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Abstract
Background: It has been reported that various types of axonal injury of hypothalamo-
neurohypophyseal tract can result in degeneration of the magnocellular neurons (MCNs) in
hypothalamus and development of central diabetes insipidus (CDI). However, the mechanism of
the degeneration and death of MCNs after hypophysectomy in vivo is still unclear. This present
study was aimed to disclose it and to figure out the dynamic change of central diabetes insipidus
after hypophysectomy.

Results: The analysis on the dynamic change of daily water consumption (DWC), daily urine
volume(DUV), specific gravity of urine(USG) and plasma vasopressin concentration showed that
the change pattern of them was triphasic and neuron counting showed that the degeneration of
vasopressin neurons began at 10 d, aggravated at 20 d and then stabilized at 30 d after
hypophysectomy. There was marked upregulation of cleaved Caspase-3 expression of vasopressin
neurons in hypophysectomy rats. A "ladder" pattern of migration of DNA internucleosomal
fragments was detected and apoptotic ultrastructure was found in these neurons. There was time
correlation among the occurrence of diabetes insipidus, the changes of plasma vasopressin
concentration and the degeneration of vasopressin neurons after hypophysectomy.

Conclusion: This study firstly demonstrated that apoptosis was involved in degeneration of
supraoptic vasopressin neurons after hypophysectomy in vivo and development of CDI. Our study
on time course and correlations among water metabolism, degeneration and apoptosis of
vasopressin neurons suggested that there should be an efficient therapeutic window in which
irreversible CDI might be prevented by anti-apoptosis.
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Background
In the field of neurosurgery, disorders of the hypotha-
lamic/posterior pituitary usually occur in humans after
surgery of the hypothalamus and its proximal region.
Abnormal water and electrolyte metabolism are typical
postoperative complications. Injury to magnocellular
vasopressin (AVP) and oxytocin (OT) neurons induces
marked changes in the morphology and function of the
neurohypophysis. Axotomy leads to neuronal retrograde
degeneration in the peripheral and central nervous system
[1-4]. In the hypothalamo-neurohypophyseal system
(HNS), various types of axonal injury in vivo, including
pituitary stalk compression[5,6], hypophysectomy[7],
neurohypophy-sectomy [8-10] and pituitary stalk transec-
tion [11-13], result in degeneration of the magnocellular
neurons of the hypothalamus and the development of
diabetes insipidus. In addition, disruption of the axons of
the HNS also leads to retrograde degeneration of substan-
tial numbers of magnocellular neurons in the supraoptic
(SON) and paraventricular (PVN) nuclei of the hypotha-
lamus and leads to 74%–90% loss of the magnocellular
neurons (MCNs) in the paraventricular (PVN). However,
these studies only reported abnormal metabolism and
degeneration of MCNs after axotomy but the time course
and correlations between metabolism and histology of
the degeneration of MCN are not clear which will facili-
tate us to find the therapeutic window.

Cell death is usually classified as apoptosis and necrosis
which are differentiated on the basis of morphological
abnormalities of cells at the ultrastructural level, patterns
of DNA fragmentation on agarose gel electrophoresis.
Apoptosis is characterized by membrane blabbing, peri-
nuclear chromatin condensation, organelle swelling and
by endonuclease-mediated internucleosomal DNA frag-
mentation into a "ladder" pattern. Necrosis is character-
ized by diffuse organelle swelling and lysis as well as
random DNA fragmentation resulting in "smearing" of
DNA on agarose gels [14-17]. Caspase-3 is considered the
central apoptotic effector enzyme responsible for many of
the biochemical and morphological features of apopto-
sis[18,19]. Activation of caspase-3 represents an irreversi-
ble step in the cell death pathway and cells containing
activated caspase-3 are prone to die[20]. It has been
reported that in organotypic cultures of the HNS, exten-
sive cell death of MCNs die by apoptosis after the massive
axotomy [21-23]. The neurotrophic factors, CNTF and
LIF, and the neural activity can significantly reverse the
cell death of the MCNs in vitro [21,23-26].

There are many studies to date have ascertained possible
mechanism about the degeneration resulting from the
axonal damage of CNS neurons. It has been reported that
the cell death of MCNs in organotypic cultures in vitro is
due to apoptosis. But the histopathological change and

the type of death of MCNs are not clear after axotomy of
HNS in vivo. This present study was aimed to investigate
the time course and correlation between abnormal water
and electrolyte metabolism and degeneration of MCNs as
well as the mechanism of cells death of MCNs after hypo-
physectomy. Daily water consumption(DWC), daily
urine volume(DUV), specific gravity of urine(USG) and
plasma AVP concentration were measured; AVP-immuno-
positive neurons were counted at 3 d, 10 d, 20 d and 30 d
after hypophysectomy and apoptosis were analyzed.

Results
Clinical findings
All rats in hypophysectomy group started drinking water
after recovery of anesthesia and started eating food from
the next day. No marked neurological abnormalities or
respiratory symptoms appeared in any of the animals
throughout the follow-up period and their activity and
appetite were constant and normal.

Changes of DWC, DUV and USG
The average daily water consumption (DWC), daily urine
volume (DUV) and specific gravity of urine (USG) of con-
trol group were 31.1 ± 8.1 ml/24 h, 15.1 ± 5.9 ml/24 h
and 1.036 ± 0.007 respectively, which remained relatively
constant throughout the entire period of observation.
Hypophysectomy rats exhibited a triphasic pattern of
DWC, DUV and USG: a sharply increased DWC (88.7 ±
14.1 ml/24 h) and DUV (79.2 ± 15.7 ml/24 h) during the
first 3 days after surgery (phase l), followed by low level
DWC (30.1 ± 5.2 ml/24 h) and DUV (20.1 ± 3.8 ml/24 h)
at 4–8 d which were comparable with those observed in
control group (phase 2). After phase 2, DWC (76.4 ± 18.6
ml/24 h) and DUV (62.1 ± 14.8 ml/24 h) increased again
and remained at an elevated level in the following days
(phase 3)(Fig. 1A,B). The changes of USG also exhibited a
triphasic pattern (1.010 ± 0.003 during the first 3 days,
1.026 ± 0.009 at 4–8 d and 1.013 ± 0.007 during the next
time). (Fig. 1C)

Change of plasma AVP concentration
Plasma AVP concentrations were relatively constant at var-
ious times in control group (Fig. 1D). Plasma AVP con-
centration was 157.4 ± 16.7 pg/ml at 3 d after surgery in
hypophysectomy rats. The difference between two groups
was statistically significant (P < 0.01). At 5 d after surgery,
it was 308.2 ± 18.6 pg/ml in hypophysectomy group,
which increased significantly compared with those at 3 d.
In the follow-up period, plasma AVP concentration
decreased again. (Fig. 1D)

AVP-positive cell counts
Immunofluorescence using anti-AVP antibody was per-
formed in the hypothalamic region and AVP-positive cells
were counted in the supraoptic nuclei. In hypophysec-
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tomy group, the AVP-positive cell numbers in supraoptic
nuclei of both sides were 2554.2 ± 379.6, 1949.2 ± 136.7,
847.2 ± 255.7 and 771.4 ± 202.6 cells at 3 d, 10 d, 20 d
and 30 d respectively after surgery (Fig. 2B,C,D,E). Com-
pared with the control group, there were 93.2%, 75.4%,
32.2% and 29.2% of survival AVP neurons in these nuclei
at each time point respectively in hypophysectomy group.
The number of AVP-positive neurons decreased progres-
sively from the 10 d, and reached minimum at 20 d and
30 d (there was no significant difference between 20 d and
30 d). (Fig. 2F)

Immunostaining of the active form of Caspase-3 and 
colocalized with AVP
Cleaved caspase-3 is the activated form of caspase-3, a crit-
ical effecter of apoptosis [27]. Immunofluorescence anal-
ysis using the specific antibody against cleaved caspase-3
was performed at 10 d after surgery. There were very few
caspase-3 immunopositive neurons in control group.
Marked increased caspase-3 expression was present in
supraoptic nuclei of hypophysectomy rats. There were
793.6 ± 164.5 Caspase-3 immunopositive cells (about
30.1% against the control group) at 10 d after hypophy-
sectomy. The double immunostaining of AVP/caspase-3
showed that most of Caspase-3 immunopositive cells
were clearly visible colocalized with AVP-immunopositive
neurons (arrowheads) and a few Caspase-3 immunoposi-
tive cells was not colocalized with AVP-immunopositive
neurons (arrow), which might be OT neurons. (Fig. 3A, B)

Patterns of DNA fragmentation
DNA from the tissues of hypothalamic supraoptic nucleus
was isolated and agarose gel electrophoresis was per-
formed. This method allowed the distinction between
apoptotic "laddering" of DNA into internucleosomal frag-
ments and necrotic "smearing" of DNA into random-size
fragments. Agarose gel electrophoresis of DNA purified
from hypophysectomy group at 10 d after surgery showed
oligonucleosomal bands in a "ladder" pattern of migra-
tion, whereas samples from the control animals did not
yield it (Fig. 3C).

Ultrastructural Observations
Ultrastructural analysis of the hypophysectomy group
revealed numerous neurons undergoing apoptotic degen-
eration. The neurons of hypothalamic supraoptic nucleus
showed several apoptotic features such as nuclear conden-
sation and fragmentation, cell surface protrusions (Fig. 4).

Discussion
In mammals, the majority of vasopressin producing mag-
nocellular neurons and oxytocin cells distribute in the
hypothalamic paraventricular and supraoptic nuclei [40].
These cells send long axonal projections toward the fenes-
trated capillaries of the neurohypophysis where they

Dynamic change of daily water consumption (DWC), daily urine volume (DUV), urine specific gravity (USG) and plasma AVP concentration after hypophysectomyFigure 1
Dynamic change of daily water consumption (DWC), 
daily urine volume (DUV), urine specific gravity 
(USG) and plasma AVP concentration after hypophy-
sectomy. DWC, DUV and USG remained relatively con-
stant over the entire period of observation in control group 
while there was a triphasic pattern in hypophysectomy rats. 
Phase I: a sharply changes during the first 3 days after sur-
gery; Phase II: a comparable low level with those in control 
group at 4–8 d; Phase III: increased of DWC and DUV and 
decreased USG again in the following days. Plasma AVP con-
centration in hypophysectomy group was less than that in 
control group statistically significantly.
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Immunofluresence analysis of hapothalamic supraoptic AVP neuronsFigure 2
Immunofluresence analysis of hapothalamic supraoptic AVP neurons. A: There was no change in number of AVP-
positive neurons in control group. B: AVP-immnopositive neurons at the 3 d after hypophysectomy. There was a bit decrease 
of AVP-positive cells. C, D and E: AVP-positive neurons at the 10 d, 20 d and 30 d respectively. The number of AVP-positive 
neurons decreased from the 10 d and reached minimum at 20 d and 30 d. F: AVP-positive cell counts. There were 93.2% of 
AVP-positive neurons survived at the 3 d after hypophysectomy,75.4% at the 10 d, 32.2% at 20 d and 29.2% at 30 d (*, P < 0.01 
compared with the control group). The numbers of AVP-immunopositive neurons at 20 d and 30 d were significantly less than 
that at 10 d but there was no difference between those at the 20 d and 30 d (#, P < 0.01 compared with the 10 d).

Immunofluresence analysis of the active form of Caspase-3 and Patterns of DNA fragmentationFigure 3
Immunofluresence analysis of the active form of Caspase-3 and Patterns of DNA fragmentation. A and B 
showed the AVP and Caspase-3 immunostaining of supraoptic nucleus in the same slide at 10 d after hypophysectomy. Gener-
ally, there were 793.6 ± 164.5 Caspase-3 positive cells (about 30.1% against the control group) at 10 d after hypophysectomy. 
The immunostaining of AVP in these same slides with Caspase-3 showed that most of Caspase-3 immunopositive cells were 
clearly visible colocalized with AVP-immunopositive neurons (arrowheads) and a few Caspase-3 immunopositive cells were not 
colocalized with AVP (arrow), which may be the OT neurons. C: Agarose gel electrophoresis of DNA samples purified from 
hypophysectomy group at 10 day after surgery showed oligonucleosomal bands in a "ladder" pattern of migration (lanes 3–6), 
whereas samples from the control animals did not yield it (lane 2) and line 1 showed the DNA markers.
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release their hormonal content into the blood stream to
reach peripheral target organs. Circulating vasopressin,
the antidiuretic hormone, maintains extracellular fluid
balance by regulating water resorptions from the distal
tubulus of the kidney and is one of the most potent vaso-
constrictors yet identified [22]. Deficient secretion of
vasopressin results in the syndrome of diabetes insipidus
which is characterized by polydypsia and polyuria. Diabe-
tes insipidus was one of the major complications of
hypothalamo-neurohypophyseal stract damage and cere-
bral neurosurgery which manifested as abnormalities of
electrolyte metabolism, such as central hypernatremia or
central hyponatremia [28,29]. Hypophysectomy is a con-
ventional animal model in the study of dibetes insipidus.
Following neurohypophysectomy, rats exhibit a pro-
nounced diabetes insipidus and dramatically decreased
urinary levels of AVP [30]. Dohancics et al. reported that
stalk-compressed rats exhibited a triphasic pattern of
water intake[31]. As these previous reports, the present
study exhibited a triphasic pattern of Daily water con-
sumption(DWC), daily urine volume(DUV) and specific
gravity of urine(USG) of hypophysectomy rats: an
increased water intake and urine volume during the first 3
days after surgery (phase l), followed by a comparable of
DWC and DUV with those observed in sham-operated
rats 4–8 d (phase 2), after which DWC and DUV increased
again and remained at an elevated level throughout the
rest of time (phase 3). The changes of USG also exhibited

a triphasic pattern. Diabetes insipidus is a kind of patho-
logic state resulting from decreased ability of the kidney to
concentrate urine because of the decreased secretion of
AVP from the posterior pituitary gland or resistance to the
action of AVP. AVP is mainly secreted by large neurosecre-
tory cells in the hypothalamic supraoptic and paraven-
tricular nuclei. It descends along the nerve axon and is
stored in the posterior pituitary gland through the inner
layer of the median eminence. Total resection of the pitu-
itary gland results in loss of storage and secretion capabil-
ity for AVP in the posterior pituitary in animal. To confirm
the correlation between the diabetes insipidus and plasma
AVP concentration, plasma AVP concentration also was
measured at3 d, 5 d, 10 d, 20 dand 30 d after surgery. In
the present study, plasma AVP concentration was signifi-
cant lower in hypophysectomy (157.4 ± 16.7 pg/ml) than
that in the control group (523.7 ± 21.7 pg/ml) at the 5 d.
At the 5 d after surgery, plasma AVP concentration was
higher than that at the 3 d, but was still lower than that in
the control. In the following time, plasma AVP concentra-
tion decreased again at 10 d, 20 d and 30 d after hypophy-
sectomy. Plasma AVP concentration also exhibited a
triphasic pattern in accord with the pattern of diabetes
insipidus. Many previous studies reported that the plasma
AVP concentration decreased after axotomy and an
ectopic neurosecretory gland-like structure above the pitu-
itary was found as well as an ectopic miniature neurohy-
pophysis at the distal end of the pituitary stalk formed
after hypophysectomy, neurohypophysectomy, stalk sec-
tion or mechanical stalk compression. In this present
study plasma AVP concentration decreased at 3 d after
hypophysetomy was due to loss of storage and secretion
capability for AVP in the posterior pituitary. The plasma
AVP concentration relatively increased at 5 d probably
because of the release of the AVP stored in the magnocel-
lular neurons through the ectopic miniature neurohypo-
physis while the decreased concentration of AVP in the
following time points resulted from the degeneration of
magnocellular neurons of hypothalamus.

Retrograde degeneration of magnocellular neurons is well
known to occur after hypophysectomy[7], neurolobec-
tomy [8-10] and stalk damage[13]. Although magnocellu-
lar degeneration after axonal damage has also been
demonstrated quantitatively[8,31], these studies did not
evaluate the time correlation between the degeneration of
AVP neurons and the occurrence of diabetes insipidus.
Immunofluorescence analysis revealed that AVP-positive
cells tended to decrease after hypophysectomy, suggesting
that excision of the posterior lobe resulted in the decrease
of magnocellular neurons in the hypothalamus. Dohanics
et al., used a different stereotaxic method to compression
the stalk, which resulted in marked diabetes insipidus
accompanied by the significant degeneration of the AVP
neuron population in both SON and the PVN, resulting in

Ultrastructure under electron microscopyFigure 4
Ultrastructure under electron microscopy. Ultrastruc-
tural analysis revealed numerous neurons undergoing apop-
totic degeneration in hypophysectomy group. A showed the 
normal cellular ultra-structures in control group. B-D 
showed apoptotic ultrastructures (B, C showed nuclear con-
densation and fragmentation. D showed degeneration of 
myelin.)
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the survival of only ~35% and ~27% of AVP neurons in
these nuclei at 21 days after surgery, respectively[31]. This
finding was similar to Herman's study [9,30], in which a
marked loss of magnocellular AVP-containing neurons
was induced after neurohypophysectomy in conjunction
with chronic vasopressin agonist treatment. The present
study demonstrated the survivals of 32.2% and 29.2%
AVP neurons at the 20 d and 30 d after hypophysectomy,
respectively (P > 0.05 between these two time-points),
and the survivals of AVP neurons were 97.2% at the 3 d (P
> 0.05 compared to the control group) and 75.4% at the
10 d (P < 0.01). These findings showed that the degenera-
tion occurred from the 10 d after hypophysetomy, aggra-
vated at the 20 d and then stabilized. This study showed
that the AVP neurons did not begin to degenerate at the 3
d but diabetes insipidus occurred and plasma AVP con-
centration decreased, which was probably because the
loss of AVP storage and secretion capability by resection of
the posterior pituitary and an ectopic neural lobe had not
been formed. An ectopic neural lobe formed after axot-
omy would enhance secretion of AVP into the portal cir-
culation. At the 5 d after surgery AVP stored in the
magnocellular neurons in the hypothalamus nuclei was
released by the ectopic neural lobe and the plasma AVP
concentration increased. From 10 d plasma AVP concen-
tration decreased and diabetes insipidus occurred again
because of the significant degeneration of AVP neurons. In
one word, there was tight time correlation between the
occurrence of diabetes insipidus, plasma AVP concentra-
tion and the degeneration of AVP neurons after hypophy-
sectomy.

Cell death is usually classified as apoptotic or necrotic
based on biochemical and morphologic criteria [32-34].
Apoptosis and necrosis can be distinguished histologi-
cally[14]. Tissue necrosis is typified by loss of membrane
integrity, morphological signs of organelle damage,
nuclear flocculation, loss of lysosomal contents, cellular
swelling and uncontrolled cell lysis [35,36]. Apoptosis is
characterized by preservation of membrane integrity,
cytoplasmic and nuclear condensation, diminution of cel-
lular volume, plasma membrane bleb formation and
morphological preservation of organellar structure. The
cell eventually fragments into apoptotic bodies that are
engulfed by neighboring cells and degraded [35,37,38].
During apoptosis, morphological changes often are
accompanied by internucleosomal cleavage of genomic
DNA [39,40]. In contrast to necrosis, apoptosis does not
result in loss of cellular content and does not initiate an
inflammatory response. Many lines of evidence in the pre-
vious studies indicate that the central neurons commit
themselves to apoptotic death after axotomy. At the
ultrastructural level the morphological features of these
cells are associated classically with apoptotic death [14].
The selective degeneration of vasopressin neurosecretory

neurons has been reported in cases of human diabetes
insipidus[41,42] and in animal models after axot-
omy[30,31]. In the vitro studies, selective death of these
neurons were also demonstrated in organotypic cultures
of the hypothalmic nucleus and the nature of the death is
apoptosis which could be specifically prevented by the
administration of the cytokines CNTF[21,23-26]. It was
found that the massive degeneration of vasopressin-posi-
tive neurons by apoptotic cell death was specific for the
vasopressin magnocellular population. This present study
was aimed to determine whether the degeneration of
vasopressin neurons in supraoptic nuclei after hypophy-
sectomy was due to apoptosis in vivo. The ultrastrctural
changes of magnocellular neurons were observed at 10 d
after hypophysectomy under electron microscope. Cyto-
plasmic condensation and blebbing, compaction and
fragmentation of nuclear chromatin and the eventual dis-
solution of membranous barriers between organelles and
cytoplasm were found. Fragmentation patterns of DNA
isolated from hypothalamic supraoptic nuclei tissues
using agarose gel electrophoresis was analyzed. This
method allows the distinction between apoptotic "ladder-
ing" of DNA into internucleosomal fragments and
necrotic "smearing" of DNA into random-size frag-
ments[43]. DNA laddering is a common early step to all
types of cell death. The initial event in cell death appears
to be the activation of endonuclease(s) that generates a
ladder of DNA fragments of high molecular weight. In
apoptosis, this degradation goes uninterrupted until most
of the DNA is fragmented into mononucleosomes, which
are DNA fragments protected from further endonuclease
digestion by intact histone octamers. In contrast, release
of proteases from disrupted lysosomes follows at some
time after endonuclease activation in necrosis leading to
degradation of the protective histones and full exposure of
the DNA to the endonuclease. This exposure results in
random DNA degradation seen as a "smear" on agarose
gel electrophoresis. In the present study, the typical DNA
laddering was detected with agarose gel electrophoresis. It
has been showed that the activation of caspase-3, fol-
lowed by cleavage of specific substrates, may contribute to
the process of apoptosis by structural changes or by affect-
ing certain signaling molecules. Cleaved Caspase-3 is an
important regulator of apoptosis and its proteolytically
cleaved form is known to be upregulated in neurons
undergoing apoptosis [44,45]. In our study, immunoflu-
orescence analysis using the specific antibody against
cleaved caspase-3 revealed that there was very low level of
caspase-3 immunoreactivity in supraoptic neurons in con-
trol while caspase-3 was found progressively upregulated
in hypophysectomy rats. To confirm the cell type of apop-
totic neurons, vasopressin/caspase-3 double staining was
performed. It was found that most caspase-3 immunopo-
sitive cells were colocalized with vasopressin. This present
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study suggested that the degeneration of vasopressin neu-
rons was due to apoptosis in hypophysectomy rats.

Conclusion
This study firstly demonstrated that apoptosis was
involved in degeneration of vasopressin neurons in
hypothalamic supraoptic nuclei after hypophysectomy in
vivo and development of centrarl diabetes insipidus.
These data suggested that anti-apoptosis would amelio-
rate the degeneration and protect these neurons after
hypophysectomy. It has been reported that CNTF, Bcl-xL
and Caspase inhibitor could increase the survival of rat
vasopressin magnocellular neurons in organotypic clu-
ture. It will be worth further exploring whether such
trophic factors and apoptosis inhibitor would protect
these neurons in vivo. Moreover our study on time course
and correlations among metabolism, degeneration and
apoptosis of MCN suggested an efficient therapeutic win-
dow in which irreversible diabetes insipidus might be pre-
vented by antiapoptosis.

Methods
Animals
Adult malt Sprague-Dawley rats weighing 250–275 gm
(Nanfang medical university, Guangzhou, China) were
housed individually in wire-mesh cages in a temperature-
controlled room (21–23°C) with lights on from 7:00
A.M. to 7:00 P.M. Animals were fed solid food or liquid
diet as described below. All animal experiments were per-
formed according to institutional guideline that is in com-
pliance with national and international law and policies.

Hypophysectomy and treatment
Hypophysectomy was performed by removing both the
anterior and posterior pituitary by the parapharyngeal
approach [46,47]. Briefly, animals were anesthetized with
intraperitoneal injections of ketamine (80 mg/kg) and
xylazine (8 mg/kg) and mounted upside-down in a stere-
otaxic apparatus. The skin on the ventral aspect of the
neck was incised and the infrahyoid musculature sepa-
rated on the midline and retracted to either side. The sella
turcica was approached by blunt separation and a hole
was drilled at the basal occipital suture to allow visualiza-
tion of the pituitary gland. Anterior and posterior pitui-
tary were removed by suction. The aspirated anterior and
posterior pituitaries were examined to confirm the com-
pleteness of hypophysectomy. The wound was packed
with gelfoam and the skin incision closed with suture. The
animals in the control group received sham operation,
which involved the entire surgical procedure with the
exception of hypophysectomy. These rats had access to
either solid chow ad libitum or 40 ml of liquid diet daily.
They also had unrestricted access to tap water. After oper-
ation, daily water consumption (DWC), daily urine vol-
ume (DUV) and specific gravity of urine (USG) were

measured in both groups. Blood was collected at 3 d, 5 d,
10 d, 20 d and 30 d after surgery(n = 20). The plasma AVP
concentration was measured by the RIA method (Depart-
ment of physiology, second military medical university,
Shanghai, China) at each time point(n = 4).

Tissue immunofluorescence analysis
At 3 d, 10 d, 20 d and 30 d after surgery, rats (n = 4)
received a lethal dose of ketamine and xylazine. After an
intracardiac injection of heparin (300 U), rats were per-
fused through the ascending aorta with 0.9% NaCl con-
taining 2% sodium nitrite (total volume 200 ml per
animal). The perfusion solution was then switched to a
fixative consisting of 4% paraformaldehyde and 1.4% pic-
ric acid in 0.1 M phosphate buffer (PB, total volume 100
ml per animal). Then the rats were decapitated and the
brains and pituitaries were stored in 25% sucrose at 4°C
until sectioning. Hypothalami were cut with a freezing
microtome into 25 μm sections in the coronal plane. Fro-
zen sections of hypothalamus were collected in wells con-
taining phosphate-buffered saline (PBS). After rinsing,
alternate sections were treated for fluorescence immunos-
taining. The slides were washed with deionized water to
remove the freezing medium, rinsed 3 times in PBS and
permeabilized with 0.3% Triton X-100 in PBS at room
temperature. Nonspecific antibody binding was blocked
with incubation in 10% normal goat (Boster Co, WuHan,
China) for 1 hour at room temperature. The slides were
incubated overnight at 4°C with rabbit IgG polyclonal
antibodies against arginine vasopression AVP (1:100,
Phenix pharmaceuticals, CA, USA) followed by 2 hours of
incubation with secondary antibody conjugated to Cy3
(1:100, Santa Cruz, CA, USA). The slides that were col-
lected from 10 d after surgery continued to rinse and incu-
bate overnight at 4°C in the second primary antibody
monoclonal anti-Caspase 3 (1:200, Santa Cruze, CA,
USA). Then the slides incubated in secondary antibody
conjugated to FITC for 1 hour at room temperature. After
rinsing them in PBS, the slides were counter stained with
AVP and examined under fluorescent microscope (Olym-
pus BX51, Olympus Co., Tokyo, Japan). Pituitaries were
stored in 25% sucrose for 24 hours at 4°C and then
immersed in 15% gelatin for 15 min at 37°C. Gelatin-
embedded pituitaries were fixed in the perfusion solution
for 24 hours at 4°C and then stored in 25% sucrose for 24
hours at 4°C. Pituitaries were cut with a freezing micro-
tome into 40 μm sections. Sections were stained for AVP
immunoreactivities. Rats with incomplete hypophysec-
tomy (as determined by pituitary histology) were
excluded from further evaluation.

Cell counting
AVP and Caspase-3 immunopositive cells in the SON
were counted on all sections. Neurons were counted at
40× magnification by identifying them visually or by vis-
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ual identification combined with mapping of the position
of identified neurons. The position of individual neurons
was recorded using a microscope stage connected to a
computer that recorded the x-y coordinates of the stage
position. In each group, neurons in sections were counted
over an 80 × 80 μm2 area of the SON (n = 4). Raw counts
were corrected for double-counting errors using Aber-
crombie's method.

Ultrastructure under electron microscopy
The animals (n = 4) were anesthetized with ketamine and
xylazine (i.p.) at 10 d after surgery and perfused with 150
ml of fresh 1% paraformaldehyde including 0.1% glutar-
dldehyde in 0.1 M phosphate buffer (pH 7.4), followed
by 350 ml of 2% paraformaldehyde with 2% glutaralde-
hyde in same buffer. The brain was postfixed overnight at
4°C in the latter fixative. The hypothalamic supraoptic
nucleus tissue was subdissected into 1 mm3 blocks
washed in phosphate buffer and then treated with 2%
osmium tetroxide in 0.1 M phosphate buffer for 2 hours
at RT. Blocks were washed in the same buffer, dehydrated
and embedded in Epon. Thin sections (gold interference
color) were cut, stained with uranyl acetate and lead cit-
rate and viewed with a Hitachi H7500 electron micro-
scope (Hitachi, Tokyo, Japan).

Analysis of DNA fragmentation
To detect oligonucleosomal DNA fragmentation as a
marker of apoptosis, DNA was isolated from hypotha-
lamic supraoptic nucleus tissues of control rats and hypo-
physectomy animals at 10 d post surgery (n = 4). As
previously reported in detail (Portera-Cailliau et
al.,1995), Genomic DNA was isolated by digesting the
supraoptic nucleus tissue in digestion buffer (0.25 mg/ml
proteinase K in 10 mM Tris, pH 7.5y10 mM EDTAy0.5%
N-lauroylsarcosine) followed by extraction with phenoly-
chloroform. Samples (20 mg) of DNA were resolved by
1% agarose gel electrophoresis.

Data analysis
All results are expressed as mean ± SE. Statistical analysis
was performed on logarithmic transforms of the data
using ANOVA followed by Tukey's protected t tests for
multiple comparisons where appropriate.

Abbreviations
AVP: vasopressin; OT: oxytocin; SON: supraoptic nucleus;
PVN: paraventricular nucleus; HNS: hypothalamo-neuro-
hypophyseal system; CNS: central nervous system; MCNs:
magnocellular neurons; PCD: programmed cell death;
DWC: daily water consumption; DUV: daily urine vol-
ume; USG: specific gravity of urine; (USG)AC, PBS: phos-
phate buffered saline; CNTF: cliliary neurotrophic factor.
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