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Abstract
Background: Many studies have shown that mitochondrial dysfunction, complex I inhibition in
particular, is involved in the pathogenesis of Parkinson's disease (PD). Rotenone, a specific inhibitor
of mitochondrial complex I, has been shown to produce neurodegeneration in rats as well as in
many cellular models that closely resemble PD. However, the mechanisms through which complex
I dysfunction might produce neurotoxicity are as yet unknown. A comprehensive analysis of the
mitochondrial protein expression profile affected by rotenone can provide important insight into
the role of mitochondrial dysfunction in PD.

Results: Here, we present our findings using a recently developed proteomic technology called
SILAC (stable isotope labeling by amino acids in cell culture) combined with polyacrylamide gel
electrophoresis and liquid chromatography-tandem mass spectrometry to compare the
mitochondrial protein profiles of MES cells (a dopaminergic cell line) exposed to rotenone versus
control. We identified 1722 proteins, 950 of which are already designated as mitochondrial
proteins based on database search. Among these 950 mitochondrial proteins, 110 displayed
significant changes in relative abundance after rotenone treatment. Five of these selected proteins
were further validated for their cellular location and/or treatment effect of rotenone. Among them,
two were confirmed by confocal microscopy for mitochondrial localization and three were
confirmed by Western blotting (WB) for their regulation by rotenone.

Conclusion: Our findings represent the first report of these mitochondrial proteins affected by
rotenone; further characterization of these proteins may shed more light on PD pathogenesis.

Background
Parkinson's disease (PD) is the second most common
neurodegenerative disorder after Alzheimer's disease
(AD) [1,2]. Pathological characteristics of PD include the
progressive and relatively selective loss of nigrostriatal

dopaminergic neurons and the deposit of protein aggre-
gates in the remaining neurons called Lewy bodies (LBs)
[3]. The mechanisms underlying PD development and LB
formation are not fully characterized, although increasing
evidence suggests that mitochondrial dysfunction, oxida-
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tive damage, excitotoxicity, and inflammation are contrib-
uting factors [4,5]. Of these potential mechanisms,
mitochondrial dysfunction has been studied most exten-
sively. It has been reported by many groups that there is a
partial inhibition (20–40%) of respiratory chain complex
I activity in PD patients [6-8]. The importance of complex
I inhibition is further substantiated by the fact that mito-
chondrial toxicants, e.g. 1-methyl-4-phenyl-1,2,3,6-tet-
rahydropyridine (MPTP) [9], a contaminant of a synthetic
heroin, and rotenone [10], a plant-derived pesticide, reca-
pitulate parkinsonism in animals that closely resembles
human PD.

Rotenone is a lipophilic compound that freely crosses cell
membranes and accesses cytoplasm and mitochondria. Its
application in PD research has grown exponentially over
the last few years largely due to the discovery of its ability
to produce many features of PD in rats, including devel-
opment of α-synuclein-positive cytoplasmic inclusions
similar to LBs in human PD in the remaining nigral neu-
rons [11]. In vitro, rotenone appears to produce many cel-
lular effects, e.g. caspase 3 activation (and apoptosis),
change in mitochondrial membrane potential, accumula-
tion and aggregation of α-synuclein and ubiquitin, oxida-
tive damage, and endoplasmic reticulum stress [12-16].

Although many of the findings observed in rotenone
induced cellular and animal models of PD are also present
in the brains of patients with PD, the precise mechanisms
through which complex I dysfunction might produce neu-
rotoxicity are as yet unknown. One of the major issues
centers on what happens after complex I is inhibited by
rotenone. While this question has been approached thus
far by testing one hypothesis at a time, the rapidly emerg-
ing field of proteomics offers great potential to globally
identifying and characterizing mitochondrial proteins
involved in these processes in a nonbiased manner.
Indeed, in the last few years, we, as well as others, have
already started to utilize this technology to extensively
characterize the proteins interacting with α-synuclein [17]
and DJ-1 [18,19].

Here, we employed a recently introduced proteomics
technology called SILAC (stable isotope labeling by
amino acids in cell culture) [20] combined with MudPIT
(multidimensional protein identification technology)
[21], including SDS-PAGE (polyacrylamide gel electro-
phoresis) and liquid chromatography (LC), and mass
spectrometry (MS) for protein identification as well as
quantification in dopaminergic (DAergic) MES cells
exposed to rotenone vs. controls. MES cells are a DAergic

Purity evaluation of isolated mitochondria by WBFigure 1
Purity evaluation of isolated mitochondria by WB. Equal amounts of protein (20 μg for cytochrome C and nucleolin, 5 
μg for tubulin) were loaded onto an 8–16% SDS-PAGE and analyzed by WB with indicated antibodies against marker proteins 
from mitochondria, cytosol, or nucleus. Antibodies against α-tubulin and nucleolin were used as markers for cytosolic and 
nuclear fractions, respectively. Antibodies directed against cytochrome C were used as markers for mitochondrial fraction.
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cell line that have been demonstrated to form cytoplasmic
LB-like inclusions after rotenone treatment [17]. In this
study, however, only mitochondrial proteins, isolated by
sucrose-gradient centrifugation, were studied. A total of
1864 proteins were identified with quantitative proteom-
ics analysis; of those, 1722 proteins were identified as
mitochondrial protein or mitochondria-associated pro-
teins and 110 of which displayed significant changes in
relative abundance after rotenone treatment. A subset of
these proteins was further validated by confocal micros-
copy and WB to confirm their mitochondrial localization
as well as regulation by rotenone. As none of these pro-
teins have been associated with rotenone toxicity previ-
ously, our findings represent the first report of these novel
mitochondrial proteins affected by rotenone.

Results
Evaluation of the purity of mitochondrial isolation
To minimize false positive results in identifying mito-
chondrial proteins, it is critical to isolate mitochondria
with minimal contamination of other organelles. To
achieve this goal, we first used an optimized purification
procedure, allowing for production of high-purity mito-
chondria from MES cells. This procedure involved three
differential centrifugations followed by sucrose density
gradient centrifugation using three sucrose densities. The
purity of mitochondria was assessed by following the rel-
ative distribution of various cellular markers, including
cytochrome C for mitochondria, α-tubulin for cytosol,
and nucleolin for nucleus. The results, shown in Figure 1,
demonstrate that mitochondrial protein cytochrome C
was highly enriched in the purified mitochondrial frac-
tion while the cytosolic protein α-tubulin and nuclear
protein nucleolin were decreased to near or below the
limit of detection in the mitochondrial fraction.

Identification of mitochondrial proteome in MES cells
Pure mitochondrial preparations were isolated from com-
bined extracts of cells exposed to 20 nM rotenone (in L-
[13C6]Arg) or vehicle (in L- [12C6]Arg) for 3 days as
described previously [22]. SDS-PAGE combined with two-
dimensional LC followed by tandem MS (MS/MS) analy-
sis identified a total of 1864 proteins (error rate < 0.05)
with more than 2 peptides [see Additional file 1]. These
results were a combination of two independent experi-
ments. Among the identified proteins, 228 (12.2%) were
previously identified as mitochondrial proteins based on
the protein names in the database. One obvious question
is how many of the remaining proteins were also mito-
chondrial proteins? To address this, we searched all the
identified proteins against the most comprehensive mito-
chondrial proteome database, MitoP2, which combines
information regarding the genetic, functional and patho-
genetic aspects of nuclear-encoded mitochondrial pro-
teins. Besides data for proteins known to be

mitochondrial in origin, MitoP2 also provides informa-
tion about putative mitochondrial proteins identified by
homology search tools. Each protein entry is annotated
with function, chromosomal localization, subcellular
localization, homologs and associated confidence values,
GO (Gene Ontology) number, applicable OMIM (Online
Mendelian Inheritance in Man) [23], literature references,
and cross-references to external databases. Our search
results showed that 950 out of 1864 (including 228 pro-
teins that have been previously identified as mitochon-
drial) proteins were found in MitoP2 [see Additional file
1]. The remaining proteins were further searched against
SWISS-Prot database http://www.expasy.org/sprot/ for
subcellular localization or function. 142 proteins were
"localized" to cytoplasm, nucleus, ER, golgi, lysosome,
microsome, peroxisome or synaptosome and thus consid-
ered likely contaminants. The remaining 772 proteins
showed unknown functions or unknown localization.

Proteins affected by rotenone treatment
We, as well as others, have established that rotenone not
only induces cell death but also replicates many cellular
processes, e.g. mitochondrial dysfunction and oxidative
stress [10,24], which occur in human PD. Like our previ-
ous studies [17,18,25], MES cells treated with rotenone at
20 nM demonstrated significant cellular toxicity, losing
about 50% of cells by day 3 after the treatment started
(Trypan blue assay and MTT assay; data not shown). We
used 3-day rotenone treatment regimen because our early
investigations have indicated that MES cells treated with
rotenone for three days demonstrated cytoplasmic LB-like
inclusions immunoreactive to anti-α-synuclein [17], a
phenomenon not seen in cells exposed for 1 or 2 days.
Quantitative analysis of the mitochondrial protein pro-
files identified 311 proteins that displayed changes in rel-
ative abundance in MES cells treated with rotenone vs.
controls, using a 2-fold increase or decrease over controls
as significant. The results were expressed as combined
ASAPRatio (average ratio ± SE) obtained from two inde-
pendent experiments. By this criterion, a total of 156 and
155 proteins showed a significant increase or decrease,
respectively, after rotenone treatment. Of the 311 pro-
teins, 110 could be found in the MitoP2 database. These
proteins are listed in Table 1 where those that have been
implicated in the cellular processes relevant to neurode-
generative disease or rotenone pathogenesis are noted.
Figure 2 shows a pie chart summarizing the functional cat-
egories of the 110 proteins. Major classes of proteins
included those related to transport, metabolism and sig-
nal transduction. Notably, almost a third of proteins
listed in Table 1 are without known function.
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Validation of a subset of mitochondrial proteins affected 
by rotenone
While all proteins listed in Table 1 are considered mito-
chondrial proteins based on the MitoP2 database, not all
of them have been validated biochemically or morpho-
logically. Also, as proteomics identification of candidate
proteins can be wrong owing to current incorrect or
incomplete database, candidate proteins need to be vali-
dated with alternative means not only for their identifica-
tion but also for their quantification. It is obviously
impractical to validate all the proteins listed in Table 1.
Thus, we chose 5 proteins from Table 1 for their mito-
chondrial localization as well as quantitative regulation
by rotenone; these proteins are: mitogen activated protein
kinase kinase 2 (MAP2K2), sacsin, sonic hedgehog
(SHH), sorting nexin 1 (SNX1), and vesicle-associated
membrane protein 3 (VAMP3). This selection was based
on the following rationale: 1) all of these proteins were

identified by multiple peptides and also have commer-
cially available antibodies; 2) the selected proteins dis-
played quantitative changes in response to rotenone and
were thus more likely to be biologically interesting and
less likely to be nonspecific contaminating proteins; and
3) these proteins are involved in cellular processes that
might be important in PD pathogenesis, even though
none of them have been linked to PD directly to date.

To confirm mitochondrial localization of these proteins,
we performed double immunostaining of each of the can-
didates along with cytochrome C, followed by confocal
analysis. Of the antibodies tested, only two (SHH and
SNX1), shown in Figure 3, demonstrated enough sensitiv-
ity and specificity for immunocytochemistry. SHH was
localized to the cytoplasm as well as in the mitochondria
but excluded from the nuclei while SNX1 was diffusely
localized in the cytoplasm, mitochondria and nuclei.
Notably, although the staining patterns of these proteins
were different from each other, both of them co-localized
with cytochrome C to some extent in the mitochondria. It
should be emphasized that it is not surprising to see the
presence of these proteins in other cellular compartments,
as neither of the candidates is synthesized within the
mitochondria.

To validate quantitative proteomics results, three sets of
mitochondrial proteins were isolated from three inde-
pendent samples. The cytosolic fraction was also included
for comparison. The results of these experiments are sum-
marized in Table 2. In the mitochondrial fraction, sacsin
and SNX1 levels were significantly decreased by rotenone
exposure, while VAMP3 levels were significantly
increased. These results were in good agreement with our
quantitative proteomics results (Table 2). Sacsin and
VAMP3 were also present in the cytosolic fraction of both
rotenone and vehicle-treated cells, while SNX1 was not
detectable (Figure 4). We did not observe any significant
change in the relative abundance of either sacsin or
VAMP3 in the cytosolic fraction following rotenone expo-
sure. Antibody against MAP2K2 was not sensitive/specific
enough when assessed by WB. In the case of SHH anti-
body, it responded to immunostaining but showed mul-
tiple bands in immunoblotting, which could be biological
but made it impossible to compare with the proteomic
results. Representative WB results for the other three pro-
teins are shown in Figure 4.

Discussion
In this study, we combined SILAC labeling, MudPIT sepa-
ration of protein/peptide, including SDS-PAGE, and tan-
dem MS to characterize the mitochondrial proteome of
MES cells as well as the alterations in the mitochondrial
proteome in the presence of rotenone. Several major find-
ings have been found from this investigation, including:

Functional classification of mitochondrial proteins with rela-tive abundance changes after rotenone treatmentFigure 2
Functional classification of mitochondrial proteins 
with relative abundance changes after rotenone 
treatment. 110 proteins identified in the mitochondrial 
database MitoP2 and having 2-fold relative abundance 
changes after rotenone treatment were classified into the fol-
lowing categories: folding degradation stability, metabolism, 
morphology, respiratory chain, protein synthesis, signaling, 
transport, miscellaneous, and unknown functions. For a pro-
tein with multiple functions, it is assigned to the one that is 
best known. While this chart reflects the group as a whole, 
the distribution was the same regardless of response to 
rotenone. Functional classification of proteins for each of the 
four groups shown in Table 1 (ASAPRatio = 0, ≥ 2.0, ≤ 0.5, 
or = 999) resulted in distributions that were not different 
from each other (χ2 had P > 0.05 for the four groups).
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Table 1: Mitochondrial proteins affected by rotenone treatment

Increased ≥ two-fold after rotenone treatment

protein Description ASAPRatio* Ref(s) for relevance to 
neurodegenerative disease

IPI00319790 Dnaj (Hsp40) homolog, subfamily C, member 7 0

IPI00331385 Mdj11

IPI00371053 Similar to dnaj (Hsp40) homolog, subfamily C, member 7

IPI00128647 Crumbs-like protein 1 precursor 0

IPI00204778 (IPI00129395) Large neutral amino acids transporter small, subunit 1 0

IPI00331577 Solute carrier family 7 (Cationic amino acid transporter y+ system) member 5

IPI00223004 Peroxisomal CA-dependent solute carrier homolog 0

IPI00208799 Solute carrier organic anion transporter family member 1A5 0

IPI00130878 Voltage-dependent T-type calcium channel alpha-1H subunit 0

IPI00388311 Ensembl_locations(Chr-bp):10-14622136

IPI00189595 Voltage-dependent T-type calcium channel alpha-1H subunit

IPI00213584 Alanine – glyoxylate aminotransferase 2 mitochondrial precursor 0

IPI00365283 Similar to capping protein beta subunit, isoform 2 0

IPI00406800 Splice isoform 1 of P47757 F-actin capping protein beta subunit

IPI00113992 GDP-mannose pyrophosphorylase B homolog 0

IPI00153603 28S ribosomal protein s18c, mitochondrial precursor 0

IPI00372556 Similar to NG26 0

IPI00130339 Protein BAT5

IPI00123138 Leucyl-trna synthetase 0

IPI00116966 Asparagine synthetase 0

IPI00406634 Ensembl_locations(Chr-bp):8-124923273 0 [48]

IPI00170128 (IPI00327108) Paraplegin

IPI00134390 Microsomal dipeptidase precursor 0

IPI00200392 SMHS2 0

IPI00177183 RIKEN cDNA 4833427E09 gene

IPI00116913 Laminin alpha-5 chain precursor 0

IPI00331507
(IPI00325517)

Cullin homolog 5 0

IPI00135708 Dual specificity mitogen-activated protein kinase kinase 2 0 [49]

IPI00407256 Mitogen activated protein kinase kinase 2

IPI00231331 Dual specificity mitogen-activated protein kinase kinase 2

IPI00118384 14-3-3 protein epsilon 0

(IPI00325135)

IPI00309516 Hedgehog-interacting protein 0

IPI00318010 Polycystic kidney disease 1-like 2 0

IPI00368473 Nuclear mitotic apparatus protein 1 0

IPI00371741 Similar to zinc finger protein TZF-L 0

IPI00408182 Tmc3 protein 0

IPI00222063 Weakly similar to hypothetical 71.7 kda protein 0

IPI00222264 HRIHFB2003 protein homolog 0

IPI00366079 Similar to expressed sequence AL022641 0.02

IPI00163011 Thioredoxin domain containing protein 5 precursor

IPI00396730 Growth differentiation factor 10 0.1 ± 0.02

IPI00165799 UBX domain-containing protein 2 0.12 ± 0.1

IPI00371952 Similar to RIKEN cDNA 1300013G12

IPI00129470 Ran gtpase-activating protein 1 0.13 ± 0.03

IPI00319167 Hydrocephalus inducing 0.13 ± 0.05

IPI00310128 Tissue inhibitor of metalloproteinase 2 0.15 ± 0.02

IPI00132801 Glucagon-like peptide 1 receptor precursor 0.22 ± 0.05

IPI00311576 Testis expressed gene 10 0.24 ± 0.08

IPI00400137 RIKEN cDNA 1200011N24 0.27 ± 0.05

IPI00403336 MKIAA0567 protein

IPI00117657 Dynamin-like 120 kda protein, mitochondrial precursor

IPI00341975 RIKEN cDNA 6430598A04 gene 0.27 ± 0.09

IPI00317309 Annexin A5 0.27 ± 0.12 [50]
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IPI00231954 6-phosphofructokinase, type C 0.31 ± 0.06

IPI00113824 Basement membrane-specific heparan sulfate proteoglycan core protein precursor 0.33 ± 0.09

IPI00132276 (IPI00210971) Vesicle-associated membrane protein 3 0.34 ± 0.07

IPI00210089 Voltage-gated sodium channel 0.35 ± 0.06 [51]

IPI00110560 Talin 1 0.36 ± 0.06

IPI00362014 similar to talin

IPI00191107 Similar to mitochondrial ribosomal protein S21 0.37 ± 0.16

IPI00391281 Ensembl_locations(Chr-bp):2-190609002

IPI00127069 Sideroflexin 2 0.38 ± 0.05 [52]

IPI00400079 Splice isoform 1 of Q9JLT4 Thioredoxin reductase 2, mitochondrial precursor 0.4 ± 0.19

IPI00124699 Thioredoxin reductase 2

IPI00403407 Adult male stomach cDNA, RIKEN full-length enriched library, clone:2210009O12 
product:thioredoxin reductase 2, full insert sequence

IPI00350590 Splice isoform 4 of Q9JLT4 Thioredoxin reductase 2, mitochondrial precursor

IPI00207072 NADH-ubiquinone oxidoreductase 13 kda-A subunit, mitochondrial precursor 0.41 ± 0.13

IPI00330862 Villin 2 0.42 ± 0.07

IPI00111460 Williams-Beuren syndrome chromosome region 16 protein homolog 0.46 ± 0.12

IPI00189798 Similar to Williams-Beuren syndrome chromosome region 16 homolog

IPI00112935 Serine hydroxymethyltransferase 0.47 ± 0.06 [53]

IPI00131577 Heme oxygenase 1 0.47 ± 0.12 [54]

IPI00177038 Actin-like protein 2 0.47 ± 0.17

IPI00400012 Similar to Actin-like protein 2 (Actin-related protein 2)

IPI00362072 Similar to actin-related protein 2

IPI00364385 Similar to RIKEN cDNA 5730406I15 0.5 ± 0.19

IPI00228236 Microsomal signal peptidase 25 kda subunit

Decreased ≥ two-fold after rotenone treatment

IPI00212082 Ensembl_locations(Chr-bp):1-153887103 2.03 ± 0.62

IPI00368435 Similar to Ten-m4

IPI00157497 Ten-m4

IPI00351867 Odd Oz\ten-m homolog 4

IPI00210503 Long-chain-fatty-acid – coa ligase 4 2.04 ± 0.44

IPI00403180
(IPI00378474)

Similar to mitochondrial isoleucine trna synthetase 2.06 ± 0.22

IPI00408243 Similar to single-stranded DNA binding protein 2.07 ± 0.19

IPI00124980 Prolactin regulatory element-binding protein 2.09 ± 0.48

IPI00229040 Retinol dehydrogenase 13 2.15 ± 2.41

IPI00198369 Sorting nexin 1 2.21 ± 0.6

IPI00125441 Sorting nexin 1

IPI00124120 Sacsin 2.26 ± 0.38

IPI00373012 Similar to sacsin

IPI00364603 Similar to RNA-binding protein EWS 2.33 ± 0.31

IPI00191745 Similar to coproporphyrinogen oxidase 2.38 ± 0.41

IPI00192034
(IPI00114375)

Dihydropyrimidinase related protein-2 2.46 ± 0.44

IPI00285485 Protein kinase C-binding protein NELL2 precursor 2.57 ± 0.61

IPI00136067 Jagged 2 precursor 2.73 ± 0.46

IPI00365920 Jagged 2

IPI00311509 Aladin 2.9 ± 0.64

IPI00205182 Interleukin-6 receptor alpha chain precursor 3.03 ± 0.48

IPI00206288 interleukin 6 receptor

IPI00344360 Transcription termination factor, mitochondrial 4 ± 1.42 [55]

IPI00370029 Similar to NG28 4.43 ± 0.97

IPI00378753 Similar to aminopeptidase N 4.68 ± 0.99

IPI00405386 T-complex protein 10a 5.36 ± 0.87

IPI00230453 Similar to VIP36-like protein precursor (Lectin, mannose-binding 2-like) 5.45 ± 0.6

IPI00357887 Similar to lectin, mannose-binding 2-like

IPI00123314 Sonic hedgehog protein precursor 5.47 ± 0.98 [56]

IPI00196054
(IPI00125256)

C-C chemokine receptor type 2 6.4 ± 1.67

IPI00353420 Cytoskeletal protein 7.56 ± 1.41

Table 1: Mitochondrial proteins affected by rotenone treatment (Continued)
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IPI00388450 Protein tyrosine phosphatase, receptor type, U 8 ± 1.03

IPI00338565 Mutant fibrillin-1 8.39 ± 2.97

IPI00122438 Fibrillin 1 precursor

IPI00229434 Apoptosis stimulating of p53 protein 2 38.26 ± 
2.99

IPI00269076 Adenylate kinase 2 999

IPI00214038
(IPI00118120)

Myosin Va 999

IPI00393437 Ensembl_locations(Chr-bp):8-80002855

IPI00405881 Ensembl_locations(Chr-bp):9-77611564

IPI00331016 Similar to SEC24 related gene family, member B 999

IPI00372727 Similar to Protein transport protein Sec24B (SEC24-related protein B)

IPI00309437 ALDR protein 999

IPI00387535 Fatty acid coenzyme A ligase, long chain 3 999

IPI00169772 Long-chain-fatty-acid – coA ligase 3

IPI00330207 Splicing factor 3B subunit 1 999 [57]

IPI00366952 Splicing factor 3b, subunit 1, 155kd

IPI00118235 Mitochondrial 60S ribosomal protein L3 999

IPI00115094 [3-methyl-2-oxobutanoate dehydrogenase [lipoamide]] kinase, mitochondrial precursor 999

IPI00409229 Ensembl_locations(Chr-bp):7-120047962

IPI00204344 [3-methyl-2-oxobutanoate dehydrogenase [lipoamide]] kinase, mitochondrial precursor

IPI00324180 Breast cancer type 2 susceptibility protein homolog 999

IPI00366614 Breast cancer susceptibility protein BRCA2

IPI00118021 Gtrgeo22 999

IPI00313998 Sulfide:quinone oxidoreductase, mitochondrial precursor 999

IPI00357889 Similar to 28S ribosomal protein S9, mitochondrial precursor (MRP-S9) 999

IPI00132700 39S ribosomal protein L35, mitochondrial precursor 999

IPI00189766 Membrane associated progesterone receptor component 1 999

IPI00208648 Disks large-associated protein 2 999

IPI00117912 Semaphorin 5B precursor 999

IPI00400269 Hypothetical protein

IPI00365296 Similar to sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane 
domain (TM) and short cytoplasmic domain, (semaphorin) 5B

IPI00403907 Sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain 
(TM) and short cytoplasmic domain

IPI00127131 Osa1 nuclear protein 999

IPI00113214 Ubiquitin carboxyl-terminal hydrolase 5 999 [58]

IPI00118333 RW1 protein 999

IPI00362105 Similar to proteasome 26S ATPase subunit 6 999

IPI00125971 26S protease regulatory subunit S10B

IPI00231757 Proteasome (prosome, macropain) subunit, alpha type 2 999 [59]

IPI00404117 Proteasome subunit alpha type 2

IPI00318970 Proteasome (Prosome, macropain) subunit, alpha type 2

IPI00337930 RIKEN cDNA 4930432B04 999

IPI00203604 Brain protein 44-like protein 999

IPI00402961 Ensembl_locations(Chr-bp):12-106426680

IPI00124292 Brain protein 44-like protein

IPI00406403 Ensembl_locations(Chr-bp):Un_random_NT_060620-5611 999

IPI00381837 similar to putative pheromone receptor

IPI00372549 Similar to MHC class I cell surface glycoprotein 999

IPI00367751 Similar to pecanex 1 999

IPI00365997 Similar to PHD finger protein 2 999

IPI00114424 RIKEN cDNA D930036F22 gene 999

IPI00326141 Augmenter of liver regeneration 999

IPI00191045 Similar to zinc finger protein 296 999

IPI00210183 Nuclear receptor binding factor-1 999

IPI: International protein index. ASAP Ratio: Automated Statistical Analysis of Protein abundance ratio. The results are expressed as 12C (DMSO)/13C (Rotenone). *: Ratio was 
expressed as 0 and 999 when only the 13C- and 12C-labeled peptides were found, respectively, in the sample. Proteins sharing the same peptides but with different protein 
identification numbers are listed in one cell.

Table 1: Mitochondrial proteins affected by rotenone treatment (Continued)
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Co-localization of SHH and SNX1 with cytochrome C in MES cellsFigure 3
Co-localization of SHH and SNX1 with cytochrome C in MES cells. MES cells were fixed and double stained with 
antibodies against cytochome C (green) and SHH or SNX1 (red). The images were visualized with a confocal microscope. 
Merged images are shown in yellow when two antibodies are co-localized.

Table 2: Summary of validation by WB and immunolocalization

Protein IPI Function ASAP Ratio WB of mitochondria WB of cytosol Co-localized with cyt C*

MAP2K2 00135708
00407256
00231331

Signaling 0 Low sensitivity Low sensitivity N/A

Sacsin 00124120
00373012

Folding degradation stability 2.26 ± 0.38 1.77 ± 0.09 0.82 ± 0.02 N/A

SNX1 00198369
00125441

Transport 2.21 ± 0.6 1.51 ± 0.03 Not detected Yes

SHH 00123314 Signaling 5.47 ± 0.98 Low specificity Low specificity Yes
VAMP3 00132276

(00210971)
Transport 0.34 ± 0.07 0.48 ± 0.13 1.16 ± 0.15 N/A

*: Among the five candidate proteins, only antibodies against SHH and SNX1 demonstrated enough sensitivity and specificity for 
immunocytochemistry.
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1) a total of 1722 proteins were identified as mitochon-
drial protein or mitochondria-associated proteins, which
is the most comprehensive study of the mitochondrial
proteome so far; 2) quantitative analysis of the mitochon-
drial protein profiles identified 311 proteins that dis-
played changes in relative abundance in MES cells treated
with rotenone vs. controls. Among these, 110 proteins
have been represented in the MitoP2 database as mito-
chondrial proteins; and 3) a subset of novel mitochon-
dria-associated proteins affected by rotenone was
validated by confocal microscopy and WB to assess their
localization in the mitochondria as well as quantitative
changes as determined by quantitative proteomics.

The first achievement of this study is the comprehensive
survey of mitochondrial proteins in MES cells, a DAergic
cell line widely used for the investigation of PD pathogen-

esis [26,27]. Not only does extensive characterization of
the mitochondrial proteome expand current knowledge
regarding the profiles of mitochondrial proteins, it also
supplies the necessary information to appropriately inter-
pret the mechanisms of rotenone-induced mitochondrial
dysfunction in PD. Comparing the results reported in the
literature [25,28-30], the current analysis is a much deeper
analysis into the mitochondrial proteome in a neuronal
cell line, largely owing to better sample separation by
SDS-PAGE and LC, i.e. extensive fractionation prior to MS
analysis. This study, using only 80–100 μg of mitochon-
drial proteins as the starting material, followed by simple
LC-MS/MS analysis of 10 gel slices in two independent
experiments, afforded the conclusive identification of
1864 proteins. Thus, this simple technology seems to be
the most effective method of identifying a large number of
proteins from different cell types. Furthermore, this is the

Validation of rotenone-affected mitochondrial proteins by WBFigure 4
Validation of rotenone-affected mitochondrial proteins by WB. Purified mitochondria were isolated from MES cells 
treated with 20 nM rotenone or vehicle (DMSO), respectively. Equal amounts of mitochondrial proteins (20 μg) were loaded 
onto an 8–16% or 4–15% SDS-PAGE and analyzed by WB. The WB ratio in mitochondria and cytoplasm was calculated as 
DMSO/rotenone (D/R) from 3 batches of independent experiments and is shown in Table 2.
Page 9 of 14
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first large-scale study where the mitochondrial proteome
from the MES cell line was carefully characterized, provid-
ing organelle-specific proteomics information for these
cells relevant to PD pathogenesis. Among those proteins
identified, approximately 50% did not have an apparent
orthologue in the MitoP2 database. Several reasons are
likely responsible for this absence in the database. First,
the current database is still far from complete and most of
the missing proteins are hypothetical proteins or proteins
with unknown functions. Second, although the purifica-
tion protocols for mitochondria have been refined by sev-
eral groups over many years, the exquisite sensitivity of
modern mass spectrometers has revealed that it is very dif-
ficult, if not impossible, to purify these or any other
organelles to homogeneity. In our study, a small portion
of those proteins (7.5%) was considered as contaminated
from cytoplasm, nucleus, ER, golgi or lysosome, based on
the functional interpretation of SWISS-Prot database.
While the sucrose gradient ultracentrifugation technique
we used to isolate the mitochondrial fraction is widely rec-
ognized as the technique producing least contamination
[30,31], it remains likely that at least some of these pro-
teins, particularly ER proteins, were co-localized in the
mitochondrial fraction as contaminants. It is also possible
that some of the "contaminating" proteins are partially
localized in mitochondria or interact with other mito-
chondrial proteins. More detailed studies such as
immuno-colocalization experiments would be required
to distinguish these different possibilities.

Next, to better understand the mechanisms underlying
mitochondrial dysfunction induced by rotenone, we used
SILAC to compare the protein profiling of mitochondria
in rotenone-treated MES cells versus controls. With SILAC
methods, a total of 156 and 155 proteins showed signifi-
cant increase or decrease after rotenone treatment. Among
these, 53 and 57 proteins have been present in the MitoP2
database as mitochondrial proteins respectively. One of
the major caveats of proteomics identification of proteins
relates to the fact that proteins are inferred by the peptide
sequence based on databases, which are currently incom-
plete. Thus, any given identification, with or without
quantitative changes, should be considered provisional
until it can be validated via alternative means. It is obvi-
ously impractical to validate the entire list of proteins
listed in Additional file 1 or even Table 1; to this end, we
validated five candidate proteins (sacsin, SNX1, VAMP3,
MAP2K2 and SHH) in terms of their cellular location as
well as quantitative alternation after rotenone treatment.
Two of these proteins, SHH and SNX1, were co-localized
to mitochondria convincingly by confocal investigation.
Three of these proteins, SNX1, sacsin and VAMP3, when
assessed by WB analysis, showed good agreement with
our SILAC results. It should be noted that there are many
caveats associated with WB and immnocytochemistry,

such that a negative result by these assays does not neces-
sarily negate what was observed by quantitative proteom-
ics.

The biological importance of the three validated proteins
in PD or rotenone pathogenesis is largely unknown. A
potential role of sacsin has been implicated in an early
onset neurodegenerative disorder, autosomal recessive
spastic ataxia of Charlevoix-Saguenay (ARSACS), which
occurs with a high prevalence in the Charlevoix-Saguenay-
Lac-Saint-Jean (CSLSJ) region of Quebec [32]. Sacsin con-
tains three regions with Hsp90 subdomains that have sim-
ilarity to each other and the protein product of an
Arabidopsis thaliana ORF. The presence of heat shock
domains in the sacsin protein suggests its possible func-
tion in chaperone-mediated protein folding [32,33].
SNX1 is a protein that binds to the cytoplasmic domain of
plasma membrane receptors [34]. It has been proposed to
be associated with early endosomes and the regulation of
endocytic trafficking of plasma membrane proteins in
early endosomes such as epidermal growth factor receptor
(EGFR) [35] and protease-activated receptor-1 (PAR1)
[36]. VAMP3, an early endosomal vesicular soluble N-
ethylmaleimide-sensitive protein attachment protein
receptor (v-SNARE), is a membrane trafficking protein of
a constitutively recycling pathway [37]. Although neither
SNX1 nor VAMP3 has been linked to PD pathogenesis
thus far, it has been clearly demonstrated by others that
dysfunctions of intracellular trafficking and lysosomal
degradation are involved in PD pathogenesis [38,39].
Finally, it needs to be pointed out that this investigation is
limited in that we have only compared the protein pro-
files in MES cells treated with rotenone for three days,
when LB like inclusions are found [17]. It would be
important in future experiments to examine earlier time
points, revealing factors/pathways leading to cell death
prior to formation of LB like inclusions.

Conclusion
In summary, we have employed SILAC, combined with
1D SDS-PAGE, to characterize numerous mitochondrial
proteins in MES cells, representing the most extensive pro-
filing study of mitochondrial proteins to date. Further-
more, we identified 110 mitochondrial proteins affected
by rotenone. Finally, we have confirmed 2 of these pro-
teins localizing in the mitochondria and quantitatively
validated 3 of these proteins by WB. Detailed characteriza-
tion of these rotenone-responsive novel proteins will
likely facilitate a clearer understanding of PD pathogene-
sis.

Methods
Reagents and antibodies
All reagents were purchased from Sigma (St. Louis, MO)
unless otherwise specified. Antibodies used included:
Page 10 of 14
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mitochondrial marker anti-cytochrome C (BD Pharmi-
gen, San Diego, CA); cytosolic marker anti-α-tubulin
(Abcam, Cambridge, MA); nuclear marker anti-nucleolin
(Novus, Littleton, CO); novel mitochondrial proteins
anti-sacsin (BD Pharmingen); anti-sorting nexin protein 1
(SNX1, Proteintech, Chicago, IL); anti-vesicles associated
membrane protein 3 (VAMP3, Novus); anti-sonic hedge-
hog protein (SHH, GeneTex, San Antonio, TX); and anti-
mitogen activated protein kinase kinase 2 (MAP2K2,
Abgent, San Diego, CA).

Cell culture and treatment
A DAergic neuronal cell line, MES (a gift from Dr. Le at
Baylor College of Medicine in Houston), was used in this
study, which expresses most features of human DAergic
neurons and has been widely used in PD-related experi-
ments [26,40,41]. Detailed methods for culturing MES
cells have been previously described by us [26]. In order
to identify the potential mediators of mitochondrial dys-
function induced by rotenone, a newly developed quanti-
tative proteomics technique termed SILAC was used [42].
Briefly, parallel MES cultures were grown in identical cul-
ture media except for one essential amino acid, L-arginine:
the first media contained the "light" (L- [12C6]Arg) (Cam-
bridge Isotope Laboratories, Andover, MA) isotope and
the other contained the "heavy" (L- [13C6]Arg) isotope.
After being cultured for at least five generations (to
achieve near 100% incorporation of arginine [42]), L-
[13C6]Arg- and L- [12C6]Arg-labeled MES cells were treated
with 20 nM rotenone in DMSO or DMSO alone, respec-
tively, for another 3 days.

Mitochondrial Isolation and WB
Mitochondria were isolated as described previously with
minor modifications [28]. After treatment, equal amounts
of L- [13C6]Arg- and L- [12C6]Arg-labeled MES cells were
combined and collected by centrifugation at 260 × g for
10 min at 4°C. The cell pellets were washed twice with ice-
cold PBS (pH 7.4) and resuspended with 10 volumes of
isolation buffer (20 mM HEPES-KOH, pH 7.5, 10 mM
KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM
DTT, 0.25 M sucrose, and a mixture of protease inhibi-
tors). After 10-min incubation on ice, the cells were
homogenized in a glass Dounce homogenizer (Wheaton,
Milville, NJ). The homogenates were centrifuged twice at
650 × g for 10 min at 4°C to remove nuclei and unbroken
cells. The postnuclear supernatants were centrifuged at
12,500 × g for 25 min at 4°C, and the pellets were resus-
pended carefully in mitochondrial isolation buffer and
centrifuged again at 12,500 × g for 25 min. The heavy
membrane fraction was then resuspended in isotonic
sucrose buffer (0.25 M sucrose, 1 mM EDTA, and 10 mM
Tris-HCl, pH 7.4), layered on a 1.0/1.5 M discontinuous
sucrose gradient, and centrifuged at 60,000 × g for 20 min
at 4°C. The mitochondria collected from the phase

between the 1.0 and 1.5 M sucrose gradient were diluted
in isolation buffer, and centrifuged again at 15,000 × g for
20 min to pellet the mitochondria. Purified mitochon-
drial pellets were washed with isolation buffer, solubi-
lized in RIPA buffer (50 mM Tris-HCl, pH 8.0, 150 mM
NaCl, 0.1% NP-40, 0.05% SDS, 0.5% deoxycholate
sodium, and a mixture of protease inhibitors) and centri-
fuged at 14,000 × g for 10 min. The supernatant was col-
lected, and protein concentration was determined by a
Micro-BCA protein concentration determination kit
(Pierce, Rockford, IL). For WB, equal amounts of protein
of various subcellular fractions were loaded in each lane
of an 8–16% Tris/glycine/SDS gel (Bio-rad, Hercules, CA).
After gel electrophoresis and protein transfer, the mem-
branes were probed with various primary and correspond-
ing secondary antibodies against marker proteins from
different cellular compartments. Immunoreactivity was
detected with an ECL method (PerkinElmer, Boston, MA).

SDS-PAGE and in-gel digestion with trypsin
A total of 100 μg mitochondrial protein was loaded on an
8–16% Tris/glycine/SDS gel (Bio-rad) and run at 100 V for
10 min, then 160 V for 1 h. The gel was stained with
Coomassie blue R-250 (50% methanol, 10% acetic acid,
0.1% R-250) for 1 h and destained overnight in a solution
containing 5% methanol/7% acetic acid. After imaging,
stained protein bands were cut into 10 fractions according
to molecular weight and distribution of protein abun-
dance, and each fraction was then excised into smaller
pieces of approximately 1 to 2 mm3. The gel pieces were
destained with 50% methanol/5% acetic acid overnight,
and in-gel digestion was performed as described previ-
ously [43]. The extracted peptides were desalted with a
reverse-phase (RP) Atlantis dC18 column (Waters, Mil-
ford, MA).

Protein identification by LC-MS/MS
Desalted peptides from each fraction were further sepa-
rated by a two-dimensional microcapillary high perform-
ance LC system, which integrates a strong cation-exchange
(SCX) column (100 mm in length × 0.32 mm for inner
diameter; particle size: 5 μm) with two alternating RP C18
columns (100 mm in length × 0.18 mm for inner diame-
ter), followed by analysis of each peptide with MS/MS in
a LCQ DECA PLUS XP ion trap (ThermoElectron, San Jose,
CA). Settings for the LCMS/MS were the following: six
fractions were eluted from SCX using a binary gradient of
2–90% solvent D (1.0 M ammonium chloride and 0.1%
formic acid in 5% acetonitrile) versus solvent C (0.1% for-
mic acid in 5% acetonitrile). Each fraction was injected
onto a RP column automatically with the peptides being
resolved using a 300 min binary gradient of 5–80% sol-
vent B (acetonitrile and 0.1% formic acid) versus solvent
A (0.1% formic acid in water). A flow rate of 160 μl/min
with a split ratio of 1/80 was used. Peptides were eluted
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directly into the electrospray ionization (ESI) ion trap
mass spectrometer capable of data-dependent acquisition.
Each full MS scan was followed by two MS/MS scans of
the two most intense peaks in the full MS spectrum with
dynamic exclusion enabled to allow detection of less-
abundant peptide ions. Mass spectrometric scan events
and HPLC solvent gradients were controlled by the Xcali-
bur software (Thermo Finnigan).

MS/MS data analysis
Proteins from the mitochondrial fraction were later iden-
tified automatically using the computer program
Sequest™, which searched the MS/MS spectra against the
rat + mouse International Protein Index (IPI, v3.01,
43175 entries) database [17,18,22,25,29]. Search param-
eters for the SILAC-labeled samples used in this study
were the following: +6 Da for 13C isotopic-labeled
arginine, +16 Da for oxidized methionine, +57 Da for car-
bamidomethyl; mass tolerance ± 3Da. Potential peptides
and proteins were further analyzed with PeptideProphet™
and ProteinProphet™ based on statistical models
[17,44,45]. PeptideProphet uses various SEQUEST scores
and a number of other parameters to calculate a probabil-
ity score for each identified peptide. The peptides were
then assigned a protein identification using the Protein-
Prophet software. ProteinProphet allows filtering of large-
scale data sets with assessment of predictable sensitivity
and false-positive identification error rates. In our study,
only proteins with a high probability of accuracy (< 5%
error rate) were selected. Quantification of the ratio of
each protein (isotopically light [control] vs heavy [rote-
onone treatment]) was calculated using the automated
statistical analysis of protein abundance (ASAP) Ratio
program [46] and expressed as average ratio ± SE. All of
these methods are used routinely in our lab
[17,18,22,25,29].

Bioinformatics Analysis
For prediction of the subcelluar location of proteins, all
the proteins identified by MS/MS were searched against
the Mouse Mitochondrial Proteome Database [47], which
includes summarized results from computational predic-
tions of signaling sequences, proteome mapping, mutant
screening, expression profiling, protein-protein interac-
tions and cellular sub-localization studies.

Double immunofluorescent staining and confocal analysis 
of candidate proteins
MES cells were seeded on chambered glass slides (Nalge
Nunc, Naperville, IL), fixed in 4% paraformaldehyde fol-
lowed by overnight incubation with primary antibodies to
cytochrome C and one of the candidate proteins (SNX1
1:200, VAMP3 1:200, MAP2K2 1:200, SHH 1:200), fol-
lowed by incubation with secondary antibody (1:200 Flex
Fluor® 488 goat anti-mouse IgG and 1:200 Flex Fluor® 568

goat anti-rabbit IgG or 1:200 Flex Fluor® 568 donkey anti-
goat IgG, Molecular Probes, Eugene, OR). A laser scanning
confocal microscope (Bio-Rad LS2000, Hercules, CA) was
used to capture images.

WB for validation of candidate mitochondrial proteins 
affected by rotenone
MES cells were treated with 20 nM rotenone or DMSO for
3 days, and mitochondria were isolated as for SILAC
experiments described above. The relative intensity of the
corresponding bands was quantified with Quantity One
(Bio-Rad) and relative changes expressed as the ratio of
DMSO-treated to rotenone-treated intensities. At least
three independent experiments were performed for each
candidate protein.
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