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Abstract

Background: Carbenoxolone (CBX), a gap junction uncoupler, alters the functioning of the pre-
Botzinger Complex (preBotC), a central pattern generating neuronal network important for the
production of respiratory rhythm in mammals. Even when isolated in a /2 mm-thick slice of
medulla oblongata from neonatal mouse the preBstC continues producing periodic bursts of action
potentials, termed population bursts that are thought to be important in generating various
patterns of inspiration, in vivo. Whether gap junction communication contributes to preBotC
rhythmogenesis remains unresolved, largely because existing gap junction uncouplers exert
numerous non-specific effects (e.g., inhibition of active transport, alteration of membrane
conductances). Here, we determined whether CBX alters preBotC rhythmogenesis by altering
membrane properties including input resistance (R;), voltage-gated Na* current (l\,), and/or
voltage-gated K* current (I), rather than by blocking gap junction communication. To do so we
used a medullary slice preparation, network-level recordings, whole-cell voltage clamp, and
glycyrrhizic acid (GZA; a substance used as a control for CBX, since it is similar in structure and
does not block gap junctions).

Results: Whereas neither of the control treatments [artificial cerebrospinal fluid (aCSF) or GZA
(50 uM)] noticeably affected preBotC rhythmogenesis, CBX (50 11M) decreased the frequency, area
and amplitude of population bursts, eventually terminating population burst production after 45—
60 min. Both CBX and GZA decreased neuronal R;, and induced an outward holding current.
Although neither agent altered the steady state component of I evoked by depolarizing voltage
steps, CBX, but not GZA, increased peak Iy,

Conclusion: The data presented herein are consistent with the notion that gap junction
communication is important for preBotC rhythmogenesis. By comparing the effects of CBX and
GZA on membrane properties our data a) demonstrate that depression of preBotC
rhythmogenesis by CBX results from actions on another variable or other variables; and b) show
that this comparative approach can be used to evaluate the potential contribution of other non-
specific actions (e.g., Ca** conductances or active transport) of CBX, or other uncouplers, in their
alteration of preBotC rhythmogenesis, or the functioning of other networks.

Page 1 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18500991
http://www.biomedcentral.com/1471-2202/9/46
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Neuroscience 2008, 9:46

Background

Located within the ventrolateral medulla the preBotC is a
central pattern generating neuronal network that rhythmi-
cally produces bursts of action potentials that are impor-
tant for respiratory rhythmogenesis [1-3]. Regarding inter-
cellular communication, most research on respiratory
rhythmogenesis has focused on chemical synaptic trans-
mission and neuromodulation [4-11]. Recent research
has begun examining the potential contribution of electri-
cal and cytoplasmic coupling via gap junctions in the
functioning of central respiratory networks [12-19]. Mam-
malian gap junctions, like ion channels, are multi-unit
structures of integral membrane proteins [20,21]. The best
studied of these proteins are connexins (Cx), although
pannexins are also expressed in mammals [22,23]. A con-
nexin-based gap junction channel is composed of two
hemi-channels, or connexons, that together span the
membranes of adjacent cells. Each connexon is composed
of six Cx subunit proteins, each with four transmembrane
domains, three intracellular regions (the amino terminus,
carboxy-terminus, and a cytoplasmic loop), and two
extracellular loops [20,24-26].

Multiple lines of evidence suggest that gap junction con-
nectivity is important within the medullary region con-
taining the preBo6tC. Immunohistochemical and
immunoblot studies indicate that neurons within the
preBotC, as well as within other regions at the same ros-
tro-caudal level of the medulla oblongata (e.g., XII
nucleus, Inferior Olivary Complex), express connexins of
the 26, 32, and 36 kDa families, termed Cx26, Cx32 and
Cx36, respectively [14,27]. A study using reporter genes
and in situ hybridization supports the finding that Cx36 is
expressed by neurons in the region of the preBotC [28].
Gap junction uncouplers such as CBX, 18a-glycerrhetinic
acid (18a.-GA), 18B-glycerrhetinic acid (18B-GA), hepta-
nol, or octanol change the frequency and pattern of respi-
ratory network burst generation [16,19,29,30], even to the
point of terminating preBotC rhythmogenesis after an
hour of exposure to CBX [29]. Dual intracellular record-
ings demonstrate that inspiration related neurons in the
preBotC and nucleus ambiguous (NA) are electrically cou-
pled [29,31].

The aforementioned evidence notwithstanding, the ques-
tion of whether gap junctions have a functional role in
preBotC rhythmogenesis remains unresolved. Expression
of Cx mRNA or protein does not demonstrate the pres-
ence of functional gap junctions. Even when electrical
coupling has been demonstrated between preBo6tC neu-
rons, the coupling ratio between neurons was found to be
low [29]. Data suggesting that pharmacological manipu-
lation of gap junctions affects the functioning of rhyth-
mogenic networks must be interpreted cautiously; gap
junction uncouplers are notorious for the broad range
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actions other than blockade of gap junction functionality
[32,33]. By example, CBX, perhaps the most widely used
uncoupler, attenuates transmembrane conductances
including Ca*+ conductances in photoreceptors [32],
decreases the excitability of cultured neurons [33], inhib-
its 11B-hydroxysteroid dehydrogenase in arterial endothe-
lial cells [34], may trigger release of NO from arterial
endothelium [35] and induces oxidative stress in liver
mitochondria [36,37]. In the preBotC, CBX decreases neu-
ronal input resistance and action potential production in
response to depolarizing current pulses [29].

As CBX exerts a variety of non-specific effects on neurons,
others have proposed that CBX may affect preB6tC rhyth-
mogenesis through such actions, rather than by blocking
gap junction communication [29]. Because GZA is similar
in structure to CBX and is known to evoke a number of the
same cellular responses, but without blocking gap junc-
tion connectivity, others have used it as a control for CBX
when examining the effects of CBX on pre-B6tC function-
ality at the network level [16,19]. However, in the preB6tC
at least, GZA has not been used to control for the actions
of CBX on discreet membrane properties. Here we charac-
terize the effects of CBX on membrane properties (input
resistance (R;,), holding current (I;,,,4) at -60 mV, voltage-
gated sodium current (I,), and steady-state voltage-gated
potassium current (I4)) of preB6tC neurons. Our data are
consistent with the hypothesis that gap junctions are
important to the rhythmic production of inspiration-
related neuronal activity by the preB6tC. That is, by com-
paring the population-level and single-cells effects of CBX
with those of GZA, we demonstrate that while CBX alters
and even terminates preBotC rhythmogenesis it does so
without significantly affecting a number of critical neuro-
nal variables.

Results

Effects of CBX and GZA on population activity

Earlier studies show that the specific effects of gap junc-
tion uncouplers on preBotC-related outputs (e.g., XII
nerve rootlet activity) vary between species, age of organ-
ism, and between types of preparation [16,17,19,30].
Thus, the initial part of this study determined whether
medullary tissue from neonatal mice responded to CBX, a
commonly-used gap junction uncoupler, in the same
manner as it has been reported in previous studies
[16,17,19,30]. Within 30 minutes of exposure, CBX (50
puM) decreased population burst frequency by 25.5% from
0.31+0.05t00.23 +0.06 Hz (n =10, p=0.01, Tukey Test;
Fig. 1). After 45 minutes of CBX exposure burst frequency
decreased by 47% to 0.16 + 0.05 Hz and by 1 hour CBX
had completely suppressed bursting in all slices used in
this study (n = 10).
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Figure |

Effects of CBX and GZA on population-level bursting by the preB6tC. A. Sample traces of extracellular activity recorded and integrated using a
50 ms time constant in the presence of GZA or CBX. Time bar represents 20 seconds. B. Whereas CBX decreased mean burst frequency within 20 min
of application (i.), slices bathed in aCSF containing 50 uM GZA continued bursting at or near baseline frequency throughout recording (Two-way RM
ANOVA with treatment by time as the source of variation d.f. = 4, F = 24.025, P < 0.001). B.ii. CBX decreased the area of integrated population bursts
(Two-way RM ANOVA with treatment by time as the source of variation df. = 4, F = 25.783, P < 0.001). B.iii., Decreased burst area with CBX treatment
appears to have been due to CBX decreasing burst amplitude beginning at 30 min of treatment (Two-way RM ANOVA with treatment by time as the
source of variation d.f. =4, F = 59.14, P < 0.001), as burst duration was seemingly unaffected by CBX up to the point at which bursting ceased (B.iv). *CBX

value different from aCSF control at P < 0.05. *¥In these figures, the 60 min data point is presented to underscore that CBX terminated preB&tC bursting
within | h of treatment.
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Two types of controls were used in this study: Slices
treated with GZA (50 uM) and slices kept in aCSF alone
(no drug applications) throughout the experiments.
Although GZA has been reported to affect some of the
same aspects of cellular function as CBX, it produced no
detectable effect on burst frequency, except at 30 minutes,
when it appeared to cause a transient ~33% dip in popu-
lation burst frequency from 0.31 + 0.06 to 0.21 + 0.03 Hz
(Fig 1B.i). Slices kept in aCSF with no drug addition for
the same period as those treated with CBX or GZA showed
no significant change in population burst frequency (0.28
+ 0.06 Hz at the beginning of observation compared to
0.30 + 0.07 Hz one hour later).

Although inhibition of neuronal/neuronal network func-
tion caused by short term exposure to CBX is reversible
[38], CBX may be cytotoxic at concentrations > 100 uM,
or when applied for long periods (e.g, > 24 h) [34].
Accordingly, washout experiments were used to deter-
mine whether suppression of preB6tC rhythmogenesis by
CBX could be reversed. Within 45-60 min after the begin-
ning of the washout period, 4 of 5 slices resumed bursting,.
Prior to CBX treatment the preBotC generated bursts at
0.20 + 0.03 Hz. During the period between 55 and 60 min
following the initiation of washout slices generated bursts
at 0.10 + 0.02 Hz (n = 4 slices, P = 0.12, Paired t-test).

In contrast to both control conditions (no drugs or GZA
treatment), CBX decreased the area of population bursts
(Fig. 1B.ii). After 30 min of treatment, CBX decreased
population burst area by 40% from 1.3e3to 7.9e* uV-s2
(Tukey test: n = 10, P < 0.001). Burst area remained rela-
tively unchanged for slices kept in aCSF or in GZA. As
bursting ceased by 1 hr of treatment with CBX, there was
no burst area to measure at this time point. By contrast,
even after 1 hr of recording, slices in aCSF continued to
generate bursts with 96.7 + 12.1% the area observed dur-
ing initial (baseline) recording. Similarly, after 1 hr of
recording, slices in GZA continued to generate bursts with
88.6 + 15.4% the area observed during baseline recording.

CBX decreased burst area by affecting burst amplitude,
rather than burst duration. After 30 minutes of CBX treat-
ment, burst amplitude had decreased by 25% from 3.0e-3
uV-s to 2.3e3 uV-s (Tukey test: n = 10, P < 0.001), and
after 45 minutes by 46% to 1.6e3 uV - s (Tukey test: n = 10,
P <0.001 Fig. 1B.iii). In contrast, burst duration remained
relatively constant throughout the treatment with CBX
(start: 559.3 + 41.5 ms, 45 min: 475.0 + 29.1 ms) (Tukey
test: n = 10, P = 0.139; Fig 1B.iv). Whereas 1 hr of CBX
treatment stopped burst generation, the burst amplitude
and duration of slices in aCSF and GZA remained indistin-
guishable form baseline levels throughout recording.
After 1 hr, slices in aCSF continued generating bursts with
a mean duration and amplitude of 530.8 + 39.0 ms and
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2.6e3 uV-s?, respectively (vs. 587.7 + 55.1 ms and 2.4e3
pV - s2 during baseline recording).

Effects of CBX and GZA on Whole-Cell Properties

Prior studies [29] within the preB6tC examined the
actions of CBX on single neuron/membrane properties,
without comparing these actions to those of a control
agent (other than aCSF). In this study we did so using
whole cell voltage clamp. Whole-cell voltage clamp meas-
urement often remained stable for up to an hour with cells
exposed to normal aCSF or GZA. However, in the presence
of CBX few whole-cell recordings lasted for more than 20
min.

It has been reported in an earlier study [29] that in preB-
0tC neurons, CBX alters passive membrane properties and
thereby decreases neuronal excitability. We found that R,
of both CBX and GZA treated neurons progressively
decreased over time (Table 1). By contrast, R;, remained
similar to its initial value for neurons in slices exposed to
aCSF (without CBX or GZA) for the same duration as
those exposed to CBX or GZA. Over a period of 20 min the
I;,01q Of neurons monitored in aCSF changed little (Table
1). In contrast, GZA and CBX both increased the magni-
tude of the negative holding current (Table 1).

Little is known about the effects of CBX on voltage-gated
conductances, therefore we tested whether CBX would
alter transient voltage-gated sodium currents (I,) and
steady state potassium currents (I,) using standard volt-
age-step protocols. Under control conditions I, did not
significantly change throughout the duration of the exper-
iments (ca. 20 min). In contrast, I, density of neurons
treated with CBX progressively increased over time. At the
command voltage evoking the peak I, (-30 mV), CBX sig-
nificantly increased Iy, density after 10 minutes from -
73.5 + 8.8 pA-pFlto -93.8 + 18.7 pA-pFl(n=7 P <
0.05) and after 20 minutes to -111.6 + 19.12 (P = 0.023).
By contrast, GZA treatment caused no significant change
in I, or Iy, density (Fig. 2).

Voltage-gated potassium currents were not detectably
affected by CBX or GZA. For example initially, a voltage
step from -60 mV (Vi,,4) to a command potential of 30
mV evoked I at a current density of 58.7 + 29.31 pA - pF
1 After 20 minutes of CBX application, from the same volt-
age step evoked Iy, at a similar density (78.1 + 45.1
pA-pF1; Fig. 3, n = 7, P > .05). The density of I4 of GZA-
treated neurons after 20 minutes of treatment (67.9 + 39
pA - pF1) was similar to that observed initially (67.9 + 39
pA-pF1; Fig. 3, n=7,P > 0.05).

Discussion
The fact that gap junction uncouplers evoke numerous
cellular responses in addition to blocking gap junction
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Table I: Effects of aCSF, GZA and CBX treatment on resting membrane properties of preB6tC neurons.

Condition n Input Resistance'(R,;; MQ) Holding Current(,,,4; PA)
aCSF
0 min 10 339.1 £ 66.4 -60.8 + 14.9
5 min 10 362.8 + 126.1 -73.7 £ 149
10 min 10 3272 £ 634 -71.2 £ 149
15 min 10 358.1 £ 122.1 -73.7 £ 135
20 min 10 3292 +£824 -82.7 £ 13.6
GZA (50 pM)
0 min Il 308.2 + 66.2 -67.3+84
5 min Il 2324 919 -110.4 £29.8
10 min Il 2120 £ 41.2 -125.8 £ 25.9
15 min I 182.9 +79.3 -160.8 £ 31.9
20 min Il 160.0 £ 29.5 -200.0 £ 38.7
CBX (50 uM)
0 min 8 387.6 + 48.5 -539+79
5 min 8 238.7 £ 41.5 -73.8+73
10 min 8 260.3 = 78.1 -116.3 £29.8
15 min 7 237.7 £ 56.0 -99.4 + 144
20 min 7 197.2 + 40.4 -168.9 £ 48.7

All values shown were obtained from neurons in the presence of CdCl, and comparison was performed between values for respective time

intervals.

IInput resistance decreased for both CBX- and GZA-treated neurons over time (Friedman's Repeated Measures ANOVA on ranks for CBX: df =
4, SS = 393977.8, MS = 98494.5, F = 2.798, P = 0.040; Friedman's Repeated Measures ANOVA on ranks for GZA: df = 4, SS = 137567.026, MS =

34391.757, F = 3.457, P = 0.023).

2Compared using Kruskal-Wallace ANOVA on Ranks (H = 44.93, d.f. = 14, P < 0.001).

communication has impeded efforts to determine the
extent to which gap junction communication may con-
tribute to preBotC rhythmogenesis. Nonetheless, it
remains unclear as to when or whether gap junction
blockers that don't otherwise interfere with neuronal
functionality will be developed and/or become commer-
cially available. The data presented herein extend prior
work in characterizing previously undescribed effects of
CBX on transmembrane currents of preBotC neurons. By
comparing the effects of CBX on individual preB6tC neu-
rons with those of the control agent, GZA our data provide
direction and the initial steps in clarifying the ambiguity
concerning how CBX affects network level function.

In this study substantial effort was put forth to determine
the effects of CBX on rhythmogenic activity of the preB6tC
and to qualitatively compare these data with those of
prior studies [16,18,19,29,30]. Doing so was important at
this stage in our research program as the importance of
gap junctions, or at least the effects of uncouplers, appears
to vary from one description to another. For instance,
whereas CBX, 18a-GA and 18B-GA decrease the frequency
of phrenic nerve rootlet inspiratory activity observed
using en-bloc brainstem preparations and medullary slice
preparations from neonatal Swiss-Webster mice [30]
these agents increase phrenic burst frequency observed
using in vitro arterially perfused rat preparations [16]. Rek-
ling and colleagues [29], using the medullary slice prepa-
ration from neonatal mice found that simply extending

the period of CBX exposure to 45-60 min totally sup-
pressed breathing-related output. By contrast, gap junc-
tion uncouplers administered arterially to in situ
preparations from juvenile rat produce no consistent
effect on eupneic or gasp inspiration patterns [18]. Yet
others have demonstrated increases in eupneic phrenic
burst frequency and modulation of the eupneic phrenic
burst pattern with in situ preparations from rat [16,19].
Our extracellular data are similar to those of others using
the medullary slice preparation from juvenile mice
[29,30].

The medullary slice preparation used for this study is
vastly more reduced than most of the other preparations
used to study respiratory thythmogenesis (e.g., the brain-
stem spinal cord preparation or the working heart brain-
stem preparation) [39,40]. Nonetheless, the ~500 um-
thick slice likely contains portions of adjacent regions,
including the Botzinger complex and rostral Ventral Res-
piratory Group [41], that could potentially modulate
preBotC rhythmogenesis [42]. Thus, it is conceivable that
application of uncouplers to the slice preparation could
affect preBotC rhythmogenesis not by acting directly on
the preBotC, but indirectly by actions on neurons in
nearby regions that in turn modulate the activity of the
preBotC.

Knowing that gap junction uncouplers tend to exert a vari-

ety of non-specific effects, ideally their use would be cou-
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Glycyrrhizic acid and Carbenoxolone differentially affect Iy,. A. Representative Traces from whole-cell voltage clamp
experiments demonstrating the lack of change in peak Iy, over time in aCSF or GZA (50 uM) vs. increased peak I, in CBX (50
1tM). Black trace represents control conditions and red trace represents drug effect. Vertical scale bars = | nA; time bar repre-
sents | ms. B. Current-Density vs. voltage relationships under baseline (t = 0 min) and after 20 min in the indicated treatment.
Whereas GZA (50 uM) produced no consistent change in Iy, CBX (50 uM) increased the density of this current. C. Current
density evoked during voltage steps from -60 to -30 mV. a: different from baseline (t = 0 min) at P < 0.05; b: different from
aCSF at P < 0.05; c: different from GZA at P < 0.05. The numbers within each column represent sample size.
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Steady-state Iy (I¢4) remains near baseline values during treatment with Glycyrrhizic acid or Carbenoxolone.
A. Representative whole cell voltage clamp traces demonstrating the lack of significant change in I over time (20 min) in aCSF
or GZA (50 uM). Horizontal scale bar = 20 ms; vertical scale bar = | nA. Black trace represents control conditions and red
trace represents drug effect. B. Current Density vs. voltage relationships during the baseline (t = 0 min) sample and after 20

min in the indicated treatment. C. Current density evoked du

ring voltage steps from -60 to 30 mV remained similar to baseline

value during treatment with CBX or GZA. The numbers within each column represent sample size.

pled to the use of an appropriate control agent; that is, a
substance that mimics as many of the non-specific actions
of the uncoupler as possible, without blocking gap junc-
tion communication. Both CBX and GZA elicit at least
some of the same cellular responses. For instance, CBX

and GZA have been reported to attenuate Cat** currents,
albeit in separate tissues [32,43]. However, only a small
proportion of studies examining the potential role of gap
junction communication in preBotC rhythmogenesis
employ control agents, such as GZA as a control for CBX,
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or heptanol, as a control for octanol [16]. None use GZA
to control for the actions of CBX examined at the level of
individual preB6tC neurons.

Consistent with the decreased neuronal excitability attrib-
uted to CBX in prior work [29] CBX in the present study
decreased R;,. However, whereas such actions led prior
workers to deem the network level effects of CBX incon-
clusive [29], the use of GZA as a control in this study sug-
gests that the effects of CBX on resting membrane
properties may not be sufficient to affect the rhythmic
output of the preBotC observed at the population level.
This result should not be interpreted as a suggestion that
CBX fails to affect other variables related to neuronal
excitability, only that since both CBX and GZA decrease
R;, and evoke an outward holding current in preB6tC neu-
rons voltage clamped at -60 mV CBX must affect network
level output by affecting another mechanism or mecha-
nisms. Interestingly, whereas others found that CBX
causes neuronal hyperpolarization we found that both
CBX and GZA induced an inward holding current relative
to neurons kept in aCSF. As access resistance was moni-
tored throughout experimentation and only samples for
which this variable was both less than 40 MQ and less
than 0.1 times the R;, were used, it seems unlikely that
such a striking increase would reflect deterioration of the
seal between the membrane and the patch pipette. Both
CBX and GZA affect active transport and in so doing could
lead to longer term changes in ionic equilibria [37].
Regardless, as both CBX and GXA induced similar changes
in I} 4 it is unlikely that the effects of CBX on I, 4 con-
tribute to its overall effects on preB6tC rhythmogenesis.

Another possibility is that CBX decreases preBotC rhyth-
mogenesis not by blocking gap junction communication,
but rather by affecting voltage-gated conductances. This
study examined potential effects of CBX and GZA on I,
and Iy,. Neither CBX nor GZA affected Iy, showing that
alteration of (non-inactivating) voltage-gated potassium
conductances does not contribute to the alteration of
preBotC rhythmogenesis by CBX. By contrast, whereas
CBX steadily increased the density of I,, GZA produced
no detectable change in this variable. However, it is
unclear whether such a change would lead to the network-
level effects associated with CBX. In retinal photorecep-
tors CBX decreases Ca*+ currents [32]. In the preBotC such
changes could impede burst production by one subset of
pacemaker neurons, the calcium-dependent pacemakers
[44,45]. Attenuation of Ca+** currents would also depress
(chemical) synaptic transmission, thereby depressing net-
work-level output. It must be noted that rather than iden-
tifying distinctly respiration-related neurons, this study
focused on all neurons within the preBotC.
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Accordingly, upcoming studies will explore potential
effects of CBX and GZA on a variety of voltage gated Ca++
currents in inspiration-related preB6tC neurons.

Conclusion

The data presented herein represent an important step in
resolving the issue of whether or not gap junction com-
munication is important to preBotC rhythmogenesis.
Rhythmic output generated by the population of preB6tC
neurons was depressed by CBX but not GZA. In contrast,
both CBX and GZA affected resting membrane properties
in the same way, and neither affected I, suggesting that
the network level effects of CBX are caused by it affecting
one or more other cellular actions. In that our data dem-
onstrate CBX affects a number of membrane properties in
the same manner as GZA, which does not affect network-
level output, they are consistent with the notion that CBX
inhibits rhythmogenesis by interfering with gap junction
coupling between preBotC neurons. However, the non-
specific actions of CBX examined herein represent only a
subset of those attributed to CBX. To completely evaluate
the notion that CBX affects preBotC rhythmogenesis by
uncoupling gap junction channels, future research will
need to evaluate the actions of CBX on numerous neuro-
nal variables (e.g., Ca** channels and fast chemical synap-
tic transmission). However, characterizing the actions of
CBX on such variables will not, on its own, demonstrate
conclusively that any one of those properties, or any com-
bination of those properties, underlies the actions of CBX
on network-level output. As shown here, applying the
most fundamental of all scientific principles, the use of an
appropriate control, provides the opportunity to poten-
tially falsify the notion that CBX-induced changes in a
given neuronal property cause its network level effects.
Using this approach can thus strengthen one's confidence
that CBX-induced changes in a variable cause, or are unre-
lated to its network level effects.

Methods

Medullary slice preparation

All procedures were carried out according to guidelines
established by the National Institutes of Health and
National Research Council (U.S.A.) and were approved by
the Institutional Animal Care and Use Committee at Cen-
tral Michigan University (protocol # 23-04). Functionally-
intact slices of medulla oblongata containing the preB6tC
were obtained from male and female Swiss-Webster mice
(postnatal days 3-7) decapitated at the C3/C4 vertebrae
level according to the methods outlined by Ramirez and
colleagues [46]. In brief: The brainstem was isolated in
ice-cold artificial cerebrospinal fluid (aCSF; containing in
mM: 118 NaCl, 3 KCl, 1.5 CaCl,, 1 MgCl,, 25 NaHCO,, 1
NaH,PO,, and 30 D-Glucose) infused with carbogen gas
(95% O, and 5% CO,). The isolated brainstem was
secured to an agar block and serial slices (ca. 250 pm-
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thick) were removed from the rostral end using a vibrating
microtome (VT 1000, Vibratome, Inc., St. Louis, MO).
Once the level of the preBotC was revealed, as recognized
by the appearance of landmarks including the 1O (inferior
olive), the NA (nucleus ambiguous), and the XII nucleus
(hypoglossus motor nucleus), a 500 um-thick slice was
cut, transferred into a recording chamber, perfused with
carbogen-infused aCSF (30°C; pH 7.4) and allowed to
equilibrate for 30 min prior to any subsequent treatment.
Extracellular potassium concentration was raised to 8 mM
for the duration of the experiments.

Extracellular recordings

Neuronal activity (action potential production) generated
by the mixed population of preB&tC neurons on one side
of the slice preparation was monitored and recorded using
large bore glass pipettes (tip diameter ¢a.100 pm) filled
with aCSF and connected via a silver chloride-coated wire
to ahomemade AC-coupled preamplifier (100x). The pre-
amplified signal was further amplified 100 times (Ampli-
fier model P15, Grass Technologies, West Warwick, RI,
U.S.A.) and integrated with a homemade hardware inte-
grator (50 ms time constant). The amplified trace and its
integrated representation were recorded on a hard disk of
a personal computer. Recording was continuous through-
out consecutive periods of baseline observation, 1.25
hours of treatment with CBX, GZA or aCSF (as a time-
matched control with no agents added) and up to 1.25
hours of washout. At 15 minute intervals within each
treatment, samples of population bursts (2 min-long)
were analyzed for burst amplitude, duration, area and fre-
quency (Igor Pro v. 4.0; Wavemetrics, Inc.).

Whole cell voltage clamp technique

As with population-level recordings, individual preB6tC
neurons were monitored in normal aCSF and in the pres-
ence of either CBX [50 uM] or GZA [50 uM]. Whole-Cell
recordings [47] were obtained using unpolished elec-
trodes fabricated from thick-walled borosilicate glass
(Warner Instruments, # GC 150-10) and current ampli-
tudes were assessed at the peak inward current (I,)and
steady state outward current (Iy,). The pipette solution
contained (in mM): 140 K-Methane Sulfonate 1 CaCl,, 2
MgCl,, 4 Na,ATP, 0.3 GTP, 10 EGTA, and 10 HEPES; pH
7.2. Using high magnification infra-red Normarski differ-
ential interference contrast optics the tip of a patch elec-
trode was gently pressed against the somatic neurolemma
of a neuron within the preBotC. A gigaohm seal was estab-
lished by gently applying negative pressure (ca. -20
mmHg). Once a cell-attached configuration was estab-
lished, the membrane within the tip of the pipette was
ruptured by applying repeated pulses of negative pressure.
Current traces were recorded either with an EPC 8/ITC 8
amplifier/data acquisition board combination (Heka
Instruments, Southboro, MA, U.S.A.) or with an Axopatch

http://www.biomedcentral.com/1471-2202/9/46

200B/Digidata 1320 amplifier/acquisition board combi-
nation (Molecular Devices Corporation, Sunnyvale, CA,
U.S.A.). Current traces were filtered at 2 kHz using the
internal bessel filter of the respective amplifier and digi-
tized at10 kHz. Data were recorded with either Patchmas-
ter 2.1 software (Heka Intruments) or pClamp 9.2
(Molecular Devices Corporation) and stored on a per-
sonal computer hard-drive. Prior to the data recording,
transient currents caused by uncompensated pipette
capacitance, series resistance and membrane capacitance
were minimized, and the serial resistance was 80% com-
pensated and adjusted throughout the experiments. To
determine the quality of the recording, we routinely mon-
itored vital configuration parameters throughout baseline
and experimental conditions. Cell properties including
R;,, access resistance (R,), I}, ;4 at -60 mV and cell capaci-
tance were determined with a build-in software step pro-
tocol. Voltage-gated currents were evoked with the
following voltage step protocol: From a holding potential
of -60 mV we applied 150 ms long voltage steps from -80
to 30 mV in 10 mV steps. Linear leak currents were elimi-
nated with an online P/4 leak subtraction protocol.

During voltage clamp experiments, we eliminated volt-
age-gated calcium currents by bath application of 200 uM
CdCl, to pharmacologically isolate voltage gated Iy, prior
to drug application. During the chemical bath applica-
tions we monitored the current amplitudes with a chain
of single voltage steps (from -60 to 10 mV, P/4 enabled,
interval 10 s) to determine the time course change of volt-
age-gated current amplitudes. The effect of CdCl, reached
a steady state level within 3 minutes after start of the bath
application.

Drug application and washout

CBX and GZA were prepared by diluting stock solutions
(1:1000) in the superfusion bath reservoir, and applied at
their final concentration (50 puM) via a gravity driven
superfusion bath. In some extracellular experiments CBX
was washed out by superfusing the slice preparation for
up to 1.25 h with aCSF (containing 8 mM KCl) that had
been equilibrated with carbogen during the preceding
CBX treatment.

Data analysis

Only slices that generated population bursts at 0.2 - 0.4
Hz under baseline conditions were used in this study.
Nonetheless the network activity of the preB6tC could
vary over the course of each experiment. We performed
aCSF control experiments only for the population experi-
ments. Drug induced changes of network activity parame-
ters (burst frequencies, areas, amplitudes and durations)
were normalized relative to values observed during the
baseline period that is during the period immediately
prior to CBX or GZA application, or prior to the control
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period in aCSF without either of these agents. Statistical
analyses were performed before and in 15 minute inter-
vals after the drug application. To eliminate variability
caused by cell surface area, we used current densities
instead of current amplitudes to determine if CBX or GZA
had an effect on voltage-gated I, or Ix. Current densities
were calculated by dividing current amplitude with cell
capacitance. To evaluate drug induced changes we nor-
malized the density values after drug application to the
values under control conditions after bath application of
Cddl,.

All data were tested for normality using the Kolmogorov-
Smironov test. If distributed normally, population burst
parameters were analyzed using repeated-measures analy-
sis of variance. We used the Tukey post-hoc test to evalu-
ate differences between individual treatments. When
population burst data were distributed non-parametri-
cally, we analyzed treatment effects using Freidman's
repeated measures ANOVA on ranks followed by Tukey
post-hoc tests. Intracellular data were compared using
one-way ANOVA followed by Tukey post-hoc tests, if dis-
tributed normally. Non-normal intracellular data were
evaluated using Kruskal-Wallace ANOVA, followed by
Dunn's multiple comparison's test. Differences between
treatments were considered significant at p = 0.05.
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