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Abstract

Background: One of the most promising options for treatment of stroke using adult stem cells are human umbilical cord blood
(HUCB) cells that were already approved for therapeutic efficacy in vivo. However, complexity of animal models has thus far
limited the understanding of beneficial cellular mechanisms. To address the influence of HUCB cells on neuronal tissue after
stroke we established and employed a human in vitro model of neuronal hypoxia using fully differentiated vulnerable SH-SY5Y
cells. These cells were incubated under an oxygen-reduced atmosphere (O,< 1%) for 48 hours. Subsequently, HUCB
mononuclear cells (MNC) were added to post-hypoxic neuronal cultures. These cultures were characterized regarding to the
development of apoptosis and necrosis over three days. Based on this we investigated the therapeutic influence of HUCB MNC
on the progression of apoptotic cell death. The impact of HUCB cells and hypoxia on secretion of neuroprotective and
inflammatory cytokines, chemokines and expression of adhesion molecules was proved.

Results: Hypoxic cultivation of neurons initially induced a rate of 26% + 3% of apoptosis. Hypoxia also caused an enhanced
expression of Caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP). Necrosis was only detected in low amounts. Within
the next three days rate of apoptosis in untreated hypoxic cultures cumulated to 85% + 11% (p < 0.001). Specific cytokine
(VEGF) patterns also suggest anti-apoptotic strategies of neuronal cells. Remarkably, the administration of MNC showed a
noticeable reduction of apoptosis rates to levels of normoxic control cultures (7% + 3%; p < 0.001). In parallel, clustering of
administered MNC next to axons and somata of neuronal cells was observed. Furthermore, MNC caused a pronounced increase
of chemokines (CCL5; CCL3 and CXCLI10).

Conclusion: We established an in vitro model of neuronal hypoxia that affords the possibility to investigate both, apoptotic
neuronal cell death and neuroprotective therapies. Here we employed the therapeutic model to study neuroprotective
properties of HUCB cells.

We hypothesize that the neuroprotective effect of MNC was due to anti-apoptotic mechanisms related to direct cell-cell
contacts with injured neuronal cells and distinct changes in neuroprotective, inflammatory cytokines as well as to the
upregulation of chemokines within the co-cultures.
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Background

Acute ischemic stroke is characterised by the immediate
depletion of oxygen and glucose in brain tissue. A residual
cerebral blood flow (CBF) of <6 cm3 x 100 g'! x min-! rep-
resenting severe ischemia is associated with a nearly total
loss of energy on vulnerable neurons. Ischemia therefore
rapidly culminates in the formation of a necrotic core [1].
In the penumbra, mild ischemia (CBF 11-20 cm3 x 100 g
1 x min-!) leads to the activation of complex neurochemi-
cal cascades of cell death, mainly apoptosis. In principle
these apoptotic cascades are reversible and form an
important aspect of the penumbra concept, which is the
major target of therapeutic interventions [2,3]. Recent
findings indicate that transplantation of external cell frac-
tions could accompany established therapeutic proce-
dures limited by narrow time windows [4], but the
underlying processes are still rather unclear.

Our insights into pathophysiological processes and new
therapeutic strategies have mostly been obtained from
animal models of focal cerebral ischemia [5,6] and rodent
organotypic hippocampal slice cultures [7-9]. However,
the complexity of those systems has limited the detailed
understanding of mechanisms related to ischemic brain
injury [10] and possible interfering effects of cellular ther-
apies [11] so far. Furthermore, results obtained from
rodent models are not completely and unobjectionably
transferable to human therapy [12,13]. Consequently,
experimental expenditure and ethical considerations
demand in vitro models representing the main properties
of stroke-related processes as neuronal apoptosis to
accompany more complex model systems. This would
allow to answer explicit questions concerning the role of
cell-cell interactions and production of metabolites to ver-
ify observations made in in vivo models. It furthermore
offers the possibility to precisely manipulate extra cellular
environments.

Well described human neuronal cell lines exhibit a multi-
tude of characteristics of typical central-nervous-system
(CNS) neurons, overall cell material can be achieved in
large quantities. Therefore, human neuronal cell lines,
such as the teratocarcinoma NT-2 cell line, became useful
tools to study the effects of hypoxic conditions on neu-
rons [14]. However, the utilisation of NT-2 neuronal cul-
tures is restricted by time-consuming and expensive
differentiation periods of up to 44-54 days [15,16] that
are also sensitive to environmental disturbances. In con-
trast, the SH-SY5Y neuroblastoma cell line was shown to
be differentiated into neuronal cells within a compara-
tively short time of 16 days [17]. Furthermore, the cell line
fits major relevant criteria (high vulnerability, irreversible
differentiation into pure neuronal cells) to serve as a
model of hypoxic injury of central neurons [18]. Hence,
our exclusive human model of neuronal hypoxia forms
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the basis to identify possible anti-apoptotic neuroprotec-
tive potentials of therapeutic supplements. Mononuclear
cells (MNC) from human umbilical cord blood (HUCB)
were shown to improve functional outcome of animals
after focal cerebral ischemia. The cellular effects causing
the observed benefits are not fully understood for these
cells [19,20]. In this context we investigated whether
injured post-hypoxic neuronal cells or MNC initiated an
anti-apoptotic response mediated by cytokines or chem-
okines.

Results

After differentiation SH-SY5Y exhibited neuronal
morphology and specific neuronal markers

Sixteen days of differentiation yielded cultures of fully
matured neuronal cells shown in Fig. 1A, B. Following the
seventh day of differentiation, the majority of SH-SY5Y
cells were stained positive for the specific neuronal mark-
ers (B-tubulin III, taurin I, neuron-specific enolase [NSE],
neurofilament [NF] H/M and microtubule-associated pro-
teins [Map] 2a/b). At Day 16 all cells exhibited all of these
markers. Time course of marker expression showing con-
tinuously increasing stages of differentiation is given in
Fig. 1C. Markers showed typical localisation to cytoplasm
and dendrites. The explicit majority of differentiated SH-
SY5Y cells (73% + 11%) resembled typical neuronal mor-
phology with round phase-bright somata and long, termi-
nal- branched dendrites forming a dense network (Fig. 1A,
arrow 1). However, the neuronal culture is also character-
ised by a cell type (only 27% + 11%) which shows abun-
dant cytoplasm and a lack of axonal extensions (Fig. 1A,
arrow 2). Remarkably, no differences were noted with
regard to expression of neuronal markers. Furthermore,
the number of this type of cells remained constant during
the culture time.

Absence of proliferation after termination of
differentiation

At Day 4 of differentiation the total number of SH-SY5Y
cells, counted by nuclear staining with DAP]I, increased by
twofold (21.2 + 6.7 x 103/cm?2) since seeding. Beginning
on the seventh day of culture numbers of nuclei remained
nearly stable (18.2 + 2.2 x 103/cm?). Subsequent to
hypoxia, there was no significant alteration in numbers of
counted nuclei. Hence, the influence of oxygen depriva-
tion induced no further proliferation and also no signifi-
cant loss of cells in comparison to normoxic control
cultures (Fig. 2). Therefore all following results should be
seen in the context of the nearly constant numbers of neu-
ronal cells under normoxic and hypoxic cultivation condi-
tions. It is of note that the amount of stained nuclei as the
equivalent of adherent cells gives no information about
the physiologic status of these cells. On the whole the cul-
tures include cells in a viable, apoptotic or necrotic state.

Page 2 of 15

(page number not for citation purposes)



BMC Neuroscience 2008, 9:30

http://www.biomedcentral.com/1471-2202/9/30

C positive cells [%] / day of culture

neuronal marker Day 0 Day 4 Day 7 Day 16 Day 21
B-tubulin 111 1£1.8 516+6.9 8591135 100 100
taurin 98.6+64 100 100 100 100
NSE 1£2.5 631183 100 100 100
NF-H/M 1+£29 985121 99.1+22 100 100
Map2a/b 476 +139 100 100 100 100

Figure |

Phase contrast and fluorescence imaging of fully differentiated SH-SY5Y cells and the development of neuronal
markers. Phase contrast image of fully matured SH-SY5Y cells at Day 16 (A) after seeding. Phase-bright neuronal cells (arrow
I) with long dendrites forming a dense neuronal network and cells with large cytoplasm and no axonal extensions (arrow 2).
Immunocytofluorescence micrograph of fully differentiated SH-SY5Y cells (Day 16) shows cultures stained positive for the neu-
ronal marker B-tubulin Il (FITC, green) and nuclei (DAPI, blue) represented in B. Time course of detection of neuronal mark-
ers (B-tubulin lIl, taurin, NSE, NF-H/M and Map2a/b) on SH-SY5Y cells during the differentiation period at Day 0, 4, 7, 16 and 21

(©).

Hypoxia induced apoptosis in the majority of neuronal
cells

Post-hypoxic and normoxic control cultures exhibited
pronounced differences in the quantity of apoptotic cells
as well as in cell morphology. Hypoxic conditions for 48
hours induced an initial apoptosis rate of 26% + 13%.
There was a continuous increase in the apoptotic cell frac-
tion to 85% + 11% within 3 days post-hypoxia as com-
pared to control cultures (p < 0.001; Fig. 3). The clearest
effects of oxygen deficiency were seen three days following
induction of hypoxia as shown by annexin-V staining
(green fluorescence, Fig. 4A and 4B). Additionally, post-

hypoxic cultures were characterised by retracted dendrites,
indicating a loss of multiple cell-cell contacts. Debris and
apoptotic bodies were found in most culture dish areas,
evidencing late stage of apoptosis (Fig. 4A). In contrast,
normoxic cultures displayed a much more reduced
amount of apoptotic cells (Fig. 4B). Over the whole time,
apoptosis in these control cultures remained stable at
about 7% + 3% (Fig. 3).

After hypoxia, on Day 0 and Day 1, number of late apop-
totic/necrotic cells significantly increased up to 27% =+
13%. Further progression of propidium iodide (PI) posi-
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Figure 2

Progression of the number of nuclei after differentiation period and effect of hypoxia on cell count. Nuclei were
stained with DAPI and counted in fluorescence micrographs. Data were calculated from three independent experiments includ-
ing multiple wells, each based on 25 micrographs. The white circles represent cultures that were cultivated under continuously
normoxic conditions. The black circles illustrate the progression of the number of nuclei in post-hypoxic cultures. Under both

conditions number of nuclei remained stable.

tive cells in post-hypoxic cultures resulted in 23 + 16% on
Day 3 (Fig. 5). By comparison, in normoxic control cul-
tures, necrosis levels remained stable below 17% and
therefore did not statistically differ from post-hypoxic cul-
tures on this time point. This fact was corroborated by
images that show no observable deviation in the amount
of necrotic and late apoptotic cells, as indicated by PI
staining (red fluorescence, Fig. 4C and 4D).

In general, an increased release of calcein-AM also indi-
cated a strong decrease of neuronal cell viability which
verifies the results of the apoptosis and necrosis rates
(data not shown).

Hypoxia increased quantities of Caspase-3 and cleaved
PARP immediately and secretion of VEGF in delay

Bar charts in Figure 6 show the concentrations of Caspase-
3 and cleaved poly(ADP-ribose) polymerase (PARP). In
post-hypoxic cultures apoptotic proteins drastically rose
after oxygen deprivation. The highest concentration of
Caspase-3 was measured directly after hypoxia on Days 0
and 1 (2-fold and 5.8-fold, respectively). From Day 2 on,
the level of active Caspase-3 sharply decreased. The distri-

bution of cleaved PARP levels showed patterns similar to
Caspase-3. This decline was accompanied by a secretion
of VEGF on Day 3 after hypoxia (Fig. 7).

Adhesion molecules (LI, NCAM and ICAM-1) were
upregulated after hypoxia

Independent of cultivation conditions immunofluores-
cence analysis revealed that nearly all (98%) of the cells
were positive for neurite cell adhesion molecule (L1; 98.3
+ 0.1%) and Neural Cell Adhesion Molecule (NCAM; 99
+ 0.8%) at Day 0. L1 and NCAM were detected on somata
and multiple dendrites. Furthermore, a few of the neuro-
nal cells also expressed Vascular Cell Adhesion Molecule
(VCAM-1; 5.7%) and Intercellular Adhesion Molecule
(ICAM-1; 14.6%) on their somata and dendrites. There
was no change in relative numbers of marked cells and
expression patterns in post-hypoxic cultures. To quantify
the density of adhesion molecule expression, highly sen-
sitive fluorescence measurement of supernatants of lysed
cultures was performed. Here, comparative studies
between cultures directly after 48 hours of hypoxia and
normoxic control cultures showed a significant upregula-
tion of L1, NCAM and ICAM-1 (Fig. 8). Hypoxic condi-
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Figure 3

Temporal progression of annexin-V positive cells in post-hypoxic and normoxic cultures. Results are derived from
three independent experiments. For each experiment 75 pictures were taken. Consistently, annexin-V positive (apoptotic) val-
ues in post-hypoxic cultures are markedly higher compared to control cultures increasing to an average level of 85% £ 1%
within three days. The number of apoptotic cells did not vary significantly in normoxic cultures.

tions determined a considerable increase in L1 and NCAM
protein expressions of up to 189% + 74% and 155% =+
50%, respectively. Hypoxia also strongly upregulated the
ICAM-1 expression up to 424% + 251%. The level of
expression of VCAM-1 was not altered by the hypoxic
environment. The continued degradation of the dendritic
networks did not allow assaying the specific expression of
adhesion molecules at late stages of post-hypoxic cultures.

Co-culturing with HUCB MNC strongly reduced apoptosis
in post-hypoxic neuronal cell cultures

We found noticeable neuroprotective properties of HUCB
MNC in the co-culture experiments. Untreated post-
hypoxic mono-cultures of neuronal cells showed 85% =+
11% of apoptosis after three days, whereas in co-cultures
with MNC the rate of apoptosis was stable at a level of
6.3% + 1% (p < 0.001). This is comparable to normoxic
control cultures (7% + 3%; Fig. 9A). Photographs of co-
cultures with MNC revealed clear effort of MNC to localise
next to somata and branches of post-hypoxic neuronal
cells. In the course of clustering MNC mostly avoided

areas that were not settled by neuronal cells (Fig. 9B). Fur-
thermore, the administration of MNC showed positive
influence on the conservation of neuronal networks as
compared to cultures that did not receive any cell therapy
(Fig. 4A and 4C).

MNC increased CCL5, CCL3, CCL4 and CXCLI0 in post-

hypoxic neuronal cultures

The investigation of neuroprotective cytokines (G-CSF,
VEGF) (Fig. 7A), inflammatory cytokines (IL-1f, IL-6,
CXCL8) (Fig. 7B) and chemokines (CCL2, CCL5, CCL3,
CCL4, CXCL10) (Fig. 7C) in supernatants of normoxic
neuronal cultures revealed considerable amounts of
CXCL8, CCL2 and VEGF. Remarkably, after three days
under hypoxic conditions only VEGF was strongly upreg-
ulated (about threefold increase). After administration of
MNC, VEGF was downregulated regarding to the total
concentration measured in mono-cultures of MNC and in
post-hypoxic neuronal cells. Inflammatory cytokines as
IL-1B, IL-6 and CXCL8 were produced by MNC. The secre-
tion of cytokines such as IL-1p and IL-6 was not altered in
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} 16C pm i

Long term effect of 48 hours of hypoxia on apoptosis (A-B) and necrosis (C-D). Cultures at Day 3 after hypoxia
were compared with normoxic cultures of the same age. Combined phase contrast/fluorescence micrographs of neuronal post-
hypoxic cultures (A) and normoxic control cultures (B) show a conspicuous increase of apoptotic cells (annexin-V-staining,
green fluorescence) and morphologic changes due to hypoxia (cell debris, retraction of dendrites). Propidium iodide (PI, red
fluorescence) staining shows the influence of hypoxia (C) on the number of necrotic cells and cells in a late state of apoptosis
compared to control cultures (D). In contrast to the level of apoptosis, there was no clear difference in the number necrotic

cells following both culture conditions.

post-hypoxic co-cultures, whereas CXCL8 was suppressed.
Interestingly, the majority of chemokines was clearly
upregulated in co-cultures with MNC. We could show that
CCL5, CCL3, CCL4 and CXCL10 were increased up to the
tenfold (CCL3, CCL4), whereas the concentration CCL2
was not regulated.

Discussion

In this study, we introduce an experimental human in
vitro model to investigate (i) the mechanisms of neuronal
hypoxia and (ii) the interaction of neuronal cells with
external stem cell-containing fractions as possible thera-
peutic tools. According to the differentiation protocol of
Encinas et al. [17] we obtained fully matured neuronal
cells after 16 days. Previous, orientating experiments
showed typical response of differentiated SH-SY5Y cells to

N-methyl-D-aspartate (NMDA; 300 uM) application and
most pronounced vulnerability after 48 hours hypoxic
incubation (data not shown). These post-hypoxic neuro-
nal cultures can be employed already 18 days after the
seeding of naive cells. Therefore the time period until the
model of hypoxic neuronal cells is available is very short.
In comparison to other approaches that provide assimila-
ble hypoxic models using teratocarcinoma cell lines [16]
the generation of our model is shortened by at least 10
days [21]. The proved expression of specific neuronal
markers and the absence of any proliferation gave clear
evidence of matured neuronal cells in the GO-phase of the
cell cycle. This steady state allows making direct conclu-
sions about the influence of any external manipulation
because any change will most probably be due to these
procedures. Hence, the model of neuronal hypoxia
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Figure 5

The progression of Pl positive cells in post-hypoxic and normoxic SH-SY5Y cultures. Results are derived from
three independent experiments, in which 75 pictures were taken for each analysis. Significant increases in the rate of Pl positive
cells were observed only at Day 0 (10% * 6%) and Day | (27% % 13%) compared to normoxic cultures (Day 0: 9% + 10%); Day
I: 9% £ 6%). Note Pl stains necrotic and late apoptotic cells. No significant difference of necrosis rate was detected of post-
hypoxic cultures as well as in control cultures during the observation period.

affords the possibility to investigate manifold questions
concerning mechanisms triggered in response to hypoxia
and therapeutic interventions e.g. application of HUCB
MNC.

Following hypoxia, neuronal cultures displayed a correla-
tion between morphological changes and increase of
annexin-V positive cells as well as changes in adhesion
molecule expression. The specific apoptosis marker
annexin-V indicated that hypoxic cultivation preferen-
tially induced apoptosis. Moreover, there was a continu-
ous enlargement in number of apoptotic cells from initial
26% + 13% until cultures almost completely consisted of
apoptotic cells (85% + 11%) within three days. Conform-
ing to changes of morphology in post-hypoxic cultures,
there was an enhanced release of calcein-AM also observ-
able due to the loss of the integrity of membrane. This is
typical for late stages of apoptosis as well as of necrosis.
The model of neuronal hypoxia was approved by moder-
ate rates of PI positive cells (23% + 16% at Day 3 post-

hypoxia). Therefore the overrun of 100% by the summa-
tion of annexin-V positive and PI positive cells is due to a
proportion of cells in a late state of apoptosis that are pos-
itive for annexin-V and PI [22]. We focused on apoptosis
because it is a reversible process which could be modulate
by external stimulation [23,24]. Moreover after stroke cell
death in the penumbra is predominantly considered to be
apoptosis [25-28]. Therefore apoptosis is a therapeutic
target of anti-apoptotic therapies like stem cells or
cytokines [29-32].

Apoptosis in the penumbra takes place in a time span of
about 72 hours after vessel occlusion in the rat after mid-
dle cerebral artery occlusion (MCAO) [33]. This time
course is represented by the model system introduced in
this study. The fact that there was no major alteration in
the number in DAPI-positive nuclei underlines that the
influence of hypoxia did not lead to an immediate
destruction of the cells but allows investigating apoptosis
and subsequent therapeutic interventions within 72
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cleaved PARP

Effect of 48 hours of hypoxia on the concentration of active Caspase-3 and cleaved PARP. Data are taken in a time
course of three days after hypoxia and are based on pooled lysates of the totality of SH-SY5Y cells taken out of 12 individual
wells. Data are expressed in units of protein [active Caspase-3] and cleaved protein [PARP] per millilitres. Hypoxia induced
apoptosis specific proteins (Caspase-3, cleaved PARP) in a time-related manner.

hours. These facts were also confirmed by characteristic
changes in the morphology of post-hypoxic cells. There
was a total retraction of dendrites and a resulting destruc-
tion of neuronal networks, grained cell surfaces and
extended cell degradation. This damage was accompanied
by an upregulation of neuronal adhesion molecules. We
hypothesize that this upregulation indicates a cellular
answer to compensate for a loss of direct cell-cell interac-
tion as a consequence of the preceding hypoxic stress as
described by several authors [34-36]. However, the final
loss of intercellular networks could not be compensated
by the increased expression of neuronal adhesion mole-
cules alone.

Neuronal cell death after hypoxia is caused by membrane
depolarisation subsequent to energy failure [37,38]. The
resulting calcium overload is the initial point of the acti-
vation of manifold biochemical pathways that affect cas-
pases, free radicals and gene expression [39,40]. The
specific apoptotic proteins Caspase-3 and cleaved PARP
were quantified to prove whether our microscopic obser-
vations are corroborated by biochemical pathways [41-

43]. After 24 hours post-hypoxia, both marker proteins
extensively increased. This was followed by a sharp drop
in their expression level. This reduced amount of cleaved
PARP might be due to an aggravating energy failure in the
cell. This in turn is attributed to the high levels of cleaved
PARP, evidenced above, which caused adenosintriphos-
phate (ATP) depletion [44,45] and which in this context
prevents the enzymatic activity of caspases. Furthermore,
an increase of the expression of VEGF, a key mediator of
angiogenesis [46,47], was observed in higher concentra-
tions in late post-hypoxic cultures. This might be a reflec-
tion of compensatory in vivo processes of revascularisation
in our model [48,49]. VEGF is also known to be involved
in neuronal protection through inhibition of Caspase-3
[50,51]. The time-delayed increased release of VEGF as an
effect of hypoxia does not seem to influence the number
of apoptotic cells in our cultures. This may be a result of
concentrations of VEGF that did not reach efficient thresh-
olds. In this context the measured reduction of caspases
on Days 2 and 3 after hypoxia is caused by the already
described ongoing energy failure in the post-hypoxic cells.
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Cytokine profile in hypoxic injured SH-SY5Y cells and in direct co-cultures with MNC at Day 3. Cytokine concen-
trations were measured in supernantes via cytometric bead array. Data originate from five independent experiments and are
expressed as ng/mg. "+" indicates significant differences in cytokine concentration of post-hypoxic SH-SY5Y mono-cultures
compared to normoxic controls. Double bars are the sum of cytokine concentration from mono-cultures. "*" shows significant
differences in cytokine concentration in co-cultures with MNC compared to the total of mono-cultures. Note different scaling.

However, the regulation of those apoptotic proteins is
probably not related to VEGF mediated-effects.

The therapeutic benefit of cell administration after stroke
has been demonstrated in numerous animal studies
[52,53]. However, important questions in basic cellular
and molecular mechanisms of neuronal cell death and its
prevention after inadequate oxygen supply still remain
unanswered. To understand the mechanisms of cellular
neuroprotection after stroke we employed the model of
neuronal hypoxia and applied MNC from HUCB.

In vivo MNC are supposed to differentiate into neuronal
cells [54,55] to trophically support neuronal tissue

through the production of growth factors [56], to support
the new formation of synapses and migration as well as
the differentiation of endogenous neuronal progenitors
[54,55]. In our experiments, the administration of MNC
from HUCB to post-hypoxic neuronal cultures showed
remarkable beneficial effects. Over three days we could
show a clear reduction of neuronal apoptosis, even to the
level of normoxic control cultures (7% + 3%). There are
two observations that contribute to an explanation of
neuroprotective mechanisms. First, MNC were preferen-
tially located close to hypoxically injured neuronal cells.
This phenomenon was facilitated through an intensive
upregulation of ICAM-1 on neuronal cells which is the
specific ligand for leukocyte cell adhesion molecule [LFA-
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Expression of adhesion molecules after 48 hours of hypoxic cultivation. Fluorescence intensities of cell lysates are
shown after subtraction of specific isotype values with respect to normoxia. Data arise from six independent experiments. The
dotted line indicates level of adhesion molecule expression (100%) in normoxic control cultures. Note statistically significant

upregulation of LI, NCAM and ICAM-1 post-hypoxia.

1] expressed by all immune cell subsets [57]. However,
the formation of cell chimera was not observed, as there
were no CFSE-stained cells with neuronal morphology. In
future experiments we will investigate whether blocking
of adhesion molecules on the surface of neuronal cells can
inhibit the co-localisation of MNC. Further it will be
proved whether this influences the rate of apoptosis. An
increase of apoptosis would be an evidence for the signif-
icance of direct cell-cell-contacts in context of therapeutic
mechanisms of MNC. The second observation would be
concomitance of an MNC indicated specific alteration in
levels of soluble factors. That change might be held
responsible for neuroprotection. Pronounced upregula-
tion of chemokines (CCL5, CCL3, CCL4, CXCL10) might
be causal for the enhanced effort of MNC to localise near
neuronal structures. High concentrations of VEGF are
known to be neuroprotective [58,59]. In contrast to post-
hypoxic mono-cultures, we found no increase of VEGF
after administration of MNC. It seems that presence of
MNC inhibited the induction of elevated levels of VEGF
and compensated its neuroprotective effects by other
mechanisms. Cord blood contains distinct cell types capa-
ble to differentiate into neuronal cells [60]. However, the
differentiation of stem cells (about 1% within the MNC
fraction) was not expected because of the short time of co-

cultivation that clearly undershoots time frames responsi-
ble for neuronal differentiation.

So far, it is unclear whether neuroprotection resulted from
one of the observed effects or from a combination of spa-
tial proximity and specific cytokine patterns. Conse-
quently, further studies in indirect co-cultures will be
necessary.

Conclusion

Pathophysiological models developed from animal stud-
ies form the basis of our understanding of the develop-
ment of stroke. In vivo data display a perfusion-related
dependency of neuronal cell damage. Residual energy
supply in the penumbra induces apoptosis, the early
phases of which are reversible. Consequently, rescue of
the penumbra is a major target of experimental stroke
therapy. Data obtained from complex animal models of
stroke strongly suggest that transplanted cells enhance
neuronal survival.

We established a standardized human in vitro model of
neuronal apoptotic cell death after hypoxia that can facil-
itate to address specific pathophysiological processes
underlying hypoxic damage and cell-mediated neuropro-
tection more precisely.
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Effect of co-culturing of MNC on ratio of neuronal apoptosis and preservation of neuronal networks. Apoptosis
was induced by 48 hours incubation of neuronal cells under hypoxic conditions. Afterwards 4.5 x 105 CFSE stained MNC were
directly applied to neuronal cells (0.3 % 105/well). For three days co-cultures were observed under normoxia. In co-cultures
with MNC rate of apoptosis was clearly reduced compared to post-hypoxic cultures (A). Combined phase contrast and fluo-
rescence micrograph of post-hypoxic neuronal cells and MNC (green) in direct co-culture (B).

Interestingly, transplanted MNC not only strongly
decreased the ratio of apoptosis in neuronal cells but also
triggered retaining neuronal characteristics such as form-
ing networks. MNC clustered around post-hypoxic neuro-
nal cells and induced an alteration in cytokine and
chemokine concentrations. Our data suggest that the neu-
roprotective effects of MNC might result from direct cell-
cell contacts and/or the adjustment of specific soluble
mediators.

Methods

Cultivation and differentiation of neuronal cells

All experiments were performed using SH-SY5Y human
neuroblastoma cells (DSMZ, German Collection of
Microorganisms and Cell Cultures, Braunschweig, Ger-
many) between passages 4-7. The common medium was
Dulbecco's Modified Eagle Medium (DMEM, high glu-
cose 4.5 g/l, L-Glutamine 580 mg/l; PAA, Pasching, Aus-
tria) with penicillin G (10,000 U/ml; PAA Laboratories,
Pasching, Austria) and streptomycin (10 mg/ml; PAA Lab-
oratories, Pasching, Austria]. Cells were maintained in
MM in a humidified atmosphere with 5.5% CO,at 37°C
(Table 1). When cultures achieved subconfluence, cells
were subcultured with trypsin/EDTA (PAA Laboratories,
Pasching, Austria). Differentiation was carried out accord-

ing to the protocol of Encinas and colleagues [17] but was
adapted as follows: cells were plated at an initial density
of 0.9 x 104/cm?in 16-mm-diameter cavity (Greiner Bio-
One, Frickenhausen, Germany) and differentiated over a
period of 16 days in relevant media and cultured thereaf-
ter according to Table 1. Cultivation procedure is illus-
trated by Fig. 10.

Immunocytofluorescence of neuronal markers

The primary antibodies used against neuronal epitopes
were: B-tubulin III (rabbit 10 png/ml; BD PharMingen, Hei-
delberg, Germany), taurin I and neurofilament (NF) H/M
(rabbit 5 pg/ml and mouse 1:200; Chemicon, Hampshire,
UK), neuron-specific enolase (NSE) and microtubule-
associated proteins (Map) 2a/b (mouse 1:2 and mouse 5
pg/ml;  Sigma-Aldrich, Munich, Germany). Fluoro-
chrome-conjugated secondary antibodies were purchased
from DAKO, Carpinteria, CA, USA (goat anti-mouse-PE
[1:200] and pork anti-rabbit-FITC [1:30]). Indirect immu-
nostaining was processed according to manufacturer's
instructions.

Hypoxia and post-hypoxic cultivation
Before enddifferentiated neuronal cells were exposed to
hypoxia they were refreshed with DM. Hypoxic condi-
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Figure 10

Schematic illustration of experimental set up. Sixteen days of differentiation were followed by 48 hours cultivation
under hypoxic conditions. Following hypoxia cultures were maintained under normoxic conditions for three days and are
referred as post-hypoxic. Subsequently, cultures were analysed daily.

tions were O, < 1% (oxygen substituted with nitrogen)
and lasted 48 hours in a 37°C tempered and humidified
incubator (Binder GmbH, Tuttlingen). After hypoxia, cul-
tures were supplied with PHM (Table 1) and were trans-
ferred back to normoxic conditions for the following three
days (Fig. 10).

Quantification of cell numbers by nuclear staining

The total number of cells was measured by nuclear stain-
ing with 4', 6-diamidino-2-phenylindole (DAPI, Invitro-
gen, Karlsruhe, Germany). Cells were washed and stained
with 1 pg/ml (DAPI/Methanol) for 15 minutes at 37°C.
25 microphotographs of randomised fields were taken per
cavity using a Zeiss fluorescence microscope (Carl Zeiss
AG, Jena, Germany) equipped with Zeiss AxioVision-Soft-
ware. The number of nuclei was automatically determined
by means of Zeiss AutMess (Carl Zeiss AG, Jena, Ger-
many).

Cell viability assay

Apoptosis was determined via annexin-fluorescein isothi-
ocyanate (FITC) or annexin-phycoerythrin (PE; both 1:20
reaction buffer; BD PharMingen, Heidelberg, Germany)
using fluorescence microscopy. Necrosis was identified by
propidium iodide (PI) staining (1 pg/ml phosphate-buff-
ered saline [PBS]; Bender medSystems, Vienna, Austria).
Both methods detect cells in a late state of apoptosis.
Apoptosis and necrosis were ascertained in different cavi-

ties. Calcein-AM (40 uM/PBS; Invitrogen, Karlsruhe, Ger-
many) was utilised for detection of living cells.

Quantification of apoptotic proteins

BD Cytometric Bead Array for human apoptosis (Becton
Dickinson, Erembodegem, Belgium) was used for the
quantitative measurement of apoptotic proteins (cleaved
PARP and Caspase-3). Manufacturer' s instructions were
adapted to lyse cells directly within multi-well plates. For
cell lyses differentiated cells were rinsed with PBS and
incubated on ice in the provided buffer for 20 minutes.

Determination of adhesion molecules by
immunocytochemistry and cell-based fluorescence
measurement

The cultures were stained with antibodies against CD56-
phycoerythrin (PE; NCAM), CD171 (L1, both Becton
Dickinson, Erembodegem, Belgium), CD54-PE (ICAM-1;
Immunotech, Hamburg, Germany) and CD106-PE
(VCAM-1; Southern Biotech, Birmingham, Alabama,
USA) in order to investigate the distribution and localisa-
tion of adhesion molecules on differentiated neuronal
cells. The staining protocol proceeded as follows: Medium
(DM, Table 1) was removed and dishes were washed twice
with PBS. The cells were incubated with primary labelled
or unlabelled antibodies (1:100) for 10 minutes at 37°C
and afterwards washed in PBS. Thereafter the cells were
incubated with goat anti-mouse-PE (DAKO, Hamburg,
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Supplements in DMEM

Day of culture Culture condition Description of media FCS (15%) RA (10 uM) BDNF (5 ng/ml) HSA (0.1%) Ham's FI2

Seeding Normoxia Maintenance medium
(MM)
-4 Normoxia Basic medium (BM)
5-16 Normoxia Differentiation medium
(oM)
16 - 18 Normoxia/hypoxia  Differentiation medium
(BM)
18 - 21 Normoxia Post-hypoxic medium
(PHM)

X X X X
- X X X

The experimental design demanded varying culture media. Supplements in DMEM were purchased from: fetal calf serum (FCS, PAN-Biotech,
Aidenbach, Germany), all-trans-retinoic acid (RA, Sigma-Aldrich, Steinheim, Germany), recombinant brain-derived neurotrophic factor (rhBDNF;
ImmunoTools, Friesoythe, Germany), human serum albumin (HSA, PAN Biotech, Aidenbach, Germany).

Germany) antibody for 10 minutes at 37°C for CD171
detection. After labelling the cultures were immersed in
PBS.

The spatial distribution of adhesion molecules was
observed using fluorescence microscopy (Carl Zeiss AG,
Jena, Germany). The density of molecule expression was
measured in cell lysates. Therefore, antibody-labelled cul-
tures were treated with 1% Triton x 100 (Ferak, Berlin,
Germany)/PBS at 37°C. Whole-cell lysates were trans-
ferred to black 96-well-plates (Greiner Bio-One, Fricken-
hausen, Germany). PE-fluorescence signals were
determined with a spectrafluorometer (Tecan Spectrafluor
Plus, Tecan Trading AG, Switzerland) at an excitation
wavelength of 488 nm and an emission wavelength of
590 nm. Specific isotypes and 1% Triton x 100 served as
negative controls.

Preparation of Human Umbilical Cord Blood (HUCB)
samples

Cord blood samples were obtained anonymously in
accordance to ethical prescripts immediately after deliv-
ery. HUCB samples of healthy full-term neonates were
processed according experienced methods including den-
sity gradient separation using Lymphocyte Separation
Medium (PAA Laboratories, Colbe, Germany). Gained
MNC fraction was stored by freezing in the gaseous phase
of liquid nitrogen after the addition of FCS/8% dimethyl
sulfoxide (Serumwerke Bernburg Inc., Bernburg, Ger-
many). Prior to use cryopreserved MNC were thawed rap-
idly in 75 U/ml DNasel/0.5 M MgCl, (Roche Diagnostics
GmbH, Mannheim, Germany/Sigma, Germany) and
washed in RPMI (PAA Laboratories, Austria). Cell suspen-
sion was stained with carboxy fluoresceindiacetate succin-
imidyl ester (CFSE 5 uM; Molecular Probes, Inc., Eugene,
OR, USA) for 10 minutes at 37°C.

Co-culture of neuronal cells and MNC

Direct co-culturing of fully differentiated neuronal cells
and MNC was carried out under normoxic conditions
(37°C) over a period of 3 days following 48 hours of
hypoxia. A total amount of 4.5 x 105 CFSE stained MNC
were dissolved in 500 pl PHM and were added to the post-
hypoxic neuronal cells (0.3 x 105/cavity). The ratio of neu-
ronal cells to MNC was 1:15.

Cytokine profiling

The supernatants from normoxic cultures on Day 21 as
well as from hypoxic cultures on Day 3 post-hypoxia were
collected in order to characterise soluble factors produced
by cultured cells. They were detected simultaneously by
means of Becton Dickinson Cytometric Bead Array. Super-
natants were tested for neuroprotective (Granulocyte Col-
ony-Stimulating Factor [G-CSF], Vascular Endothelial
Growth Factor [VEGF]) and inflammatory cytokines
(Interleukin [IL]-1B, IL-6, CXCL8) as well as chemokines
(CXCL10, CCL3, CCL4, CCL5, CCL2). The detection limit
was 0.02 ng/ml, except for VEGF and CCL2 (0.04 ng/ml).

Statistical analyses of data

Except for apoptosis and necrosis rates all results have
been reported as mean values + SD. Statistical differences
were analysed by the Student s t-test or the Mann-Whitney
rank sum-test. P values of < 0.05 were considered statisti-
cally significant (* p <0.05, ** p<0.01, *** p <0.001).
Apoptosis and necrosis rates were logit-transformed to
obtain normally distributed quantities. The effects of
time, experimental setting (hypoxia), experimental run
and the investigated cavity were determined univariately,
and, finally multivariately using a mixed-model approach
with time and experimental setting as fixed effects and
cavity and experimental run as random effects. Cytokine
concentrations were compared between the normoxic and
the hypoxic group by means of the Mann-Whitney rank
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sum test. Cytokine concentrations measured in co-cul-
tures were compared with the sum of the concentrations
obtained in the post-hypoxic neuronal cultures and in the
MNC mono-cultures via a bootstrapping algorithm. This
was performed by resampling and by the addition of con-
centrations of cytokines measured in post-hypoxic neuro-
nal cultures and MNC mono- cultures. Results were
compared with the Mann-Whitney rank sum test. The
mean and standard deviations of the sum of the concen-
trations were also determined by bootstrapping. Boot-
strapping analysis was performed using the statistical
software package "R" [61,62]. Mixed-model analyses were
performed using PROC MIXED from the statistical soft-
ware package SAS 9.1 (SAS Institute Inc., Cary, NC, USA).
Box plots (if applicable) and univariate analyses were
determined using the software package SPSS (SPSS Inc.,
Chicago IL, USA).
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