations (right). Vertical scale: 50 pA. B. Converting slices to island preparations reduced the frequency of total
sPSCs and sEPSCs evoked in preBotC neurons (*P < 0.05, Two-sample t-test). This trend appeared to hold true for sIPSCs but
did not attain statistical significance. C. NCPA (I uM) decreased the frequency of sEPSCs and sIPSCs received by preBotC neu-
rons within slice (i, ii) and island preparations (jii, iv) in the presence of strychnine (I pM). The insets in (ii) and (iv) are magni-
fied views of sIPSC frequencies in the presence of strychnine. Letters above columns show difference from mean frequency
under baseline (a, P < 0.05) conditions and in the presence of strychnine (b, P < 0.05).
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Figure 7

Effects of AR activation on individual inspiration-
related preBo6tC neurons. A. NCPA (I uM) decreased R;,
of synaptically isolated neurons (n = 7; * P < 0.05). B. In this
representative pair of whole cell current traces evoked by a
voltage step from -60 to 20 mV Iy, is similar during recording
in normal aCSF (black trace) and in NCPA (grey trace). Ver-
tical scale: 100 pA; time scale: 50 ms. C. Mean current-volt-
age relationship for inspiratory neurons (n = 5; error bars
represent SEM).

fact, such release may be affected by the application of
modulatory substances to the cut terminals [35]. How-
ever, converting the slice preparation to the island prepa-
ration reduces synaptic input to preBotC neurons (e.g.,
Fig. 6) suggesting that a large proportion of cut terminals
in the island lose much, if not all, of their function shortly
after being cut and/or that conversion leads to a decrease
in intra-network communication. Activation of A;R
depresses preBotC rhythmogenesis similarly in slice and
island preparations, the latter representing a condition of
reduced synaptic transmission. These findings, are con-
sistent with the notion that the modulatory effects of A;R
activation, although likely to integrate with concurrent
synaptic inputs, are greater in their overall effect on preB-
0tC activity than are A;R-induced changes in the net syn-
aptic input to preBotC neurons from sources originating
outside the preBotC.

Although not required for thythmogenesis in the neonatal
respiratory network GABAergic and glycinergic transmis-
sion affect the pattern of respiratory network output [28-
31,33,36] and blocking these forms of communication
increases network excitability [31,32]. Here antagonizing
GABA, and glycine receptors induced seizure-like bursting
in slice preparations. Within the island preparation antag-
onism of GABA, and glycine receptors appeared to syn-
chronize preBotC bursting, increasing burst amplitude
[34]. Interestingly, this apparent synchronization during
GABA, and glycine receptor antagonism occurred in
islands from both very young (postnatal day 0- postnatal
day 4), and older (postnatal day 4- postnatal day 7) mice.
Although the CI- equilibrium potential of preB6tC neu-
rons shifts from depolarizing to hyperpolarizing at
around embryonic day 19 [33] for mice, this shift is not
apparent until after postnatal day 2 [30] when medullary
slice preparations are bathed in aCSF containing elevated
K+ [30,33].

As noted above, GABA ergic and glycinergic transmission
affect respiratory network excitability and the pattern of
respiratory network bursting. Accordingly, this study
determined whether the blocking the postsynaptic cur-

Page 11 of 16

(page number not for citation purposes)



BMC Neuroscience 2008, 9:95

rents/potentials evoked by activation of GABA, and gly-
cine receptors may alter the extent of network depression
observed during AR activation. That is, do the postsynap-
tic potentials evoked by GABA,, or GABA, and glycine
receptor activation integrate synergistically with the
depressive modulatory effects of A;R activation? The lack
of any noticeable difference in the response to AR activa-
tion between slices in standard aCSF from those in aCSF
with gabazine or with gabazine and strychnine suggests
that the postsynaptic currents/potentials evoked by base-
line GABA,/glycine receptor activation contribute little, if
at all, to a potential combined effect.

In the medullary slice preparations used for this study
baseline preparation-to-preparation variability in burst
frequency was reasonable and similar between treatment
groups. Had we evaluated the variability in burst-burst
interval for slices (e.g., by calculating a regularity score),
treatment with gabazine, or with combined gabazine and
strychnine, which induced bursts of seizure-like activity,
would likely have been shown to increase the variability
in interburst interval (e.g., decrease burst regularity). By
contrast to the frequency of bursting produced by slices,
that produced by the island preparations used in this
study tended to be somewhat more variable; whereas the
slices from which islands were obtained burst at 0.2 - 0.5
Hz, the islands burst at 0.1 - 0.7 Hz. To minimize baseline
island variability and the number of animals consumed to
obtain island preparations we limited the islands used to
only those bursting between 0.2 and 0.6 Hz. Given that
the island preparation represents the most reduced prepa-
ration available for studying preB6tC rhythmogenesis, it is
perhaps not surprising that the frequency of bursting
would be more variable in islands than in slices. In their
initial description of the island preparation Johnson and
colleagues [34] found that islands generated bursts at a
higher frequency than slice preparations and that the SEM
for preparation-to-preparation burst frequency was twice
that in island preparations compared to slice prepara-
tions.

Although it did not do so in this study, using island prep-
arations bursting over a wider range of baseline frequen-
cies than slice preparations could contribute to a higher
baseline frequency in islands than in slice preparations.
However, such a difference would not, on its own, be
likely to cause the differences in baseline burst frequency
observed between island preparation treatment groups.
Whereas islands used for testing the effects of NCPA in
standard aCSF (Fig. 4A) burst at 0.37 + 0.04 Hz, those
used to examine the effects of NCPA in the presence of
gabazine burst at 0.27 + 0.04 Hz and those used to evalu-
ate the effects of NCPA in the presence of gabazine and
strychnine burst at 0.40 + 0.06 Hz. This variability
resulted from the distribution of baseline burst frequen-
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cies produced by island preparations in the various treat-
ment groups. Whereas the burst frequencies generated by
islands in the first (testing NCPA in standard aCSF) of
these three groups were distributed fairly evenly between
0.2 and 0.6 Hz, those generated by islands in the second
group (testing NCPA in the presence of gabazine) were
distributed near the lower portion of the range with two
of the islands bursting at the lower cutoff frequency. The
frequency of bursts generated by island preparations in
the third group (testing NCPA in the presence of gabazine
and strychnine) clustered near the upper end of the
allowed range with 2 of the preparations generating pop-
ulation-level bursts at the upper frequency limit. Although
baseline firing frequency varied between island groups,
the responses of those used to test the effects of NCPA and
DPCPX in standard aCSF, or in aSCF containing gabazine
were, as shown above, largely similar to those in the cor-
responding slice preparations. Both the increased baseline
variability of islands and their responses to treatment may
reflect the importance of modulatory input to preB6tC
neurons from other regions, such as the contralateral
preBotC, and/or reduced intra-network communication.

Under normoxic baseline conditions it is unlikely that the
preBotC would experience a substantial rise in extracellu-
lar adenosine concomitant with a substantial decrease in
extracellular GABA and glycine concentration. However,
hypoxic stress, after stimulating an initial augmentation
of respiratory network activity, depresses respiratory net-
work activity and decreases extracellular GABA levels [37]
and glycinergic transmission [38] within the ventral respi-
ratory group. These latter two effects are of interest since,
as noted above, reducing GABA,ergic and glycinergic
transmission within the neonatal respiratory network
tend to increase network activity [29-31]. However, while
hypoxia decreases GABA and glycine-mediated transmis-
sion, it also increases extracellular adenosine and serot-
onin levels, depresses extracellular glutamate levels [37]
and alters a variety of membrane properties [39-43].
Although adenosine represents only one of numerous var-
iables that contribute to hypoxic depression of respiratory
network output, the data presented here verify that A;R
activation is sufficient to overcome potential increases in
network excitability caused by reduction in GABA and gly-
cine transmission and in so doing depress preBotC burst-
ing [c.f. [22-24,44]].

Throughout most of this study excitatory synaptic trans-
mission between preB6tC neurons was left intact so that
population-level effects could be observed. By affecting
presynaptic mechanisms of synaptic transmission, such as
axon-terminal Ca** conductances, A;R activation can
directly affect synaptic transmission [45,46]. In fact, our
data show that NCPA decreased synaptic inputs to preB-
6tC neurons. Thus, the data presented herein do not rule
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out the possibility that A;R activation may depress preB-
6tC rhythmogenesis by directly inhibiting excitatory
transmission between preB6tC neurons. In fact, imuno-
histochemical data suggest that A;R are found at the axon
terminals of interneurons within a variety of CNS regions,
including the NTS where they may be involved in regulat-
ing transmitter release [47]. However, A R activation
clearly decreases excitability of preB6tC neurons, an effect
that alone can decrease transmitter release.

During the present study A;R activation decreased the R;,
of preBotC neurons regardless of whether or not those
neurons were synaptically isolated from the rest of the
network. Although not a quantitative measure of neuro-
nal excitability due to its reliance on access resistance and
seal resistance, holding current can reflect changes in
membrane voltage that would occur, were the neuron not
being subjected to voltage clamp. During the present
study holding current increased (became more positive)
in ~60% of the NCPA-treated neurons examined in synap-
tic isolation. By contrast, the holding current of control
neurons (those examined in low Ca*+*/High Mg*+ aCSF
with TTX, but without NCPA) became more negative over
time. In brainstem-spinal cord preparations Herlenius
and Lagercrantz found that A;R activation decreased the
V., of expiratory neurons but did not affect R;, or V, of
inspiratory neurons [23]. The difference between their
study and the data presented herein may reflect the types
of neurons from which data were obtained. Whereas Her-
lenius and Lagercrantz [23] defined inspiratory neurons
in terms of discharge characteristics, here inspiratory neu-
rons were defined as any that received a barrage of synap-
tic input during the population burst. Some neurons
received concurrent barrages of EPSCs and IPSCs resulting
in little or no net inward/outward current, suggesting that
although defined as inspiratory per the criteria used
herein, these may have actually been expiratory neurons.

Although NCPA affected resting membrane properties in
this study, it did not affect whole-cell currents evoked by
depolarizing voltage steps. However, depolarizing voltage
steps activate multiple conductances in preB6tC neurons,
and different types of inspiration-related neuron express
different combinations of voltage-sensitive ion channels
[12]. In other neurons A;R activation affects Ca*+ conduct-
ance [17,25,48]. It is possible that one or more of types of
these conductances were affected by A;R, but in combina-
tion with whole cell K+ conductances such changes were
insufficient to affect total transmembrane current.
Although beyond the scope of the present study, future
work will provide a more detailed dissection of the effects
of AR activation on various membrane conductances.
Rhythmogenesis within the preBotC of neonatal mice is
thought to require synaptic interactions and the activity of
pacemaker neurons [3,5,9,10,12,32,34,49-53]. Upcom-
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ing research in our laboratory will examine whether A;R
activation decreases the excitability and rhythmic produc-
tion of action potential bursts by synaptically-isolated
preBotC pacemaker neurons.

Conclusion

In this study A;R activation depressed preBotC rhythmo-
genesis by acting directly on the preBotC within slice and
island preparations, even though the frequency of synap-
tic currents in preBotC neurons is extensively reduced in
the latter preparation. Moreover, A;R-mediated depres-
sion of preBotC rhythmogenesis was similar in slices
bathed in standard aCSF, in slices and islands bathed in
aCSF containing gabazine, and in slices bathed in
gabazine and strychnine. Even when chemical communi-
cation between preBotC neurons and other cells within
the tissue was blocked, A R activation affected resting
membrane properties of preB6tC neurons in a manner
consistent with decreasing neuronal excitability. Agoniz-
ing A;R with NCPA decreased the frequency of synaptic
inputs to preBo6tC neurons in both types of preparation.
Together these data support the notion that, A;R-medated
depression of preBotC rhythmogenesis involves both
decreased neuronal excitability and inhibition of chemi-
cal synaptic communication between preB6tC neurons.
Although postsynaptic currents and potentials resulting
from GABA, and glycine receptor activation may integrate
synergistically with the modulatory actions of AR activa-
tion, the data herein suggest that their relative contribu-
tion to such depression is minor.

Methods

Isolation and Maintenance of in vitro Preparations

All procedures were carried out according to guidelines
established by NIH and the National Research Counsel,
and were approved by the Institutional Animal Care and
Use Committee at Central Michigan University. Slices of
mouse medulla oblongata were obtained from male and
female Swiss-Webster mice (= 7 d old) that were decapi-
tated at the C3/C4 vertebral level. The brainstem was iso-
lated in ice-cold aCSF (in mM: 118 NaCl, 3 KCl, 1.5
CaCl,, 1 MgCl,, 25 NaHCO,, 1 NaH,PO,, and 30 D-Glu-
cose) saturated with carbogen gas (95% O, and 5% CO,).
The cerebrum and cerebellum were dissected away and
the isolated brainstem was glued to an agar block using
cyanoacrylate glue. This mount was secured in a vibrating
microtome with the rostro-caudal axis of the brainstem
and spinal cord tilted such that the top of the preparation
was slightly farther away from the face of the microtome
than the lower portion (the axis of the tissue was oriented
~110° from the plane in which the microtome blade
advanced). Serial sections (ca. 300 uM thick) were
removed from the rostral surface to reveal the 4thventricle.
Then, ca. 200 um-thick sections were removed until the
region containing the preBotC was revealed, recognized
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by the presence of the obex at the caudal closure of the
fourth ventricle, the appearance of XII nerve tracts and the
10. At this level, a 600 um-thick slice was removed and
immediately transferred to a recording chamber.

Slice viability was sustained by recirculating carbogen-sat-
urated aCSF (29.5°-30.5°C; pH 7.4) between a reservoir
and the recording chamber (200 ml total volume). Thirty
minutes before baseline recording, the potassium concen-
tration of the aCSF was elevated from 3 mM to 8 mM.
Slices were subjected to each experimental condition for
20 to 30 minutes. Only slices that generated bursts at fre-
quencies between 0.2 and 0.5 Hz were used in this study.

Island preparations

Transverse medullary slices were reduced to island prepa-
rations as described by Johnson et al. [34]. To summarize,
following baseline recordings regions of the slice immedi-
ately surrounding the preBotC were cut away using micro-
iridectomy scissors. Cuts were made from the ventral mar-
gin of the slice adjacent (lateral) to the IO along a curve
following and slightly lateral to the XII nerve tract. Then
from a point ~1/3 of the way between the ventral fissure
and the dorsal cusp of the fourth ventricle the next cut
progressed laterally to the medial margin of SP5. The final
cut then progressed along the ventromedial margin of SP5
to the ventrolateral surface of the slice, thereby removing
the contralateral preB6tC, NTS, SP5, XlIIn, XII tract, and
the 10 (c.f. Johnson et al. 2001). The frequency at which
islands generated population bursts was somewhat more
variable than that observed in slice preparations. Accord-
ingly, only islands that generated bursts of integrated net-
work activity at frequencies between 0.2 and 0.6 Hz were
used in this study.

Extracellular recordings

Extracellular electrodes were fabricated from borosilicate
glass pipettes, filled with aCSF, and connected to a home-
made AC-coupled pre-amplifier (100 times amplifica-
tion). Raw traces were filtered between (0.3-3 kHz) and
amplified an additional 100 times (Amplifier model P15,
Grass Technologies, West Warwick, RI, USA) before being
sent to a hardware integrator (50 ms time constant) and
an analog-digital converter (ITC-18, Instrutech Corp., Port
Washington, NY, USA). Both raw and integrated traces
were recorded on the hard disk of a personal computer
using Chart 4.0 (ADInstruments, Inc., Colorado Springs,
CO, USA) or PatchMaster v2.11 (HEKA Instruments, Inc.,
Southboro, MA, USA).

Whole-cell patch clamp recordings

Whole-cell patch clamp recordings were obtained using
unpolished electrodes fabricated from thick-walled boro-
silicate glass (Warner Instruments, # GC 150-10) and
filled with (in mM) 140 K-Gluconate, 1 CaCl,, 2 MgCl,, 4
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Na,ATP, 10 EGTA, and 10 HEPES (pH 7.2). Using near-
infrared Normarski optics (with a 40x objective) the tip of
the patch electrode was positioned on the soma of a neu-
ron within the preBotC. After a gigaohm seal was estab-
lished, whole-cell configuration was established by
applying repetitive pulses of negative pressure until the
cell membrane within the electrode tip ruptured. Trans-
membrane currents were recorded using an EPC8 ampli-
fier (HEKA Instruments, Inc.) and recorded on the hard
disk of a personal computer via Patchmaster software and
an ITC-18 data acquisition board. Currents were filtered at
2 KHz using the internal Bessel filter of the amplifier and
digitized at 10 kHz. Before recording any data from a cell,
transient currents due to electrode and cell resistance and
capacitance were minimized and serial resistance was
80% compensated. Recordings were corrected offline for a
15 mV junction potential. With the solutions used herein,
Cl- based spontaneous inhibitory postsynaptic currents
(sIPSCs) appeared as outward cation currents (i.e., as an
influx of CI') in cells voltage clamped at -35 mV, while
those triggered by excitatory neurotransmitters appeared
as inward currents (sEPSCs). To track the quality of the
recording, we monitored fundamental properties includ-
ing input resistance (R;,), access resistance (R,), holding
current at -60 mV (I,,,,4) and cell capacitance throughout
baseline and experimental conditions. Recordings in
which R, became greater than 10% of R;, were discarded
as were any in which holding current at -60 mV exceeded
(became more negative than) -400 pA. Whereas R, and
cell capacitance were monitored using the manual adjust-
ments on the amplifier, I ;4 was recorded directly from
traces and R;, was calculated based on the current
observed (without leak subtraction) during a 20 ms-long
voltage step from a holding potential of -60 mV to a com-
mand potential of -80 mV. Voltage-gated sodium currents
(Iya) and steady state voltage gated potassium currents
(Ixq) were evaluated using a voltage step protocol. From a
holding potential of -60 mV we applied 200 ms long volt-
age steps from -80 to 20 mV in 10 mV steps. Linear leak
currents were eliminated with an online P/4 leak subtrac-
tion protocol.

In a subset of voltage clamp experiments, the effects of
NCPA on R;, and Iy4 were evaluated using synaptically-
isolated inspiratory neurons. Isolation was accomplished
by bathing slices in aCSF lacking (severely reduced) Ca+*+,
and containing Tetrodotoxin (TTX; 1 uM), CdCl, (200
uM), and MgCl, (10 mM).

Solutions

All drugs/toxins were applied by diluting stock solutions
1000 times in the recirculating bath reservoir. The concen-
trations listed represent the final working concentration
for each agent. The adenosine A,-receptor agonist N°-
Cyclopentyl Adenosine (NCPA; 1 uM), the adenosine A;-
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receptor antagonist 1,3-Dipropyl-8-cyclopentylxanthine
(DPCPX; 1 uM), the GABA,-receptor antagonists bicucul-
line (20 puM, free base) and gabazine (20 uM) were pre-
pared as stock solutions in DMSO. The glycine receptor
antagonist strychnine (1 uM) and TTX were prepared as
stock solutions in deionized water.

Data analysis

Throughout this report, the term baseline is used in refer-
ence to measurements performed prior to addition of
drugs. The term control is used to refer to recording in
aCSF without drug after a period intended to match that
of drug application in a separate preparation. Extracellular
data (burst frequency and amplitude) were measured
using population bursts occurring during the final 2-min-
utes of each treatment (Igor Pro 4.07, Wavemetrics Inc.,
Oswego, OR). All data were tested for normality (Minitab
v. 14, Minitab, Inc., State College, PA, USA). Extracellular
data having a normal distribution were analyzed using
repeated measures ANOVA followed by Tukey post-hoc
comparisons to determine differences between specific
treatments, when appropriate. Non-normal extracellular
data were evaluated using Friedman's Repeated Measures
ANOVA on ranks. Again differences between specific
treatments were evaluated with Tukey post-hoc tests. Nor-
mally distributed intracellular data were compared using
paired-t tests for comparisons within a cell, or two-sample
t-tests when comparing cells from separate treatments.
Non-normal intracellular data were compared using the
Mann-Whitney Rank Sum test. Differences were consid-
ered significant at P < 0.05. Data are presented as means +
SE.
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