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Abstract

Background: Interleukin-3 (IL-3) is an important glycoprotein involved in regulating biological
responses such as cell proliferation, survival and differentiation. Its effects are mediated via
interaction with cell surface receptors. Several studies have demonstrated the expression of IL-3
in neurons and astrocytes of the hippocampus and cortices in normal mouse brain, suggesting a
physiological role of IL-3 in the central nervous system. Although there is evidence indicating that
IL-3 is expressed in some neuronal populations, its physiological role in these cells is poorly known.

Results: In this study, we demonstrated the expression of IL-3 receptor in cortical neurons, and
analyzed its influence on amyloid § (AP)-treated cells. In these cells, IL-3 can activate at least three
classical signalling pathways, Jak/STAT, Ras/MAP kinase and the Pl 3-kinase. Viability assays indicated
that IL-3 might play a neuroprotective role in cells treated with A fibrils. It is of interest to note
that our results suggest that cell survival induced by IL-3 required Pl 3-kinase and Jak/STAT pathway
activation, but not MAP kinase. In addition, IL-3 induced an increase of the anti-apoptotic protein
Bcl-2.

Conclusion: Altogether these data strongly suggest that IL-3 neuroprotects neuronal cells against
neurodegenerative agents like Af.

Background

The cytokine, Interleukin (IL)-3 is an important regulator
which exhibits pleiotropic activities [1]. It is expressed in
hematopoietic cells as well in several non-hematopoietic
cell types [2-8]. The biological activity of IL-3 is mediated
through specific cell surface receptors which are com-
posed of a and B subunits. The a subunit is responsible
for the binding of IL-3. The ligand-activated o subunit is
associated with the B subunit, which transmits signals
across the plasma membrane [9]. IL-3 is known to activate

at least three signaling pathways: The Jak/STAT, the Ras/
Raf/mitogen-activated protein kinase, and the phosphati-
dylinositol 3-kinase (PI 3-kinase)/protein kinase B (PKB)
pathway. An important PI 3-kinase target is the serine/
threonine kinase Akt/PKB, which, mediated by many
growth factors [10] (Dudek et al., 1997), is involved in
cell survival.

Several studies have demonstrated the presence of IL-3 in

the central nervous system [4,5,11]. Although there is evi-
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dence indicating that IL-3 is expressed in some neuronal
populations [12], its physiological role in these cells is
unknown. Some studies [13] demonstrated that IL-3 sig-
nificantly facilitates sensory neuron survival and stimu-
lates the formation of the neural network in vitro,
promotes the process extension of cultured cholinergic
neurons [14], and that IL-3 exerts a trophic action on hip-
pocampal neurons, rescuing hippocampal CA1 neurons
from lethal ischemic damage [15]. However, the mecha-
nism by which IL-3 supports neurons has not yet been
determined.

In the nervous system and particularly during develop-
ment, apoptosis appears to be triggered by trophic factor
deprivation. Neuronal apoptosis is likely to occur in
Alzheimer's disease (AD), a widespread neurodegenera-
tive disorder that results in progressive dementia [16].
Histopathologically, AD is characterized by the presence
of extracellular senile plaques that consist of f-amyloid
protein (Ap) in its fibrillary form, and neurofibrillary tan-
gles [17]. AP causes hippocampal and cortical neuronal
death in vitro and in vivo [18,19]. It has been suggested that
AB,_40and AB,_,, downregulate Bcl-2, and that this effect
may lead to increased neuronal degeneration during age-
dependent stresses [20].

In this study, we provide direct evidence for the functional
expression of IL-3 receptors on neurons. We also demon-
strated their involvement in the neuroprotective action of
IL-3 upon AB-neurotoxicity. We demonstrated that recep-
tor activation signals cell survival in the presence of Af.
Our results suggest that the effect of IL-3 on cortical neu-
rons is mediated by activation of the Ser/Thr kinase Akt
and kinase Jak, both important components of anti-apop-
totic mechanisms in neurons and other cell types. And
worthy of note, IL-3 was able to induce an increase in Bcl-
2 protein in these cells.

Results

Expression of functional IL-3 receptors in cortical neurons
The expression of both o and B subunits of IL-3 receptor
in primary cortical neurons was confirmed using specific
antibodies. Immunofluorescence analysis using anti-IL-
3ra and anti-IL-3rf (Fig. 1) antibodies showed clear posi-
tive immunostaining in primary cortical neurons. These
results suggest that this receptor is expressed in these cells.
It is therefore reasonable to assume that these receptors
are functional and able to transduce downstream signals.
To investigate the possibility that IL-3 treatment produced
activation of Jak2, ERK and Akt, lysates from cells treated
with IL-3 for various times were subjected to Western blot
analysis using anti-phospho-Jak2, -ERK, and -Akt antibod-
ies to detect activated Jak2, ERK and Akt, respectively (Fig.
1B and 1C). Duplicate blots were probed with antibodies
recognizing total Jak2, ERK or Akt to verify equal protein
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loading in the samples. As shown in Fig. 1B, treatment
with 5 nM IL-3 led to increased phosphorylation of Jak2
within 10 minutes and this phosphorylation remained
elevated for 60 minutes. Treatment with 5 nM IL-3 also
weakly activated Akt, an activation which was sustained
for 20 minutes. Akt phosphorylation was fast for the first
30 minutes and after 2 h there is an increase that was sus-
tained over 24 h in primary cortical neurons (Fig. 1D).

Also, ERK activation was evident at 5 minutes and was sus-
tained for over 60 minutes. These results suggest that IL-3
receptors are functional and are able to transduce a signal
in response to IL-3.

Neuroprotective effect of IL-3 on neurons treated with
AL

Several results suggest that aggregated A peptide, as well
as the oligomeric forms of this peptide, are highly toxic for
a variety of cultured primary neurons and neuronal cell
lines. Cortical neurons were treated with different concen-
trations of the aggregated AP} peptide (AB,_,,) for 24 h. A
was dose-dependently toxic (Fig. 2, panel A), causing up
to 40% cell death at 25 uM.

To determine whether IL-3 protects neurons against Af,
we treated cells with increasing concentrations of IL-3 (0
- 10 nM) 30 min before the assay and maintained a 24 h
exposure to aggregated 10 uM AB,_,, (Fig. 2, panel B). Our
results show a dose-dependent reduction in AP toxicity
following IL-3 treatment, with a clear increase in cell sur-
vival at 10 nM IL-3. IL-1 was used as a negative control,
having no effect on AP toxicity (Fig. 2, panel D). IL-3
alone had no effect on cortical neurons (Fig 2, panel C).

In order to define whether DNA fragmentation occurred
in neuronal cultures treated with AB in the presence or
absence of IL-3, we searched by TUNEL staining. A high
number of TUNEL-positive cells with shrunken nuclei and
condensed chromatin, as indicated by arrows, were
detected in the presence of 10 uM AP, whereas the TUNEL-
positive cells were far fewer in neuron cells pre-treated
with 5 nM IL-3 before 10 uM AP treatment (Fig. 2E).

We also proved that the neuroprotective effect on AB-neu-
rotoxicity is very similar to that found with insulin treat-
ment (Fig. 2F). This observation suggests that IL-3, similar
to insulin may offer trophic support to neurons [21].

PI3KIAkt participates in IL-3-induced neuroprotection

Activation of Akt requires the phosphorylation of Thr-308
and Ser-473 in the Akto. molecule. In this study, phospho-
rylation of Ser-473 was used to evaluate the activation of
Akt. In order to determine whether Akt activation partici-
pates in IL-3-induced neuroprotection we used a specific
inhibitor of PI 3-kinase, LY2940002, which is highly
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Expression and activation of IL-3 receptors in cortical neurons. (A). Primary cortical neurons were incubated with
anti-IL-3a subunit (a), anti-IL-33 subunit (b) or without first (c) antibodies followed by incubation with a second antibody con-
jugated to FITC. Scale bar, 20 um. (B). Western blot analysis shows Jak2, Akt and ERK phosphorylation in cortical neurons
treated with 5 nM IL-3 for the indicated times. (C). Normalized densitometry scans of proteins panel B. (D). Western blot
analysis shows Akt phosphorylation in cortical neurons treated with IL-3 for the indicated times. The results are representative

of three separate experiments.

selective for PI 3-kinase inhibition. Cortical neurons were
pre-treated with 50 uM LY2940002 for 30 min prior to
addition of 5 nM IL-3. Cells were then exposed to 10 uM
AP and incubated for an additional 24 h. These cells were
used for Western blot, Tripan blue exclusion and MTT
analysis. As shown by Western blot analysis (Figs. 3A and
3B), pre-treatment with LY2940002 blocked the IL-3-
evoked Akt activation. Also, LY2940002 blocked the BAD
phosphorylation, a downstream effector of Akt, but had
no effect on Jak 2 phosphorylation, which is a receptor-
associated kinase upstream to Akt. As shown in Fig. 3C,
pre-treatment of cells with LY2940002, totally abolished
the protective effect of IL-3. The same results were

obtained using 100 nM Wortmannin (data not shown).
These results suggest that IL-3-induced activation of Akt,
by PI 3-kinase, was necessary for protection from Ap-
induced cell death.

Participation of Jak2 in IL-3-induced protection

The members of the family of Jak kinases are associated
constitutively with a variety of cytokine receptors, includ-
ing the IL-3 receptor. Upon binding of the specific ligand
to its receptor, Jak kinases are rapidly activated, and their
kinase activities are induced to regulate tyrosine phospho-
rylation of various effectors and to initiate activation of
downstream signaling pathways. These pathways include
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Figure 2

Effect of IL-3 on fibrillary AB-induced neurotoxicity in cortical neurons. MTT, Tripan blue and TUNEL staining analy-
ses were used to determine cell death. (A). Cortical neurons were treated with different concentrations of AP} peptide for 24
h at 37°C. (B). Neurons were incubated with different concentrations of IL-3 and then treated with 10 uM Ap. (C). Neurons
were incubated with different concentrations of IL-3 in the absence of AB. (D). Neurons were incubated with different concen-
trations of IL-1 and then treated with 10 uM A. Data are mean * S.E. for three separate experiments performed in duplicate.
(E). Cortical neurons were treated with 10 uM A in the absence or presence of 5 nM IL-3 for 24 h at 37°C. TUNEL-positive
neurons were visualized by microscopy and the shrunken nuclei are indicating by arrows. (F). Primary cortical neurons were
pre-treated with 5 nM IL-3 or 100 uM insulin for 30 min, and then treated with 10 pAp for 24 h at 37°C. MTT and Tripan blue
analyses were used to determine cell death. Data are means * S.E. for three separate experiments performed in duplicate.
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Figure 3

Inhibition of Pl 3-kinase blocked Akt phosphorylation and IL-3 mediated neuroprotection against Aj} toxicity.
Primary cortical neurons were pre-treated with 50 pM LY2940002 for 30 min before addition of 5 nM IL-3. One hour after
addition of growth factor, cells were then exposed to 10 uM AP and incubated for an additional 24 h. Cells incubated with
vehicle (PBS containing < 0.1% DMSO v/v) and not exposed to IL-3 or AP were defined as control cells. Then the cells were
used for Western blot and viability analysis. (A) Western blot analysis using phosphorylation-specific antibodies (p-Jak2, p-Akt,
and p-BAD), and total anti-Akt| antibodies. (B). Normalized densitometry scans of proteins (mean + SEM, *, #, p < 0.05). The
student's t-test was used for the statistical analysis of significance of difference. (C). Neuronal death was determined by MTT
colorimetric assay and Tripan blue exclusion. Data represent mean + SEM for three independent experiments (with a minimum

of 4-5 wells per group for each experiment).

PI3K, MAPK, and NF-kB (nuclear factor-kappa B), leading
to cell differentiation, survival and proliferation. To deter-
mine whether Jak2 kinase is implicated in IL-3-induced
neuroprotection, we used AG490, a highly selective spe-
cific inhibitor of Jak2. Cortical neurons were pre-treated
for 30 min with 20 uM AG490 before addition of IL-3 and
AP peptide. AG490 induced a decrease in Jak2 and Akt
phosphorylation (Fig. 4A and 4B). Pre-treatment with
AG490 totally abolished the protective effect of IL-3 (Fig.
4C). These results suggest that IL-3 induce Jak2 activation,
and that this activation is necessary for protection from
AB-induced death.

Role of ERK in the neuroprotective action of IL-3

Activation of ERK and Akt pathways has been shown to
promote cell survival/proliferation after growth factor
stimulation and to play a protective role. To investigate
ERK involvement, we tested the effect of PD98059 on IL-
3-induced neuroprotection. PD98059 is a selective inhib-
itor of the MEK kinase pathway, kinase upstream of ERK.
Cells were pre-treated with 20 uM PD98059 for 30 min
prior to addition of IL-3. After addition of IL-3, cells were
exposed to 10 uM AP and incubated for an additional 24
h. Pre-treatment with PD98059 blocked IL-3-evoked ERK
activation, but had no effect on Jak2 and Akt activation
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Figure 4

Inhibition of Jak2 kinase blocked Akt phosphorylation and neuronal survival by IL-3. Primary cortical neurons were
pre-treated with 20 pM AG490 for 30 min before addition of 5 nM IL-3. One hour after addition of growth factor, cells were
exposed to 10 uM AP and incubated for an additional 24 h. Cells incubated with vehicle (PBS containing < 0.1% DMSO v/v) and
not exposed to IL-3 or AP} were defined as control cells. Then the cells were used for Western blot and viability analysis. (A)
Western blot analysis using phosphorylation-specific antibodies (p-Jak2, and p-Akt), and total anti-Akt| and anti-Jak2 antibod-
ies. (B). Normalized densitometry scans of proteins (mean + SEM, *, #, p < 0.05). The student's t-test was used for the statisti-
cal analysis of significance of difference. (C). Neuronal death was determined by MTT colorimetric assay and Tripan blue
exclusion. Data represent mean * SEM for three independent experiments (with a minimum of 4-5 wells per group for each

experiment).

(Fig. 5A and 5B). Results are consistent with the notion
that Jak2 is a kinase upstream of ERK, and these results
therefore suggest that IL-3-evoked Akt activation is not
dependent on ERK phosphorylation. Next, we evaluated
the ability of IL-3 to promote cell survival in neurons
treated with PD98059 for 24 h. As shown in Fig. 5C,
PD98059 did not alter the IL-3 effect on AB-induced cell
death. The results suggest that IL-3 protected against AB-
induced death by regulating Jak and PI3K/Akt pathways.

IL-3 induces an increase in Bcl-2 expression

A previous report [20] suggested that AP is able to down-
regulate Bcl-2 protein, a well-established anti-death pro-
tein in neurons. Several growth factors, among them IL-3,

induce the Bcl-2 expression. To investigate the role of Bcl-
2 in the IL-3-induced protection, cells treated with AB in
the presence or absence of IL-3 were analyzed by Western
blot analysis. As shown in Fig. 6, there was a decrease of
Bcl-2 protein levels in cells treated with 10 uM AP. Cells
pre-treated with 5 nM IL-3 1 h before addition of AB, pre-
sented no decrease in Bcl-2. This suggests that IL-3 is able
to maintain Bcl-2 protein levels similar to those in control
cells in the presence of AP peptide.

Discussion

It has been proposed that IL-3 has a neuroprotective role,
but the mechanism has been poorly described. The data
presented here provide strong evidence that IL-3 can act
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Figure 5

Effect of PD98059 on IL-3 mediated neuroprotection against A toxicity. Primary cortical neurons were pre-treated
with 20 uM PD98059 for 30 min before addition of 5 nM IL-3. One hour after addition of interleukin, cells were exposed to 10
1M AB and incubated for an additional 24 h. Then the cells were used for Western blot and viability analysis. (A) Immunoblot
analysis using phosphorylation-specific antibodies (p-ERK 1/2, p-Jak2, and p-Akt). (B). Normalized densitometry scans of pro-
teins (mean + SEM, *, #, p < 0.05). The student's t-test was used for the statistical analysis of significance of difference. (C).
Neuronal death was determined by MTT colorimetric assay and Tripan blue exclusion. Data represent mean * SEM for three
independent experiments (with a minimum of 4-5 wells per group for each experiment).

directly on neurons and activate neuronal survival path-
ways. We demonstrated that IL-3 is a potent inhibitor of
neuronal death induced by AB,_,, exposure. These find-
ings were complemented by kinase phosphorylation stud-
ies, including the use of specific inhibitors that identified
which survival pathways are activated by IL-3.

Alzheimer's disease (AD) brain is characterized by the
selective loss of synapses and neurons. The presence of
amyloid plaques composed primarily of aggregated amy-
loid B-peptide (AB), 40 to 42 aminoacids in length, is
thought to be the toxic agent in AD [22]. The mechanism
by which AP induces cell death or apoptosis is not yet
clear. Previous authors have suggested that AR downregu-
lates survival protein, such as Bcl-2 [20]. Additionally,
mutant presinilin 1 (PS1) of familial AD, induces apopto-

sis, downregulates the survival factor Akt/PKB, and affects
several Akt/PKB downstream targets, including glycogen
synthase kinase 3 f and B-catenin [23].

However, it has been reported that several factors, such as
IGF-I, protect hippocampal neurons from A toxicity. The
initial signaling involved in this protection has been
shown to involve both ERK and PI 3-kinase-dependent
pathways. All these results strongly suggest that Af down-
regulates the natural protective mechanism in neurons,
and the activation of some growth factor receptor can pro-
tect neurons from AB-induced cell death by anti-apoptotic
pathways activation.

Previous studies of IL-3 in the central nervous system
demonstrated the expression of IL-3 mRNA in neurons of
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IL-3 induces an increase of Bcl-2 protein. Protein extracts from cortical neurons not exposed to IL-3 or AP, were defined
as control cells (lane 1), cells treated with 10 M AP in the absence (lane 2) or presence (lane 3) of 5 nM IL-3 and cells treated
with IL-3 (lane 4) were analyzed by Western blot using anti-Bcl-2 and anti-actin antibodies. Blots shown are from representa-

tive experiments.

the habenula, hippocampus, cerebral and enthorhinal
cortices, and subiculum in normal mouse brain [4], and
suggested endogenous IL-3 might be produced by certain
neurons [12]. Functional IL-3 receptors are expressed in
the central cholinergic neurons and contribute to some
physiological roles such as the differentiation and mainte-
nance of these neurons. Also, both hippocampus and cer-
ebral cortex express IL-3ra. and B subunits [5].

We demonstrated that primary cortical neurons express
IL-3ra. and B subunits. Biological response analyses con-
firmed the presence of functionally active IL-3 receptors,
responsive to mouse IL-3 in cortical neurons. Binding of
this cytokine to its receptor leads to the stimulation of
classical signal transduction pathways, specifically the
Jak/STAT pathway, the Ras/MAPK pathway, and the PI 3-
kinase/PKB pathway [24]. The data showed that IL-3
induced activation of these pathways in this cell type. In
general there was a fast and transient increase of the phos-
phorylation of p-Jak2 and p-ERK. However, Akt phospho-
rylation was fast for the first 30 minutes and after 2 h there
is an increase that was sustained over 24 h in primary cor-
tical neurons.

The neuroprotective effect of IL-3 against the amyloid was
studied by fragmented DNA using TUNEL staining, MTT
and Tripan blue exclusion analysis. We demonstrated that
IL-3 prevents AB-neurotoxicity. IL-3 induces an increase in
cell viability of more than 75% in cells treated with Ap.
Our results are consistent with other groups, which have
reported that IL-3 has a functional role in some neurons.
Some authors have demonstrated that the survival of sen-
sory neurons was significantly supported by IL-3, which
also stimulates their morphological differentiation [13].
IL-3 also attenuated neuronal damage caused by free rad-
icals, which are known to be overproduced during and

after brain ischemia. Furthermore, IL-3 was able to protect
NGEF-differentiated neurons from apoptotic cell death
caused by NGF withdrawal [25].

We showed that this neuroprotective effect on AB-neuro-
toxicity is similar to that found with insulin treatment.
Direct actions of insulin on neurons and neuron-like cells
have suggested it may offer trophic or growth factor sup-
port to these structures. In some in vitro systems, and in
some in vivo models, a role for direct insulin support for
regeneration has been suggested [21].

It has been proposed that IL-3 has a neuroprotective role,
but no underlying biological mechanism has been identi-
fied. We showed that IL-3 protected against AB-induced
cell death and activated Akt. A specific inhibitor of PI 3-
kinase blocked this activation and abolished protection of
AB-induced cell death, indicating that activation of Akt
was important for IL-3 protection. Activation of Akt pro-
tects cells from apoptotic signals such as growth factor
withdrawal, cell cycle disruption, and cell detachment
[26]. PI 3-kinase has been implicated in the regulation of
cell survival in several cell types. In particular, PI 3-kinase
is thought to be involved in IL-3-dependent survival, and
that a region on the Bc receptor important for IL-3-
dependent survival is necessary for PI 3-kinase activation.
Akt is activated by factors that stimulate PI 3-kinase activ-
ity in cells, such as thrombin, platelet-derived growth fac-
tor, and insulin [27]. Active Akt can promote cell survival
in response to various death stimuli, including with-
drawal from growth factors [10]. Here we demonstrated
that Akt activity is induced rapidly by the cytokine IL-3 in
cortical neurons and that activation of Akt by IL-3 is
dependent on the PI 3-kinase activity.
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Akt was activated downstream from PI 3-kinase, resulting
in the phosphorylation and inactivation of BAD, a princi-
pal inducer of cell apoptosis. It has been demonstrated
that activated Akt phosphorylates BAD, resulting in its
sequestration by cytosolic 14-3-3 proteins [28,29]
Because BAD binds to and inhibits the anti-apoptotic
actions of Bcl-y;, the sequestration of BAD in the cytosol
by 14-3-3 proteins results in enhanced survival. This sig-
nalling pathway has been shown to play an important
role in neuronal development and survival [30].

We also provide evidence that AB-induced apoptosis is
prevented through the IL-3 induced activation of Jak2.
Our findings indicate that IL-3r activation induces Jak2
activation via tyrosine phosphorylation and that this ini-
tial event is followed by tyrosine phosphorylation of PI 3-
kinase and Akt serine phosphorylation as suggested by the
inhibitory effect of AG-490 on the phosphorylation of
both proteins. These results are consistent with those
reported for hematopoietic cells, in which the kinase
domain of Jak2 inhibits cell death and treatment with the
Jak2 inhibitor AG-490 reduces phosphorylation of PI 3-
kinase, resulting in increased caspase 3 activity and Bax
protein in acute myocardial infarction [31]. In addition,
activation of neuronal erythropoietin receptors prevents
apoptosis by triggering cross-talk between the signaling
pathways of Jak2 and the nuclear factor- kB (NF-«B)
[31,32].

Activation of ERK and Akt pathways have been shown to
promote cell proliferation/survival after growth factor
stimulation and to play a protective role. Activation of
both ERK and Akt are important steps in cellular
responses to a variety of extracellular stimuli [26]. How-
ever, we demonstrated that inactivation of the mitogen-
activated protein kinase pathway by PD98059, a selective
inhibition of mitogen-activated protein kinase/extracellu-
lar signal regulated kinase, did not affect IL-3-mediated
survival, meaning that the Akt pathway is primarily
involved and rendering ERK activation unnecessary for
the IL-3-induced survival function. In contrast to our find-
ings, in other cell systems, the inhibition of ERK activation
with a dominant-negative MAPKK, suppresses IL-3-
dependent survival, in, for example, BaF3 cells [33].

The IL-3-induced targets important for cell survival, seem
to be proteins of the anti-apoptotic bcl-2 gene family.
Expression of bcl-2 and bely, is rapidly induced by IL-3 or
activated Ras in multiple cell types [34,35]. We showed
that cells treated with A had decreased Bcl-2 protein lev-
els, consistent with some reports which suggested that Ap
is able to downregulate Bcl-2 protein [20]. However, IL-3
is able to support Bcl-2 protein levels in the presence of A
peptide. Overexpression of bcl-2 blocks apoptosis induced
by IL-3 withdrawal in cell lines [36,37]. Bcl-2 is well estab-
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lished as an anti-death protein in neurons. Bcl-2 can avert
survival factor deprivation-induced neuronal apoptosis in
sympathetic cervical ganglia, in sensory primary neurons,
and in continuous cell lines such as PC12 cells [38].

Conclusion

In summary, our data constitute the first experimental evi-
dence of the role of IL-3 in neurodegeneration Alzhe-
imer's type. We show that IL-3 prevents neuronal death
induced by AP peptide and suggest that the specific path-
ways responsible include activation of PI 3-kinase and
Jak2. IL-3 was also able to induce an increase of the anti-
apoptotic protein, Bcl-2.

Methods

Cell Cultures

Cortical neurons obtained from 16-day-old mice embryos
were prepared as previously described [39]. Briefly,
embryos were removed from the dams at E16 and placed
into Hank's balanced salt solution (1 mM HEPES, pH 7.4,
8 mM NaCl, 0.27 mM KCIl, 0.28 mM glucose, 0.02 mM
KH,PO,). Embryonic day 1 was defined as the day of con-
ception established by the presence of a vaginal plug.
Embryos were dissected and minced well with scissors.
Tissue was dissociated with 0.25% trypsin at 37°C for 15
min and then by mechanical grinding, with a sterile, fire-
polished glass Pasteur pipette, in Minimum Essential
Media (MEM) supplemented with 10%FBS. The cells were
collected by centrifugation and resuspended in a serum-
free medium consisting of neurobasal medium (NB) sup-
plemented with B27 and 0.5 mM L-glutamine. Neurons
were grown at 37°C in humidified 5% CO2 atmosphere
for 7-10 days prior to experimentation. Cortical cells were
plated onto coverslips or in 35-mm plastic dishes pre-
coated with polylysine (10 pg/ml).

Preparation of the Ap fibrils

The AB,_,, peptide (purchased from Chiron Corporation;
Emereville, CA, USA) was subjected to aggregation as
described [40]. The AP fibrils were concentrated by cen-
trifugation (20.000 x g for 30 min) and resuspended at 1
mg/ml in PBS (137 mM NaCl, 2.7 mM KCl, 10 mM
Na,HPO,, 2 mM KH,PO,). AB concentration was evalu-
ated using the BCA protein assay (Pierce, Rockford, IL.
USA) [41].

Immunofluorescence

Cortical neurons were fixed in 4% paraformaldehyde in
PBS for 20 min, washed in several changes of PBS for 10
min, permeabilized in 0.3% Triton X-100 in PBS for 15
min and incubated overnight at 4°C with anti-IL-3ro or
anti-IL-3rB, antibodies (Santa Cruz Biotechnology, Sta.
Cruz, CA, USA). After a wash in PBS (three washes, for 15
min each), cells were incubated in fluorescein isothiocy-
anate-conjugated goat anti-mouse IgG or fluorescein iso-
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thiocyanate-conjugated goat anti-rabbit IgG secondary
antibodies, for 1 h at room temperature. Fluorescent
images were obtained using a Zeiss Axioscope II fluores-
cence microscope. (Carl Zeiss, Gottingen, Germany).

Western blot analysis

Cortical neurons were plated at 1 x 10° cells/cm?2 on 35
mm dishes. Cultured cells were exposed to A fibrils and/
or interleukins for 24 h, for the described time periods.
For the experiments with inhibitors to different kinases,
cortical neurons were pre-incubated in the presence or
absence of 50 uM LY2940002 (PI3K inhibitor), 100 nM
Wortmannin (PI3K inhibitor), 20 pM AG490 (Jak2 inhib-
itor) or 20 uM PD98059 (MEK inhibitor) for 1 h and then
treated for 24 h with AP and/or IL-3. Afterwards, cells were
homogenized in RIPA buffer (50 mM Tris, pH 7.5, 150
mM NaCl, 5 mM EDTA, 1% NP-40, 0.5% sodium deoxy-
cholate, 0.1% SDS, 100 pg/ml PMSF, 2 ug/ml aprotinin, 2
puM leupeptin, and 1 pg/ml pepstatin) and the protein
concentration was determinated by the Bradford analysis
[42]. Proteins extracts were resolved by SDS-PAGE (60 pg
per lane) in a 10% polyacrylamide gel [43] and trans-
ferred to immobilon (Millipore, Bedford, MA, USA). After
blocking with 5% non-fat dry milk the membranes were
incubated with primary antibodies (Akt, p-Akt, Jak2, p-
Jak2, ERK1/2, p-ERK 1/2, Bcl-2, actin, p-BAD antibodies
from Santa Cruz Biotechnology, Sta. Cruz, CA, USA) in a
1% BSA in PBS overnight at 4°C. After washing, the mem-
branes were incubated with horseradish peroxidase-con-
jugated secondary antibodies (Sigma Chemical Co, St.
Louis, Mo, USA) for 1 h at room temperature. The anti-
body blots were developed by chemiluminescence (Amer-
sham, Arlington Heights, IL, USA).

Viability assays

Primary cortical neurons were seeded in 96-well plates
coated with polylysine 10 pug/ml. Then cells were treated
with the 10 uM B-amyloid fibrils with or without 5 nM IL-
3 or 100 nM insulin, and in the absence or presence of
inhibitors 50 uM LY2940002, 100 nM Wortmannin (PI3K
inhibitors), 20 uM AG490 (Jak2 inhibitor), and 20 uM
PD98059 (MEK inhibitor), as described previously. After
24 h incubation, the mitochondrial activity was measured
by the modified 3- [4,5-dimethylthiazol 2-yl]-2,5 diphe-
nyltetrazolium bromide (MTT) assay [44]. This involves
determining mitochondrial dehydrogenase activity in
intact cells by incubation for 4 h at 37°C with MTT (10 pl
de 5 mg/ml MTT solution per well). The reaction was
stopped by addition of cell lysis buffer (50% dimethylfor-
mamide and 20% SDS, pH 7.4). AA values at 550-650 nm
were determined the following day, using an automatic
microtiter plate reader (Metertech £960) and the results
were expressed as a percentage of control. The cell viability
was also assessed with Trypan blue exclusion.

http://www.biomedcentral.com/1471-2202/8/82

To measure DNA fragmentation, cells were fixed in freshly
prepared 4% paraformaldehyde for 20 min at room tem-
perature and incubated with blocking solution (3% H,0O,
in methanol), then permeabilized in 0.1% Triton X-100,
0.1% sodium citrate on ice for 2 min. Terminal deoxynu-
cleotidyl transferase-mediated dUTP nick-end labeling
(TUNEL) was performed using the In situ Cell Death
Detection, POD as described by the manufacturer (Roche,
Basel, Switzerland).

Statistical analysis

Data were expressed as the mean + SEM of the values from
the number of experiments performed in triplicate as indi-
cated in the corresponding figures. MTT and Tripan blue
data and histograms were evaluated statistically by using
the student's t-test, with P < 0.05 considered significant.

Abbreviations

The abbreviations used are: IL-3, Interleukin 3; AB, B-amy-
loid; JAKs, Janus kinases; STAT, signal transducers and
activators of transcription; MAPK, mitogen-activated pro-
tein kinase; ERK, extracellular signal-regulated protein
kinases; PI 3k, phosphatidylinositol 3-kinase; PKB, pro-
tein kinase B; AD, Alzheimer's disease; PBS, phosphate
buffered saline; BSA, bovine serum albumin; MTT, 3- [4,5-
dimethylthiazol 2-yl]-2,5 diphenyltetrazolium bromide;
TUNEL, terminal deoxynucleotidyl transferase-mediated
dUTP nick-end labeling.

Authors' contributions

AZ participated in the study, designing the protocol for
the laboratory investigation and coordination of the man-
uscript. CO participated in the study design and coordina-
tion of the manuscript. LM participated in the design of
the study. IC and RM conceived the study and participated
in its design and helped to draft the manuscript. All
authors read and approved the final manuscript.

Acknowledgements

This work was supported by grants from the Millennium Institute CBB,
FONDECYT Grants 1990994, 1050198 and 1020155, DID2003-01,
DID2004-60 and MECESUP AUS 0006. AZ and CO were supported by
CONICYT doctoral Fellowship.

References

I. Arai K, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T: Cytokines:
coordinators of Immune and Inflammatory Responses. Annu
Rev Biochem 1990, 59:783-836.

2.  Morstyn G, Burgess AW: Hemopoietic growth factors: a
review. Cancer Res 1988, 48(20):5624-5637.

3. Nicola NA: Hemopoietic cell growth factors and their recep-
tors. Annu Rev Biochem 1989, 58:45-77.

4.  Farrar WL, Vinocour M, Hill JM: In situ hybridization histochem-
istry localization of interleukin-3 mRNA in mouse brain.
Blood 1989, 73(1):137-40.

5. Tabira T, Chui DH, Fan JP, Shirabe T, Konishi Y: Interleukin-3 and
interleukin-3 receptors in the brain. Ann N Y Acad Sci 1998,
840:107-116.

6. Rauch MC, Brito M, Zambrano A, Espinoza M, Perez M, Yanez A,
Rivas Cl, Slebe JC, Vera JC, Concha II: Differential signalling for

Page 10 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1695833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1695833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2458827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2458827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2549855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2549855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2521292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2521292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9629242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9629242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15018615

BMC Neuroscience 2007, 8:82

20.

21.

22.

23.

24.

25.

26.

27.

enhanced hexose uptake by interleukin (IL)-3 and IL-5 in
male germ cells. Biochem | 2004, 381 (Pt 2):495-501.

Vilanova LT, Rauch MC, Mansilla A, Zambrano A, Brito M, Werner E,
Alfaro V, Cox JF, Concha Il: Expression of granulocyte-macro-
phage colony stimulating factor (GM-CSF) in male germ
cells: GM-CSF enhances sperm motility. Theriogenology 2003,
60(6):1083-1095.

Zambrano A, Noli C, Rauch MC, Werner E, Brito M, Amthauer R,
Slebe JC, Vera JC, Concha Il: Expression of GM-CSF receptors in
male germ cells and their role in signaling for increased glu-
cose and vitamin C transport. | Cell Biochem 2001,
80(4):625-634.

Appel K, Buttini M, Sauter A, Gebicke-Haerter PJ: Cloning of rat
interleukin-3 receptor beta-subunit from cultured microglia
and its mRNA expression in vivo. | Neurosci 1995,
15(8):5800-5809.

Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM,
Segal RA, Kaplan DR, Greenberg ME: Regulation of neuronal sur-
vival by the serina threonine protein kinase Akt. Science 1997,
275(5300):661-665.

Frei K, Bodmer S, Schwerdel C, Fontana A: Astrocytes of the brain
synthesize interleukin 3-like factors. | Immunol 1985,
135(6):4044-4047.

Konishi Y, Kamegai M, Takahashi K, Kunishita T, Tabira T: Produc-
tion of interleukin-3 by murine central nervous system neu-
rons. Neurosci Lett 1994, 182(2):271-274.

Moroni SC, Rossi A: Enhanced survival and differentiation in
vitro of different neuronal populations by some interleukins.
Int | Dev Neurosci 1995, 13(1):41-49.

Kamegai M, Konishi Y, Tabira T: Trophic effect of granulocyte-
macrophage colony-stimulating factor on central cholinergic
neurons in vitro. Brain Res 1990, 532(1-2):323-325.

Wen TC, Tanaka J, Peng H, Desaki |, Matsuda S, Maeda N, Fujita H,
Sato K, Sakanaka M: Interleukin 3 prevents delayed neuronal
deathin the hippocampal CAIl field. | Exp Med 1998,
188(4):635-649.

Maccioni RB, Mufoz |P, Barbeito L: The molecular bases of
Alzheimer's disease and other neurodegenerative disorders.
Arch Med Research 2001, 32(5):367-38I.

Maccioni RB, Otth C, Concha Il, Mufioz JP: The protein kinase
cdk5: structural aspects, roles in the neurogenesis and
involvement in Alzheimer's pathology. European | Biochem
2001, 268(6):1518-1527.

Yankner BA, Caceres A, Duffy LK: Nerve growth factor potenti-
ates the neurotoxicity of beta amyloid. Proc Natl Acad Sci USA
1990, 87(22):9020-9023.

LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G: The
Alzheimer's AP peptide induces neurodegeneration and
apoptotic cell death in transgenic mice. Nature Genet 1995,
9(1):21-30.

Paradis E, Douillard H, Koutroumanis M, Goodyer C, LeBlanc A:
Amyloid  peptide of Alzheimer's disease downregulates
Bcl-2 and upregulates Bax expression in human neurons. |
Neurosci 1996, 16(23):7533-7539.

Fernyhough P, Willars GB, Lindsay RM, Tomlinson DR: Insulin and
insulin-like growth factor | enhance regeneration in cultured
adult rat sensory neurons. Brain Res 1993, 607(1-2):117-124.
Iversen LL, Mortishire-Smith R, Pollack SJ, Shearman MS: The toxic-
ity in vitro of beta-amyloid protein. Biochem J 1995, 311 (Pt
1):1-16.

Weihl CC, Ghadge GD, Kennedy SG, Hay N, Miller R], Roos RP:
Mutant presenilin-1 induces apoptosis and downregulates
Akt/PKB. | Neurosci 1999, 19(13):5360-5369.

Guthridge MA, Stomski FC, Thomas D, Woodcock |M, Bagley CJ,
Berndt MC, Lopez AF: Mechanism of activation of the GM-CSF,
IL-3, and IL-5 family of receptors. Stem Cells 1998,
16(5):301-313.

Kannan Y, Moriyama M, Sugano T, Yamate |, Kuwamura M, Kagaya A,
Kiso Y: Neurotrophic action of interleukin 3 and granulocyte-
macrophage colony-stimulating factor on murine sympa-
thetic neurons. Neuroimmunomodulation 2000, 8(3):132-141.

Wei W, Wang X, Kusiak JW: Signaling events in amyloid 3-pep-
tide-induced neuronal death and Insulin-like growth factor |
protection. | Biol Chem 2002, 277(20):17649-17656.

Franke TF, Kaplan DR, Cantley LC: PI3K: downstream AKTion
blocks apoptosis. Cell 1997, 88(4):435-437.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

http://www.biomedcentral.com/1471-2202/8/82

Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME:
Akt phosphorylation of BAD couples survival signals to the
cell-intrinsic death machinery. Cell 1997, 91(2):231-41.

Del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G: Inter-
leukin-3-induced phosphorylation of BAD through the pro-
tein kinase Akt. Science 1997, 278(5338):687-689.

Buonanno A, Fischbach GD: Neuregulin and ErbB receptor sig-
naling pathways in the nervous system. Curr Opin Neurobiol
2001, 11(3):287-296.

Digicaylioglu M, Lipton SA: Erythropoietin-mediated neuropro-
tection involves cross-talk between Jak2 and NF-kappaB sig-
nalling cascades. Nature 2001, 412(6847):641-647.

Shaw S, Bencherif M, Marrero MB: Janus kinase 2, an early target
of alpha 7 nicotinic acetylcholine receptor-mediated neuro-
protection against Abeta-(1-42) amyloid. | Biol Chem 2002,
277(47):44920-44924.

DeGroot RP, Coffer P], Koenderman L: Regulation of prolifera-
tion, differentiation and survival by the IL-3/IL-5/GM-CSF
receptor family. Cell Signal 1998, 10(9):619-628.

Kinoshita T, Yokota T, Arai K, Miyajima A: Suppression of apop-
totic death in hematopoietic cells by signaling through the
IL-3/GM-CSF receptors. EMBO | 1995, 14(2):266-275.
Leverrier Y, Thomas |, Perkins GR, Mangeney M, Collins MK, Marvel
J: In bone marrow derived Baf-3 cells, inhibition of apoptosis
by IL-3 is mediated by two independent pathways. Oncogene
1997, 14(4):425-430.

Lin EY, Orlofsky A, Wang HG, Reed JC, Prystowsky MB: Al, a Bcl-
2 family member, prolongs cell survival and permits myeloid
differentiation. Blood 1996, 87(3):983-992.

Ito T, Deng X, Carr B, May WS: Bcl-2 phosphorylation required
for anti-apoptosis function. J Biol Chem 1997,
272(12):11671-11673.

Songyang Z, Baltimore D, Cantley LC, Kaplan DR, Franke TF: Inter-
leukin 3-dependent survival by the Akt protein kinase. Proc
Natl Acad Sci USA 1997, 94(21):11345-11350.

Ma W, Maric D, Li B, Hu Q, Andreadis JD, Grant GM, Liu QY, Shaffer
KM, Chang YH, Zhang L, Pancrazio JJ, Pant HC, Stenger DA, Barker
JL: Acetylcholine stimulates cortical precursor cell prolifera-
tion in vitro via muscarinic receptor activation and MAP
kinase phosphorylation. European | of Neurosci 2000,
12(4):1227-1240.

Alvarez A, Toro R, Céaceres A, Maccioni RB: Inhibition of tau phos-
phorylating protein kinase cdk5 prevents $-amyloid-induced
neuronal death. FEBS Letters 1999, 459(3):421-426.

Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Proven-
zano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC: Measure-
ment of protein using bicinchoninic acid. Anal Biochem 1985,
150(1):76-85.

Bradford MM: A rapid and sensitive method for the quantita-
tion of microgram quantitaties of protein utilizing the prin-
ciple of protein-dye binding. Anal Biochem 1976, 72:248-254.
Laemmli UK, Quittner SF: Maturation of the head of bacteri-
ophage T4. IV. The proteins of the core of the tubular poly-
heads and in vitro cleavage of the head proteins. Virology 1974,
62(2):483-499.

Mosmann T: Rapid colorimetric assay for cellular growth and
survival: Application to proliferation and cytotoxicity assays.
J Immunol Methods 1983, 65(1-2):55-63.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 11 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15018615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15018615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12935848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12935848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12935848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11169747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11169747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11169747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7643220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7643220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7643220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9005851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9005851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3934273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3934273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7715825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7715825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7715825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7793310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7793310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2282525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2282525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2282525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9705946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9705946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2174172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2174172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7704018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8922409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8922409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8481790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8481790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8481790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7575439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7575439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10377346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10377346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10377346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9766809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9766809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11124579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11124579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11124579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11882652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11882652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11882652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9038334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9038334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9346240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9346240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9346240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11399426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11399426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11493922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11493922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11493922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12244045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12244045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12244045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9794243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9794243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9794243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7835337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7835337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7835337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9053839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9053839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8562970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8562970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8562970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9115213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9115213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9326612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9326612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10526177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10526177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3843705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3843705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=942051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=942051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=942051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4432376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4432376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4432376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6606682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6606682
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Expression of functional IL-3 receptors in cortical neurons
	Neuroprotective effect of IL-3 on neurons treated with Ab1-40
	PI3K/Akt participates in IL-3-induced neuroprotection
	Participation of Jak2 in IL-3-induced protection
	Role of ERK in the neuroprotective action of IL-3
	IL-3 induces an increase in Bcl-2 expression

	Discussion
	Conclusion
	Methods
	Cell Cultures
	Preparation of the Ab fibrils
	Immunofluorescence
	Western blot analysis
	Viability assays
	Statistical analysis

	Abbreviations
	Authors' contributions
	Acknowledgements
	References

