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Abstract
Background: Focal lesions of the frontal, parietal and temporal lobe may interfere with tactile
working memory and attention. To characterise the neural correlates of intact vibrotactile working
memory and attention, functional MRI was conducted in 12 healthy young adults. Participants
performed a forced-choice vibrotactile frequency discrimination task, comparing a cue stimulus of
fixed frequency to their right thumb with a probe stimulus of identical or higher frequency. To
investigate working memory, the time interval between the 2 stimuli was pseudo-randomized
(either 2 or 8 s). To investigate selective attention, a distractor stimulus was occasionally presented
contralaterally, simultaneous to the probe.

Results: Delayed vibrotactile frequency discrimination, following a probe presented 8 s after the
cue in contrast to a probe presented 2 s after the cue, was associated with activation in the bilateral
anterior insula and the right inferior parietal cortex. Frequency discrimination under distraction
was correlated with activation in the right anterior insula, in the bilateral posterior parietal cortex,
and in the right middle temporal gyrus.

Conclusion: These results support the notion that working memory and attention are organised
in partly overlapping neural circuits. In contrast to previous reports in the visual or auditory
domain, this study emphasises the involvement of the anterior insula in vibrotactile working
memory and selective attention.

Background
Faced with a continuous stream of afferent data, somato-
sensory processing requires not only the analysis of the
properties of tactile stimuli, but also the extraction and
encoding of novel, relevant information [1]. The integra-
tion of tactile information retrieved from cutaneous affer-

ents, traditionally attributed to the primary (SI) and
secondary somatosensory cortices (SII), has been exten-
sively studied [2]. In contrast, the neural basis of tactile
working memory and tactile selective attention is less well
known. These higher-level cognitive processes are never-
theless crucial for managing many challenges of every-day
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life. Pulling out a key from a coat pocket in the dark
requires, amongst others, exploratory finger movements,
attention to tactile information derived from the explor-
ing hand (and not, e.g., from the other hand holding a
bag), storage of this information in working memory, and
integration of the successively obtained tactile informa-
tion. Studies on patients with focal lesions suggest that the
prefrontal cortex [3,4], right parietal cortex [5] and thala-
mus [6] are involved in the inhibition of task-irrelevant
tactile information. Lesions of the medial temporal lobe,
in contrast, have been shown to impair tactile working
memory in patients [7].

Building on this small body of literature, the current
report describes investigation of the neural substrates of
vibrotactile memory and selective attention in healthy
volunteers using event-related functional magnetic reso-
nance imaging (fMRI). Participants performed a two-
alternative forced choice frequency discrimination task.
For this task, participants had to determine whether the
second of two consecutive vibratory stimuli was of identi-
cal (25 Hz) or higher frequency (> 25 Hz). This task
involved not only somatosensory processing, but also
other brain functions, including somatosensory working
memory, selective attention and planning and execution
of a motor response. To assess the effect of working mem-
ory, a short (2 s) or a long (8 s) interstimulus interval (ISI)
between the first (cue) and the second (probe) stimulus
was used, similar to auditory distraction experiments pub-
lished previously [3]. To test the influence of selective
attention, the task was also performed in the presence or
absence of a concurrent vibrotactile distractor presented
contralaterally. It is hypothesised that delayed vibrotactile
frequency discrimination, following a probe presented 8 s
after the cue in contrast to a probe presented 2 s after the
cue, is associated with mainly dorsolateral prefrontal acti-
vation, reflecting working memory [8]. In addition, it is
hypothesised that vibrotactile frequency discrimination
under distraction mainly involves a right-hemispheric
prefrontal-posterior parietal network [9].

Results
Behavioural data
The average accuracy of vibrotactile frequency discrimina-
tion without distractor was 65% (average response time =
961 ms). In the presence of a simultaneous distractor, the
accuracy decreased (47%, F(1,11) = 23.90, p < 0.001) and
the response time increased significantly (1369 ms, F(1,5)
= 13.08, p < 0.05). Delayed presentation of the probe (ISI
= 8 s) significantly reduced the accuracy of vibrotactile dis-
crimination compared to an ISI of 2 s (54% vs. 59%,
F(1,11) = 6.29, p < 0.05). The chance level in this forced
choice two-alternative decision task was 50%.

Functional Magnetic Resonance Imaging
Fig. 1 depicts brain activation related to the processing of
the probe, regardless of its frequency, in all conditions.
Vibrotactile frequency discrimination by button press was
associated with widespread activation in cortical and sub-
cortical areas. Activation was seen in the bilateral thala-
mus (numbers 6 and 7 in Fig. 1), the hand area of the left
(contralateral) SI and the left primary motor cortex (10),
adjacent to the activation in the postcentral gyrus. Activa-
tion was also found in the bilateral anterior insula (2, 3),
the anterior cingulate cortex (9), the right posterior pari-
etal cortex (11) and the right inferior frontal cortex (8). In
addition, the bilateral basal ganglia (4, 5), in particular
the caudate nucleus and the globus pallidus, and the left
cerebellar hemisphere (1) were activated. Deactivation
was found in the right parahippocampal gyrus (13), the
bilateral medial frontal gyrus (14), the right cuneus (15),
the bilateral posterior cingulate gyrus (16), the bilateral
precuneus (16) and the left superior frontal gyrus (17).

Vibrotactile frequency discrimination with an ISI of 8 s
was associated with stronger activation in the bilateral
anterior insula (numbers 1 and 2 in Fig. 2), the right cau-
date nucleus (3) and the right inferior parietal cortex (4)
as opposed to the conditions with an ISI of 2 s.

Comparing frequency discrimination with and without
distractor, the distractor condition was characterised by
significantly stronger activation in the right middle tem-
poral gyrus (number 1 in Fig. 3), the right anterior insula
(2), the left precuneus (3) and the bilateral posterior pari-
etal cortex (4, 5). Deactivation was seen in the right poste-
rior cingulate gyrus (6), the left medial frontal gyrus (7)
and the left precentral gyrus (8).

Discussion
The results of the present study demonstrate that vibrotac-
tile frequency discrimination is associated with the activa-
tion of distributed neural networks, in particular the
central somatosensory pathways, the motor system, and
the polymodal frontal, parietal and insular cortices (Fig.
1). Under challenge by a simultaneous distractor or a
delayed probe, the accuracy of responses decreases in both
conditions. The activated brain areas corresponding to
distracted or delayed frequency discrimination are partly
overlapping, albeit distinct. Bilateral activation of the
anterior insula is present in conditions with delayed pres-
entation of the probe (Fig. 2), whereas strong and wide-
spread activation in the bilateral posterior parietal cortex
can be found in trials involving a distractor (Fig. 3). The
findings of this study are subsequently discussed in light
of these sensory and cognitive components. In addition,
the significance of the findings is considered for a better
understanding of tactile impairments in stroke.
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Vibrotactile frequency discrimination
Sensorimotor processing
The chosen vibrotactile stimuli with a frequency around
25 Hz activate primarily Meissner's corpuscles, located in
the dermal-epidermal junction of the superficial glabrous
skin [10]. Meissner's corpuscles are highly sensitive mech-
anoreceptors. On the tip of the index finger, perceptual
(vibratory detection) thresholds, measured as the peak-to-
peak displacement of the vibrating probe, are approxi-
mately 10 microns in the frequency range studied here
[11,12].

As expected [13-19], vibrotactile frequency discrimination
was associated with activation of the somatosensory sys-
tem, including the contralateral SI and SII, and the bilat-

eral thalamus in the present study (Fig. 1). As the
experiment involved button press, cortical and subcortical
activation in areas attributed to the planning and execu-
tion of voluntary movements was found (contralateral
primary motor cortex, the bilateral supplementary motor
area, the left ventro-lateral thalamus, the bilateral globus
pallidus, and the left cerebellar hemisphere, Fig. 1).

Temporal processing
The present results demonstrate that vibrotactile fre-
quency discrimination is associated with a robust activa-
tion of the bilateral anterior insula (Fig. 1). The insula is a
highly multimodal area which integrates information
from several distinct regions of the brain [20]. Converging
evidence shows that the insula is functionally separated

Brain activation associated with processing of the probeFigure 1
Brain activation associated with processing of the probe. The figure shows brain activation and deactivation associated 
with the processing of the probe (either 25 Hz or higher) across all conditions (clustered activation images with an overall cor-
rected p < 0.05). Activated areas are colour-coded in yellow and red, deactivated areas are displayed in blue. Activation is seen 
in the left cerebellar hemisphere (1), the bilateral anterior insula (2, 3), the bilateral head of the caudate nucleus and the globus 
pallidus (4, 5), the bilateral thalamus (6, 7), the right inferior frontal cortex (8), the anterior cingulate cortex (9), the left (con-
tralateral) sensorimotor cortex (10), the right posterior parietal cortex (11) and the supplementary motor area (12). Deactiva-
tion was found in the right parahippocampal gyrus (13), the bilateral medial frontal gyrus (14), the right cuneus (15), the 
bilateral posterior cingulate gyrus (16), the bilateral precuneus (16) and the left superior frontal gyrus (17). Brain images are 
shown in radiological convention (the right hemisphere is seen on the left side of the image).
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along the anterior-posterior axis. In the sensory domain, a
direct comparison of painful thermal and innocuous tac-
tile stimulation using fMRI revealed that the perception of
pain was associated with activation of the anterior part,
while the perception of tactile stimuli was associated with
activation of the posterior part of the insula [21,22]. In
addition to the perception of pain, the anterior insula is
involved in the processing of innocuous, but unpleasant
stimuli (vibratory stimulation of the teeth [23]) as well as
of visceral [24] and gustatory afferents [25].

For the interpretation of the present findings, however,
the involvement of the anterior insular cortex for the
processing of temporal aspects of stimuli (e.g., pitch [26])
and for the preparation of highly time-dependent move-
ments (e.g., singing and speaking [27,28]) might be
important. In addition, lesion studies in cats demon-
strated that the temporal operculum and the underlying

insular cortex are involved in vibrotactile temporal pat-
tern discrimination [29]. Based on these reports, it is
hypothesised that the bilateral anterior insula is involved
in the analysis of the temporal aspects of vibrotactile stim-
uli. In support of this hypothesis, passive vibrotactile
stimulation without discrimination between stimuli of
different frequency [13-18,30] did not activate the ante-
rior insula.

Default mode network
Compared with baseline, vibrotactile frequency discrimi-
nation was associated with deactivation in the frontal cor-
tex (medial and superior frontal gyrus), the cuneus, the
precuneus, the parahippocampal area and the posterior
cingulate gyrus (Fig 3). These areas probably reflect a
widespread neuronal network that is consistently acti-
vated during rest or during less demanding tasks, termed
the default mode network [31]. In a highly demanding

The effect of a delayed probeFigure 2
The effect of a delayed probe. For this figure, brain activation associated with the processing of the probe was compared 
between conditions with long and short interstimulus interval (8 s vs. 2 s interval between cue and probe). Clustered activation 
images with an overall corrected p < 0.05 are shown. The right (1) and left insula (2) as well as the right head of the caudate 
nucleus and (3) and the right inferior parietal cortex (4) were significantly stronger activated following the probe in trials with 
an ISI of 8 s compared to trials with an ISI of 2 s. Brain images are shown in radiological convention (the right hemisphere is 
seen on the left side of the image).
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task, such as the frequency discrimination task used here,
the putative default mode network is expected to be deac-
tivated when comparing task vs. rest. This interpretation is
corroborated by the results of several investigations on
cognitive and sensory processing. In a study on visual and
auditory processing, the default mode network, similar to
the deactivated areas in the present study, was supposed
to consist of medial frontal areas, the posterior cingulate,
the hippocampus and the parahippocampus [32].

Vibrotactile working memory
In the present study, the function of vibrotactile working
memory was selectively probed by varying the interval
between the first and the second stimulus. Comparing the

conditions with long vs. short ISI uncovered activation of
the bilateral anterior insula, the right head of the caudate
nucleus and the right inferior parietal cortex (Fig. 2).

Working memory refers to the ability to maintain and
manipulate information temporarily and has been widely
investigated in the visuo-spatial, auditory, and verbal
domains. Traditionally, the prefrontal cortex has been
regarded as an important neural correlate of working
memory [9,33]. In the present study, the inferior frontal
cortex is activated in the analysis of all events (Fig. 1), but
is not differentially active when increasing the ISI from 2
s to 8 s (Fig. 2), probably due to the lower statistical power
of the subgroup of events.

The effect of a simultaneous distractorFigure 3
The effect of a simultaneous distractor. For this figure, brain activation associated with the processing of the probe was 
compared between conditions with and without distractor. Areas with significantly stronger activation following the probe 
with simultaneous distractor compared to frequency discrimination without distractor are colour-coded in yellow and red, 
areas with less activation are coded in blue (clustered activation images with an overall corrected p < 0.05). Processing of the 
probe with distractor was associated with increased activity in the right middle temporal gyrus (1), the right anterior insula (2), 
the left precuneus (3) and the bilateral posterior parietal cortex (4, 5). Deactivation was seen in the right posterior cingulate 
gyrus (6), the left medial frontal gyrus (7) and the left precentral gyrus (8). Brain images are shown in radiological convention 
(the right hemisphere is seen on the left side of the image).
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Knowledge about the neural correlates of vibrotactile
working memory, however, is limited. There is evidence
that the neural correlates of tactile working memory
include areas involved in the sensory processing of tactile
stimuli [34]. Using vibrotactile frequency discrimination
tasks similar to the 2 s ISI task employed here, but without
conditions with longer ISI, single-cell recordings in pri-
mates [35] and transcranial magnetic stimulation in
humans [36] demonstrated that vibrotactile memory
traces are maintained in SI. The present study did not
reveal stronger activation in SI or SII when increasing the
ISI from 2 s to 8 s.

The data presented here suggest that areas found active in
previous studies on cognitive and sensory working mem-
ory are also involved in vibrotactile memory. An investi-
gation of working memory using a sequential letter (n-
back) task and fMRI revealed activation in the bilateral
inferior parietal cortex (supramarginal gyrus) and the
bilateral frontal operculum, along with activation of the
bilateral inferior frontal gyrus and other areas [37]. The
results here imply that the bilateral anterior insula is not
only involved in analysing temporal properties, but also
subserves as a neural correlate of working memory for
temporally complex stimuli. Because of the dense connec-
tions between the prefrontal cortex and the caudate
nucleus, the caudate is thought to be involved in working
memory as well [38].

Selective attention
The effect of selective attention was investigated by simul-
taneously applying a distractor stimulus to the contralat-
eral thumb in 25% of the epochs. Selective attention is
often regarded as a cognitive process selecting a subset of
information for further processing. Vibrotactile distrac-
tion through a contralateral vibrotactile stimulus is asso-
ciated, on the behavioural level, with a decrease of
response accuracy and, on the neuronal level, with an
increase of activation in the bilateral posterior parietal
cortex, the right anterior insula, and the middle temporal
gyrus (Fig. 3). The observed decrease of accuracy con-
firmed a previous pure behavioural experiment [39].

Converging lines of evidence support the notion that a
widespread, mainly right-hemispheric fronto-parietal net-
work is involved in selective attention. In the tactile
domain, the posterior parietal cortex has been found
active during tasks involving selective attention using
fMRI [40] and somatosensory evoked potentials [41]. The
present results, showing bilateral posterior parietal activa-
tion, corroborate these findings. Moreover, processing of
a sensory stimulus is enhanced by selective attention to
the stimulus. This has been shown in the visual [42], audi-
tory [43], and somatosensory domain [44]. The posterior
parietal cortex, however, contains neurons with bilateral

receptive fields [45]. Activation of those neurons by bilat-
eral vibrotactile stimulation during the distractor condi-
tions might contribute to the bilateral posterior parietal
activation seen here.

Increased activity in the right anterior insula under dis-
traction is hypothesised to represent increased analysis of
temporal stimulus properties as discussed above. Activa-
tion of the right middle temporal gyrus has previously
been related to language functions, such as semantic
processing [46] and processing of affective prosody [47].
In addition to these reports, the present study indicates
that the right middle temporal gyrus is also involved in
selective attention to vibrotactile stimuli. This interpreta-
tion is supported by a high-density EEG study in which
the bilateral middle temporal gyri were involved in selec-
tive spatial attention [41].

Comparing the brain activity between delayed (Fig. 2) and
distracted (Fig. 3) frequency discrimination, the right
anterior insula and the posterior parietal cortex are active
in both conditions. This finding supports the idea that
working memory and attention are represented by distrib-
uted, partly overlapping neuronal networks [48,49].

Relevance for tactile deficits in stroke
Tactile working memory and selective attention are
important cognitive processes for complex sensory
processing in humans, beyond the experimental situation
of vibrotactile frequency discrimination. Tactile working
memory and selective attention are crucial for object rec-
ognition or manipulation without visual feedback or in
situations where somatosensory information from differ-
ent body parts (walking, bimanual operations) or infor-
mation from different sensory modalities compete.

For the present study, a forced-choice vibrotactile fre-
quency discrimination task has been developed that is
also applicable to future investigations of stroke patients.
Deficits of somatosensory processing are frequent symp-
toms of stroke and often have far-reaching consequences
for the independence and the quality of life of stroke
patients [50]. Although impaired motor or language func-
tions often impose a higher burden on the individual
patient, the integrity of tactile functions is an important
predictor for the long-term recovery of stroke patients [51-
53]. Many functional abilities, such as the control of grip
force [54], and gait [55] can be affected by deficits of tac-
tile processing.

Conclusion
The present study demonstrates that vibrotactile fre-
quency discrimination is associated with the activation of
distributed neural circuits including the somatomotor sys-
tem, and polymodal frontal, parietal, and insular areas.
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Brain networks involved in distracted or delayed fre-
quency discrimination are partly overlapping, albeit dis-
tinct. Bilateral activation of the anterior insula is present
in conditions with delayed presentation of the probe,
while strong and widespread activation in the bilateral
posterior parietal cortex can be found in trials involving a
distractor. The novel findings of this study on healthy
adults and the partial differences between our findings
and the results of lesion studies warrant further investiga-
tions of brain activity associated with impaired somato-
sensory processing in stroke patients.

Methods
Participants
Twelve healthy, right-handed volunteers (6 men, 6
women, mean age 22 years) participated in the study. The

study was approved by the Research Ethics Board of the
Sunnybrook Health Sciences Centre. Informed consent
for participation in the project was obtained from all par-
ticipants according to the Declaration of Helsinki.

Stimulation
Magnetomechanical vibrotactile devices (MVDs) were
used for stimulation as described previously [15]. These
MVDs allow precise control of the frequency and ampli-
tude of vibrotactile stimulation through custom software.
The MVDs used here were able to generate frequencies of
at least 100 Hz. The use of higher frequencies is possible
but is restricted by the stability of the mount and the size
of the coil. Prior to the experiment, MVDs were taped to
the palmar surface of the distal phalanges of both thumbs
(Fig. 4). Responses were made with the right index or mid-
dle finger using a two-button response pad, also built
within the laboratory (Fig. 4). Practice trials were per-
formed inside the scanner, during the structural MRI and
before the fMRI experiment, to assess individual percep-
tual thresholds for the 25 Hz vibrotactile stimulus. Per-
ceptual thresholds were defined as the smallest
stimulation amplitudes that could be reliably identified
and were determined using the alternating staircase
method. In the actual experiment, stimulation amplitudes
were set to 700% of the individual perceptual threshold.
In addition, the vibrotactile discrimination threshold f
was assessed, where f is the minimal difference between
cue (25 Hz) and probe (25 + f Hz) that could be detected
with 80% accuracy. The discrimination threshold f was
determined by assuming a normal distribution of the fre-
quency differences that were detected correctly (fcorr) dur-
ing the iterative procedure, such that Z = (mean(fcorr) -f)/
standard deviation(fcorr) = 0.84 for 80% success. In all
cases, the assumed frequency f was × 10 Hz. During the
fMRI experiment, however, participants performed less-
was accurate than predicted by this formula (65% accu-
racy on average). As we tried to minimize the time
participants had to stay in the magnet before the begin-

Experimental setupFigure 4
Experimental setup. A magnetomechanical vibrotactile 
device is taped to the right thumb. The index and the middle 
finger rested on a two-button response pad. The arms were 
extended during the measurement. Pressure points were 
avoided using foam pads.

Table 1: Outline of the applied stimulus conditions.

Condition Frequency of probe ISI Distractor Probability

1 25 Hz 2 s no combined: 75%
2 25 Hz 8 s no
3 25 + f Hz 2 s no
4 25 + f Hz 8 s no

5 25 Hz 2 s yes combined: 25%
6 25 Hz 8 s yes
7 25 + f Hz 2 s yes
8 25 + f Hz 8 s yes

Note: Stimulus conditions were applied in pseudo-randomised order. The frequencies of the cue and the distractor stimuli were always 25 Hz. Cue 
and probe stimuli were delivered to the right hand, distractor stimuli to the left hand. f denotes the minimal difference between cue and probe 
stimuli that could be detected with 80% accuracy.
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(page number not for citation purposes)



BMC Neuroscience 2007, 8:48 http://www.biomedcentral.com/1471-2202/8/48
ning of the fMRI experiment, thresholds were determined
during the structural MRI (scan time: 8 min) and not in a
separate test run. The number of iterations achieved dur-
ing this time might have been too low for an accurate esti-
mation of discrimination thresholds. Moreover,
participants might have developed fatigue or loss of con-
centration during the preparation for the fMRI experiment
(15 – 20 min including structural MRI) resulting in
decreased discrimination accuracy later on.

Fig. 5 provides a schematic illustration of the experiment.
Eight different stimulation conditions were applied in a
pseudo-randomised order (Tab. 1). Each condition
started with a 25 Hz cue stimulus followed by a probe
stimulus, both delivered to the right hand. All vibrotactile
stimuli were presented for 2 s. For all events, the time
between the onset of two consecutive cue stimuli was 30

s. The frequency of the probe was either 25 Hz or higher
(25 + f Hz, with equal (50%) probability). Participants
were asked to decide if the frequency of the probe was
identical to or different than the cue in a forced choice
two-alternative decision task. Participants were instructed
to respond as quickly and as accurately as possible after
the offset of the probe. Vibrotactile stimulation and the
recording of behavioural responses were controlled by a
PC running LabVIEW (National Instruments, Austin, TX,
USA). To assess the influence of the interstimulus interval
(ISI) between cue and probe, the ISI was either 2 s or 8 s
(probability: 50% each). To assess the influence of a dis-
tractor, in 25% of all trials an analogous vibrotactile stim-
ulus was delivered to the left thumb simultaneously to the
probe. The experiment consisted of four runs with 16 tri-
als per run (64 trials in total). The acquisition of all func-
tional images required 32 min. The total scan time,

Illustration of the experimentFigure 5
Illustration of the experiment. Upper graph: A vibrotactile stimulus (frequency: 25 Hz; duration: 2 s) was delivered to the 
right thumb (cue) followed by an analogous probe of either identical frequency or higher frequency (25 Hz + individual discrim-
ination threshold f). The interstimulus interval (ISI) was either 2 s (as illustrated here) or 8 s. Lower graph: In 25% of trials the 
probe was paired with a distractor to the left thumb. The stimulation parameters of the distractor were identical to those of 
the cue. Functional MRI data were obtained continously. Every 2 s, a brain volume consisting of 26 axial was acquired, starting 
with the beginning of each trial.
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including the anatomical scan and the initial behavioural
testing, was approximately 1 h.

Accuracy (% correct) was calculated for each condition
and subjected to repeated measures ANOVA (SPSS, SPSS
Inc., Chicago, IL, USA) with a full within-participants Dis-
tractor × Delay × Probe model. Mean response times (for
correct responses only) were analysed similarly, using a
maximum likelihood algorithm to account for missing
data (BMDP-5V, BMDP Statistical Software, Los Angeles,
CA, USA).

Magnetic Resonance Imaging
Structural and event-related fMRI was conducted using a
Signa VH/i 3.0 T scanner and quadrature birdcage head
coil (GE Healthcare, Waukesha, WI, USA). A single-shot
spiral sequence was used for blood oxygenation level-
dependent fMRI (TR/TE/flip = 2000 ms/30 ms/70°,
matrix 64 × 64, FoV 20 cm, and 26 axial slices 5 mm thick)
[56]. The reconstructed fMRI data were processed in AFNI
[57]. After motion correction, general linear modeling
(GLM) was used to estimate the system response to the
probe in each condition. Percent signal change maps were
formed from the integrated responses, normalised to
Talairach-Tournoux space, and blurred with a 5 mm
FWHM Gaussian filter. Linear contrasts of these maps for
all participants underwent one-way t-tests to generate
group maps for all Distractor × Delay × Probe main effects
and interactions. For the analysis of the probe in all con-
ditions, the group maps were thresholded at a voxelwise p
< 0.005 with a minimum cluster size of 0.87 ml within a
radius of 2 mm which amounts to an overall (corrected)
p < 0.05 [58]. For the analysis of the effects of delay and
distractor, the group maps were thresholded at a voxel-
wise p < 0.01 with a minimum cluster size of 1.46 ml
within a 5 mm radius which amounts to an overall (cor-
rected) p < 0.05.

Abbreviations
fMRI functional magnetic resonance imaging

ISI interstimulus interval

MVD magnetomechanical vibrotactile device

SI primary somatosensory cortex

SII secondary somatosensory cortex
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