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Abstract

Background: Isoflavones, the most abundant phytoestrogens in soy foods, are structurally similar
to |7beta-estradiol. It is known that |7beta-estradiol induces apoptosis in anteroventral
periventricular nucleus (AVPV) in rat brain. Also, there is evidence that consumption of soy
isoflavones reduces the volume of AVPV in male rats. Therefore, in this study, we examined the
influence of dietary soy isoflavones on apoptosis in AVPV of 150 day-old male rats fed either a soy
isoflavone-free diet (Phyto-free) or a soy isoflavone-rich diet (Phyto-600).

Results: The occurrence of apoptosis in AVPV was examined by TUNEL staining. The incidence
of apoptosis was about 10 times higher in the Phyto-600 group (33.1 + 1.7%) than in the Phyto-free
group (3.6 + 1.0%). Furthermore, these apoptotic cells were identified as neurons by dual
immunofluorescent staining of GFAP and NeuN as markers of astrocytes and neurons,
respectively. Then the dopaminergic neurons in AVPV were detected by immunohistochemistry
staining of tyrosine hydroxylase (TH). No significant difference in the number of TH neurons was
observed between the diet treatment groups. When estrogen receptor (ER) alpha and beta were
examined by immunohistochemistry, we observed a 22% reduction of ERbeta-positive cell numbers
in AVPV with consumption of soy isoflavones, whereas no significant change in ERalpha-positive cell
numbers was detected. Furthermore, almost all the apoptotic cells were ERbeta-immunoreactive
(ir), but not ERalpha-ir. Last, subcutaneous injections of equol (a major isoflavone metabolite) that
accounts for approximately 70-90% of the total circulating plasma isoflavone levels did not alter
the volume of AVPV in adult male rats.

Conclusion: In summary, these findings provide direct evidence that consumption of soy
isoflavones, but not the exposure to equol, influences the loss of ERbeta-containing neurons in male
AVPV.

Background human diets, and the most studied in animal and clinical
Phytoestrogens are naturally occurring, plant derived,  research. Dietary soy isoflavones exist as biologically
non-steroid molecules that are structurally similar to  active aglycones (daidzein and genistein) and biologically
17beta-estradiol [1]. Of all the phytoestrogens, soy-  inactive glucosides (mainly daidzin and genistin). When
derived isoflavones are the most abundant in rodent and  consumed, glucosides are hydrolyzed by intestinal glu-
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cosidases to daidzein and genistein. Daidzein can be fur-
ther metabolized to equol, a potent and abundant
molecule in rodents [2,3]. The structural similarity
between isoflavones and 17beta-estradiol enables these
molecules to exert moderate estrogenic or antiestrogenic
properties via mammalian estrogen receptors (ER). It is
well established that genistein has a greater affinity for
ERbeta than ERalpha [4]. Moreover, equol appears to
bind ERbeta > ERalpha, in a similar manner to that of gen-
istein [2,5].

The anteroventrol periventricular nucleus (AVPV) is
located immediately caudal to the vascular organ of the
lamina terminalis and rostral to the suprachiasmatic
nucleus [6]. The cells in AVPV project directly to gonado-
tropin releasing hormone (GnRH)-containing neurons
and influence the secretion of luteinizing hormone (LH)
in rats [7]. The AVPV is sexually dimorphic, but in contrast
to other sexually dimorphic nuclei, the overall volume
[8], cell density [9], and the number of dopaminergic neu-
rons [10] are greater in females compared to males in
adulthood. These sex differences are regulated by testo-
sterone secreted from the fetal/neonatal testes. There are
two surges in circulating testosterone during early devel-
opment, one occurring around gestation day 18 and the
other at approximately 2 hours after birth [11,12]. Within
the hypothalamus, testosterone can be converted to
17beta-estradiol by the cytochrome P450 aromatase
enzyme, and 17beta-estradiol is thought to be responsible
for smaller AVPV characteristics in males [13,14]. This
"estrogenic masculinization" process can be manipulated
by induction of steroid hormones during the develop-
ment. Administration of estradiol to neonatal rats is as
effective as testosterone in reducing the volume of AVPV
[13] by facilitating apoptosis in the developing AVPV [14].
The sexual differentiation of AVPV was thought to be lim-
ited to early postnatal period. However, the AVPV charac-
teristics develop as late as 60-80 days after birth [15], and
more recent data suggests that they are more plastic than
previously thought [2,16].

In light of the estrogenic nature of soy isoflavones and
their ability to cross the blood brain barrier [17,18], we
have studied the effects of soy isoflavones on characteris-
tics of the AVPV. In two separate studies, we observed a
significant decrease in AVPV volume in adult male rats
consuming a soy isoflavone-rich diet compared to ani-
mals fed a soy isoflavone-free diet [2,16]. However, it is
not known whether soy isoflavones act in a similar man-
ner as 17beta-estradiol to alter the volume of AVPV by
influencing apoptosis or whether equol contributes to the
alteration of AVPV volume. Therefore, in this study we
examined the influence of dietary soy isoflavones on
apoptosis in adult male rats, by quantifying its incidence,
identifying the cell type involved, and exploring its corre-
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lation with estrogen receptor subtypes. Finally, the vol-
ume of AVPV was quantified in adult male rats after
exposure to equol only, a major biologically active isofla-
vone metabolite.

Results

Consumption of soy isoflavones induces apoptosis in AVPV
The effects of dietary soy isoflavones on apoptosis in
AVPV were examined by TUNEL staining on coronal brain
sections, identified as a cell cluster at the rostral level of
the third ventricle (Figure 1). The total cell number in
AVPV was not significantly altered in the Phyto-600 fed
male rats (123.4 + 3.3) compared to the Phyto-free fed
animals (116.0 + 3.5; Table 1). However, the total apop-
totic cell number in the Phyto-600 AVPV (38.4 + 2.4) was
significantly greater than that in the Phyto-free group (4.4
+ 1.2; Table 1, Figure 1). Furthermore, the incidence of
apoptosis, calculated as a percentage of the total popula-
tion of cells, was about 10 times higher in the Phyto-600
group than in the Phyto-free group (Table 1).

When the cell densities within the AVPV were calculated,
the rats on the Phyto-600 diet displayed significantly
greater cell numbers per unit area than the animals on the
Phyto-free diet (Figure 2A). Interestingly, after accounting
for the incidence of apoptotic cells, the significant differ-
ences between the diet treatment groups for cell densities
disappeared (Figure 2B).

The apoptotic cells induced by soy isoflavones are neurons
To determine whether glia or neurons account for the
apoptotic cells in AVPV observed previously, we detected
the markers for astrocytes (GFAP) and neurons (NeuN)
on the adjacent sections of Phyto-600 fed male rats, which
were 6 micrometers apart from the TUNEL stained sec-
tions. More than 90% of the apoptotic cells were present
on both of the consecutive sections. Thus, by locating the
apoptotic cells (brown nuclear staining in TUNEL) on the
photomicrographs of dual GFAP/NeuN IF staining (neu-
rons were stained green; whereas astrocytes were red), the
apoptotic cells were identified as neurons (Figure 3).

The number of dopaminergic neurons in AVPV was not
altered by soy isoflavones

Tyrosine hydroxylase has proven to be a reliable marker
for dopaminergic neurons in AVPV even though there are
relatively few TH cells in this sexually dimorphic structure.
Dopaminergic neurons in AVPV were detected with
immunohistochemical staining of TH in 10 day-old male
and female and 150 day-old female rats fed the Phyto-free
diet and 150 day-old males fed on either Phyto-free or
Phyto-600 diet. Independent of diet treatment, we
observed significantly more TH neurons in females
(approximately 4-fold higher) than in males fed the
Phyto-free diet at both ages. However, no significant dif-
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Table I: The incidence of apoptosis in the AVPV of adult male Long-Evans rats2

Group Total Cell Number Apoptotic Cell Number Incidence of Apoptosis?

Phyto-free 126 3 24
125 | 0.8
113 6 53
133 8 6.0
120 4 33

123.4 £ 3.3 4.4t ].24 3.6%1].00
Phyto-600 11 32 28.8
112 34 30.1
108 41 38.0
124 40 323
125 45 36.0

116.0 £ 3.5 38424 33.1%£1.7

aThe rats were exposed to either a soy isoflavone-free diet (Phyto-free) or a soy isoflavone-rich diet (Phyto-600) from conception until 150 days of

age (n = 5 per diet treatment group).

b Incidence of apoptosis was expressed as the percentage of apoptotic cell number over total cell number in AVPV.
A Significantly greater apoptotic cell number or incidence of apoptosis in the Phyto-600 AVPV compared to the Phyto-free group (p < 0.05; two

sample student t-test).

ference in the sparse number of TH neurons was observed
in male rats with long-term exposure to dietary soy isofla-
vones (Phyto-600) compared to the Phyto-free fed males

(Figure 4).

The apoptotic neurons express ERbeta, but not ERalpha
The expression of ERalpha and ERbeta was detected on
coronal brain sections containing AVPV, which were 6
micrometers apart from the TUNEL stained sections. ERal-
pha and ERbeta immunoreactivity was expressed in cell
nuclei of the AVPV (brown nuclear staining; Figure 5 and
6). In AVPV, the number of ERalpha-ir and ERbeta-ir
nuclei and total counterstained cell number were
counted. The ratio of ERbeta-ir cells in AVPV, expressed as
a percentage of the total number of cells, was 52.8 + 0.6%
in the Phyto-600 fed animals. This represents a 22%
reduction when compared to the Phyto-free values (67.5
+ 1.0%; data not shown in graph; two-sample student t-
test; p < 0.001). No significant differences in the number
of ERalpha-ir cells in AVPV were observed between the
Phyto-600 group (64.1 + 1.3%) and Phyto-free group
(64.7 + 1.2%). Furthermore, by locating the apoptotic
cells on the sections of ERalpha and ERbeta IHC staining,
most the apoptotic cells were ERbeta-ir, but not ERalpha-
ir (Figure 5 and 6). In Phyto-600 fed rats, TUNEL-positive
cells represent approximately 84% of the ERbeta-ir cells
within the AVPV. A schematic diagram displayed in Figure
7 represents the total number of cells in the AVPV relative
to the total number of ERbeta-ir cells and TUNEL stained
cells. Last, comparing ERalpha and ERbeta IHC sections,
we noticed that some cells solely express ERalpha or
ERbeta. However, some cells express both ERalpha and
ERbeta (Figure 8).

Exposure to equol (a major isoflavone metabolite) does
not alter the volume of AVYPV

To further test whether equol is the molecule that causes
the effects observed above, equol or control (DMSO)
vehicle was injected subcutaneously into adult male rats
fed the Phyto-free diet. The equol injection treatment was
given for 25 consecutive days. The serum circulating equol
levels were equivalent to consuming a phytoestrogen-rich
soy diet (@ approximately 1,000 ng/ml) [2]. Interest-
ingly, there were no significant alterations in AVPV volu-
metric morphometric parameters with the exposure to
equol (Figure 9). So, exposure solely to equol is not suffi-
cient to alter the hormone-sensitive hypothalamic volume
(AVPV) in male rats during adulthood which is opposite
to the consumption of soy (phytoestrogens) via dietary
routes for an equivalent exposure interval previously
observed by our laboratory [2,16].

Discussion

This study directly demonstrates that long-term exposure
to dietary soy isoflavones induces neuronal apoptosis in
the AVPV of adult male rats. Additionally, the present data
suggests that the influence of soy isoflavones on neuronal
apoptosis is not correlated to ERalpha but dependent on
ERbeta. However, exposure to equol is not sufficient to
alter the volume of AVPV.

Neurons in the AVPV are born between gestation day 13
and gestation day 18 [19]. Neither neurogenesis [20] nor
neuronal migration [21] has been reported to play a role
in the development of sexual dimorphism in the preoptic
area. However, it has been demonstrated that apoptosis is
the major way that steroid hormones alter neuronal num-
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Figure |

Representative photomicrographs of apoptotic cells labeled by TUNEL staining in AVPV of 150 day-old male Long-Evans rats
fed either an isoflavone-free diet (Phyto-free) or an isoflavone-rich diet (Phyto-600) from conception until time tissue col-
lected. Apoptotic cells were visualized with diaminobenzadine (DAB) and seen as brown nuclear staining. Sections were coun-
terstained with hematoxylin (blue). A and C are representative photomicrographs of the Phyto-free AVPV (n =5). Band D are
representative photomicrographs of the Phyto-600 AVPV (n = 5). Across the diet treatments, A corresponds to a similar coro-
nal brain section in B. The AVPV is outlined with dashed lines. Boxed regions in A and B are magnified and shown in C and D,
respectively. Significantly more apoptotic cells (arrows) were observed in Phyto-600 AVPV than the Phyto-free group (n = 5; p
< 0.001; two-sample student t-test). Bar = 25 um for all the photomicrographs.
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Cell densities in AVPV of 150 day-old male Long-Evans rats fed either an isoflavone-free diet (Phyto-free) or an isoflavone-rich
diet (Phyto-600) from conception until time tissue collected. Cell densities in (A) were measured from both apoptotic and
non-apoptotic cells in the field of 10,000 um?2, while the cell densities in (B) were measured from non-apoptotic cells. Each data
point represents mean + SEM of six measurements (two most condensed fields of three AVPVs out of five animals). * signifi-
cantly greater cell density in the Phyto-600 fed male rats than the Phyto-free animals (p < 0.001; two-sample student t-test).

bers in sexually dimorphic regions during critical periods
of development [14,22]. This critical period for sexual dif-
ferentiation was revised to be longer than the perinatal
and first week postnatal window [15], and the volume of
the sexually dimorphic nuclei can still be changed by
exposure to estrogenic molecules in adults [2,16]. There-
fore, it is novel, but not surprising, to observe significantly
higher incidence of apoptosis in the AVPV of adult male
rats consuming soy isoflavones, via their estrogenic
actions. Generally, TUNEL is a well-accepted technique to
detect apoptotic cells by visualization of DNA fragmenta-
tion [23]. Cells with DNA damage may also be identified
by TUNEL staining. Thus, the TUNEL-positive cells in this
study include apoptotic cells and possibly cells in the
process of DNA repair [24]. Furthermore, these TUNEL-
positive cells were identified as neurons. This is the first
direct evidence of soy isoflavones inducing neuronal
apoptosis in AVPV in wvivo. Additionally, taking the
increased cellular density and the similar total cell
number in the Phyto-600 AVPV sections together, these
data implied smaller AVPV volumes in the Phyto-600
group vs. the Phyto-free group, which is consistent with
our previous findings [2,16]. Implications to human
health and reproduction are unknown, especially since
reproductive capacity of Asian populations appears to be
unaffected by consumption of soy foods [25].

It is known that the number of dopaminergic neurons in
AVPV is 3-4 times higher in adult female rats than in
males [26]. Although TH neurons only contribute approx-
imately 1% of the total number of cells in male AVPV
(personal communication with E.M. Waters by permis-
sion), no significant difference in the number of TH neu-
rons was observed in adult male rats between the
treatment groups. There is evidence that circulating
gonadal steroids appear to downregulate TH expression in
both male and female AVPVs [27]. The development of
sexually dimorphic TH neurons is not affected by the
overexpression of Bcl-2 [28] or deletion of Bax [29], but is
dependent on ERalpha [30]. The lack of changes in the
number of TH neurons in the male (present study) and
female (our unpublished data) rats with long-term expo-
sure to isoflavones (Phyto-600) suggests that the neuronal
apoptosis may be independent of ERalpha. Furthermore,
the incidence of apoptosis was approximately 33% and
the ratio of ERalpha-ir cells over the total cells in AVPV
was approximately 64% in the Phyto-600 group. Moreo-
ver, in this case the apoptotic cells were not ERalpha-ir.
This suggests that ERalpha is not involved in the apoptosis
by consumption of soy isoflavones.

The co-localization of ERbeta and DNA fragmentation
implies ERbeta may mediate the neuronal apoptosis
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Figure 3

Representative photomicrographs of apoptotic cells (brown
nuclear staining), astrocytes (red) and neurons (green) by
TUNEL and dual GFAP/NeuN immunofluorescent staining in
AVPV of 150 day-old male Long-Evans rats. All the photomi-
crographs (coronal brain sections) are from animals fed an
isoflavone-rich diet (Phyto-600) from conception until time
tissue was collected. An astrocyte (red; arrow) is indicated in
A, whereas the neurons are displayed in green. B is a repre-
sentative photomicrograph of TUNEL staining in AVPV (n =
5). C displays dual GFAP/NeuN immunofluoresent stained
sections within AVPYV, which is 6 um apart from B. The apop-
totic cells (arrows in B) were identified as neurons (arrows
in C). Bar = 25 pum for all the photomicrographs.

induced by soy isoflavones in male AVPV. This is consist-
ent with several lines of evidence. First, both ERalpha and
ERbeta have been reported to be expressed in the AVPV
[31-33]. The expression of ERbeta is sexually dimorphic in
rodents. In mice, females a significantly larger number of
ERbeta-positive cells were positioned in the medial por-
tion of the AVPV close to third ventricle; in males the dis-
tribution of ERbeta-positive cells were dispersed
throughout the AVPV [32]. The apoptotic cells observed in
the Phyto-600 AVPVs did not show a specific pattern, in
other words, similar to the expression of ERbeta in male
AVPV. Second, it has been reported that estrogen-regu-
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lated developmental neuronal apoptosis is determined by
ER subtype: ERalpha has a neuroprotective effect, while
ERbeta medicates the induction of apoptosis in neuronal
cells [34]. Third, dopaminergic neurons express ERbeta in
the female AVPV, but not in males [32]. This partially
favors that ERbeta-expressing dopaminergic neurons go
through apoptosis in males in the presence of testoster-
one/estrogen, but not in females. On the contrary, in
females these cells are thought to survive. Fourth, ERalpha
and ERbeta are coexpressed in some cells in AVPV [35].
When coexpressed, ERalpha and ERbeta form functional
heterodimers [36]. Even though the biological roles of
ERalpha/beta heterodimers in the presence of each respec-
tive homodimer are unknown, ERbeta exhibits an inhibi-
tory action on ERalpha-mediated gene expression and in
many instances opposes the actions of ERalpha [36].
Additionally, we observed more ERbeta-ir cells than apop-
totic cells in AVPV. Hence, we speculate neurons that
coexpressed ERalpha and ERbeta may escape apoptosis,
whereas those expressing only ERbeta are sensitive to the
estrogenic signal and showed DNA fragmentation.
Finally, although isoflavones are less potent than 17beta-
estradiol, the plasma concentrations of genistein (117 + 5
ng/ml) and equol (1363 + 59 ng/ml) in the Phyto-600 fed
male rats are much greater than that of 17beta-estradiol
(1-5 pg/ml) [25]. The average total isoflavone content
within the hypothalamus is more than 3-fold higher for
Phyto-600 fed males (134 ng/g) vs. Phyto-free fed males
(40 ng/g) [17]. Furthermore, isoflavones possess a higher
affinity for ERbeta than ERalpha [4]. So the influence of
isoflavones is sufficient to cause a variety of biological
effects via estrogen receptors, especially ERbeta. We spec-
ulate that genistein or other isoflavone molecule(s) may
be responsible for the increased neuronal apoptosis
observed in this study.

It is intriguing to consider the following hypothesis as to
how dietary soy isoflavones modulate AVPV cell and vol-
ume characteristics via ERbeta. First, it is well established
that estrogens decrease AVPV volumes during pre- and
postnatal development [37]. Second, it is also well estab-
lished that the aromatase cytochrome P450 enzyme (that
converts androgens to estrogens) is present in neuronal
hypothalamic regions and that aromatase mRNA expres-
sion and aromatase enzymatic levels decline with increas-
ing postnatal age, especially after puberty, compared to
the prenatal developmental interval [38]. Thus, even
though there is abundant steroid substrate from the testes
(i.e. testosterone) during adulthood, the levels of hypoth-
alamic aromatase decline more than 50-fold compared to
prenatal levels. This dramatically decreases the local bio-
synthesis of estrogens. In this way, consumption of an iso-
flavone-rich diet (Phyto-600) greatly increases the
concentration of estrogen-like molecules in the circula-
tion and in the hypothalamus (see above). Therefore, this

Page 6 of 12

(page number not for citation purposes)



BMC Neuroscience 2007, 8:13

http://www.biomedcentral.com/1471-2202/8/13

Phyto-free

Figure 4

Representative photomicrographs of immunohistochemistry for tyrosine hydroxylase (TH) labeled neurons in AVPV of 150
day-old Long-Evans rats fed either an isoflavone-free diet (Phyto-free) or an isoflavone-rich diet (Phyto-600) from conception
until time tissue collected. TH-immunoreactive(ir) cells were visualized with diaminobenzadine (DAB) and seen as brown cyto-
plasma staining. Sections were counterstained with hematoxylin (blue). Positive control of TH staining is shown in Phyto-free
fed female AVPV (A). In males, no significant differences in the number of TH-ir neurons were observed between Phyto-600
(C) and Phyto-free AVPV (B). The TH-ir cells in the boxed regions were indicated (*) at high magnification in the up-left corner

of B and C. Bar = 25 um for all the photomicrographs.

would suggest that there are very low levels of endogenous
estrogens being formed within hypothalamic regions,
while very high circulating estrogen-like isoflavone mole-
cules having the ability to bind ERbeta account for the
increase in apoptosis in the AVPV of Phyto-600 fed males,
versus very little apoptosis was as seen in the AVPV of
Phyto-free fed males. Compared with the "estrogenic mas-
culinization" during male AVPV development, the "die-
tary phytoestrogenic masculinization" is likely to be a
mechanism underlying the loss of ERbeta-containing neu-
rons we observed in these adult male rats. Even though it
is not certain that the increased cell death in adult male
AVPV is beneficial; it could be speculated that it is not det-
rimental. The influence of dietary isoflavones on apopto-
sis was studied in the present study at 150 days of age
when the characteristics of AVPV have been fully devel-
oped while the volume of AVPV was reported to be
affected by dietary treatment. Further research at different

developmental stages is essential to explore how isofla-
vones influence neuronal apoptosis.

Finally, plenty of information in the literature shows that
conventional research and development approaches fail
to fully isolate or identify chemicals for synthesis of ana-
logues from well-known Chinese medicinal plants [39]. It
is not surprising that equol injection, with equivalent
exposure level and interval to dietary consumption
described previously, did not alter hormone-sensitive
hypothalamic volumes in rats during adulthood. This
indicates that multiple factors or a combination with gen-
istein may be required to alter brain structures in the sen-
sitive rat model.

Conclusion
The present experiments demonstrate that the consump-
tion of soy isoflavones 1) induces neuronal apoptosis
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Figure 5

Representative photomicrographs of apoptotic cells
(TUNEL) and ERalpha-immunoreactive cells (ERalpha IHC) in
AVPV of 150 day-old male Long-Evans rats. All the photomi-
crographs (coronal brain sections) are from animals fed an
isoflavone-rich diet (Phyto-600) from conception until time
tissue collected. ERalpha-immunoreactive (ir) cells were visu-
alized with diaminobenzadine (DAB) and seen as brown
nuclear staining (arrows in ERalpha). Sections were counter-
stained with hematoxylin (blue). A, C, E, G and | are repre-
sentative photomicrographs of TUNEL staining in AVPV (n =
5). B, D, F, H and ] are ERalpha IHC stained sections within
AVPV, which are 6 um apart from A, C, E, G, and |, respec-
tively. Apoptotic cells (stars in TUNEL) were not ERalpha-ir
(stars in ERalpha). Bar = 25 um for all the photomicrographs.

and/or DNA fragmentation in the AVPV of adult male
rats, 2) the number of ERalpha-dependent dopaminergic
neurons is not altered by the diet treatments, and 3)
almost all the apoptotic cells are ERbeta-ir, but not ERal-
pha-ir. However, exposure to equol does not alter AVPV
volume. In summary, these findings provide direct evi-
dence that consumption of soy isoflavones influences loss
of ERbeta-containing neurons in male AVPV.

Since soy dietary content is usually not considered as an
experimental variable, future research designs should take
into account this potential important and pervasive hor-
monal factor.

Methods

Dietary treatment

Long-Evans rats (12 males and 16 females) were pur-
chased from Charles River Laboratories (Wilmington,
MA, USA) at 50 days of age for breeding. These animals
were caged individually and housed in the Brigham
Young University Bio-Ag vivarium and maintained on an
11-hour dark and 13-hour light schedule (lights on 0600~

http://www.biomedcentral.com/1471-2202/8/13
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Figure 6

Representative photomicrographs of apoptotic cells
(TUNEL) and ERbeta-immunoreactive cells (ERbeta IHC) in
AVPV of 150 day-old male Long-Evans rats. All the photomi-
crographs (coronal brain sections) are from animals fed an
isoflavone-rich diet (Phyto-600) from conception until time
tissue collected. ERbeta-immunoreactive cells were visual-
ized with diaminobenzadine (DAB) and seen as brown
nuclear staining. Sections were counterstained with hema-
toxylin (blue). A, C and E are representative photomicro-
graphs of TUNEL staining in AVPV (n = 5). B, D and F are
ERbeta immunohistochemistry stained sections within AVPV,
which are 6 um apart from A, C and E, respectively. Except a
few apoptotic cells (stars in C and E) missing in ERbeta IHC
sections, all other apoptotic cells (arrows in TUNEL) were
ERbeta-immunoreactive (arrows in ERbeta). Bar = 25 um for
all the photomicrographs.

1900). The use of animals and the methods of this study
were approved by the Institute of Animal Care and Use
Committee (IACUC) at Brigham Young University (BYU).

Upon arrival all animals were allowed ad libitum access to
water and either a commercially available diet with high
phytoestrogen levels (Harlan Teklad Rodent Diet 8604,
Madison, WI, USA) containing approximately 600 ppm of
soy isoflavones (referred to hereafter as the Phyto-600
diet), or a custom diet (Ziegler Bros., Gardner, PA, USA)
containing approximately 10-15 ppm of soy isoflavones
(referred to hereafter as the Phyto-free diet) [40]. The con-
tent and nutrient composition of these diets is described
in detail elsewhere [40]. The diets were balanced and
matched for equivalent percentage content of protein, car-
bohydrate, fat, amino acids, vitamins and minerals, etc
[40]. Circulating phytoestrogen serum levels from rats
maintained on these diets have been reported previously
by our laboratory using GC/MS analysis [2,16,18,40]. The
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Phyto-free Phyto-600

A Total number of cells in the AVPY
B Number of ERbeta-ir cells
C = Number of TUNEL stained cells

Figure 7

Schematic diagram of the total number of cells relative to the
numbers of ERbeta-ir cells and TUNEL stained cells in AVPV
of Long-Evans rats fed either an isoflavone-free diet (Phyto-
free) or an isoflavone-rich diet (Phyto-600) from conception
until time tissue collected. The total number of cells in
Phyto-free AVPV is similar to that of Phyto-600 (A). In the
Phyto-free group, ERbeta-ir cells represent approximately
67.5% of the total number of cells (B), whereas TUNEL
stained cells account for approximately 3.6% of total cells in
AVPV (C). In the Phyto-600 group, ERbeta-ir cells represent
approximately 52.8% of the total number of cells (B),
whereas TUNEL stained cells account for approximately
33.1% of total cells in AVPV (C). Independent of diet treat-
ment, most of the TUNEL stained cells express ERbeta.

animals were time mated within their respective diets so
that the offspring of these pairings would be exposed
solely to either the Phyto-600 or Phyto-free diet.

Brain sample preparation

At approximately 150 days of age, the male offspring (n =
5) by diet treatment were deeply anesthetized with a mix-
ture of ketamine/acepromazine (75/2.5 mg/kg IP) and
transcardially perfused with isotonic saline and then 10%
buffered formalin. The whole brain was immediately
removed from the skull and stored in 10% buffered for-
malin for 14 days and 10% sucrose for one week before
being embedded in paraffin. Coronal brain sections were
prepared at 6 micrometers with a microtome. The AVPV
was located by using landmarks such as the anterior com-
missure and third ventricle. Then sections on the exact
same plane from different animals were processed for fur-
ther comparisons between animals described below.

TUNEL staining

To detect apoptosis in AVPV, NeuroTACSTM II (a reagent
kit for in situ detection of apoptosis in neural tissue; Cat #
4823-30-K) was purchased from Trevigen, Inc. (Gaithers-
burg, MD, USA). NeuroTACS II utilizes terminal deoxynu-

http://www.biomedcentral.com/1471-2202/8/13
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Figure 8

Representative photomicrographs of ERalpha and ERbeta-
immunoreactive cells (IHC staining) in AVPV of 150 day-old
male Long-Evans rats. All the photomicrographs (coronal
brain sections) are from animals fed an isoflavone-free diet
(Phyto-free) from conception until time tissue collected. ER-
immunoreactive (ir) cells were visualized with diaminobenza-
dine (DAB) and seen as brown nuclear staining. Sections
were counterstained with hematoxylin (blue). A, C, Eand G
are representative photomicrographs of ERalpha IHC stain-
ing in AVPV (n = 2). B, D, F and H are ERbeta IHC stained
sections within AVPV, which are 6 um apart from A, C, E and
G, respectively. Some cells are both ERalpha- and ERbeta-ir
(stars for ERalpha and ERbeta). The number of cells in the
AVPV that express both ERalpha and ERbeta is approxi-
mately 20-22% of the total number of cells within this
nuclear structure. Some cells are only ERalpha-ir or ERbeta-
ir (arrows in ERalpha or ERbeta). Bar = 25 pm for all the
photomicrographs.

cleotidyl transferase (TdT) to incorporate biotinylated
nucleotides at the sites of DNA breaks which are character-
istic of apoptosis. The deparaffinized slides were stained
according to the manufacturer's direction. Briefly, brain
sections were rehydrated in ethanols and permeablized.
Endogenous peroxidase was inactivated by 3% hydrogen
peroxide. The sections were incubated in a humidity
chamber with labeling reaction at 37°C for 1 h, then with
streptavidin HRP for 15 min at room temperature. Next
they were developed with diaminobenzidine (DAB) and
counterstained with hematoxylin. After dehydration, the
slides were coversliped with Permount (Cat # 26905,
Richard-Allan Scientific, Kalamazoo, MI, USA).

The samples were viewed with an Olympus BX61 micro-

scope using 40x objectives. TUNEL-positive apoptotic
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Figure 9

AVPV volumes of adult male Long-Evans rats after equol
injection treatment. The volumes were measured and ana-
lyzed with Bioquant®. No significant alterations were
observed between equol-treated compared to the control
(DMSO) group (two sample student t-test).

cells exhibited a brown nuclear staining. The total number
of counterstained cells in AVPV in a single section was
counted (n = 5). Then, the total number of apoptotic cells
in AVPV on the same section was recorded. Additionally,
the total cumulative incidence of apoptosis was calculated
as a percentage of the total population of cells. Then the
cellular density of the AVPV was calculated by counting
the cell number in 2 most condensed fields of 100 x 100
pm within AVPV in each section and expressed as number
of cells per 10,000 um?2. For each group, a total of 6 meas-
urements on cellular density were performed.

Dual immunofluorescent (IF) staining of GFAP and NeuN
After TUNEL staining, the adjacent sections were stained
with dual immunofluorescent staining of GFAP and
NeuN (the markers for astrocytes and neurons, respec-
tively). GFAP (Glial Fibrillary Acidic Protein), the main
constituent of intermediate filament of astrocytes, is
found in the cytoplasm and appendages. NeuN (NEUro-
nal Nuclei) is found only in neurons. The deparaffinized
and rehydrated sections were microwaved in 10 mM
Sodium Citrate buffer (antigen retrieval) at full power
(900 W) for 1 min, followed by 9 min at half power and
20 min to cool down. After being blocked in 3% goat
serum in PBS for 1 h, the sections were incubated in a
humidity chamber at 4°C overnight with the primary
antibodies, a rabbit anti-GFAP (1:1000, Cat # AB5804,
Chemicon, Temecula, CA, USA) and a mouse anti-NeuN
(1:100, Cat # MAB377, Chemicon, Temecula, CA, USA).
The sections were then rinsed three times in phosphate
buffered saline (PBS) for 5 min each and incubated in a

http://www.biomedcentral.com/1471-2202/8/13

humidity chamber for 1 h at room temperature with sec-
ondary antibodies, a far-red-fluorescent Alexa Fluor 633
dye labeled goat anti-rabbit IgG (1:200; Cat # A-21072,
Molecular Probes, Eugene, OR, USA) and a bright green-
fluorescent Alexa Fluor 488 dye labeled goat anti-mouse
IgG (1:200; Cat # A-11070, Molecular Probes, Eugene,
OR, USA). Then, the samples were rinsed in PBS three
times for 5 min each and mounted with Fluoromount-G
(Cat # 0100-01, Southern Biotechnology Associates, Inc.,
Birmingham, AL, USA). Dual-immunofluorescent speci-
mens were analyzed at high power (60x objective lens;
oil) with an Olympus FluoView FV300 confocal micro-
scope (Minneapolis, MN, USA) using Blue Argon (488
nm) laser and Red Helium Neon (633 nm) laser.

Immunohistochemical (IHC) staining of tyrosine
hydroxylase (TH)

As described above for immunofluorescent staining, the
antigen was retrieved by incubation in 10 mM sodium cit-
rate buffer and endogenous peroxidase was inactivated by
3% hydrogen peroxide. Then the samples were blocked in
3% goat serum in PBS and incubated at 4°C overnight in
primary antibody solution of goat anti-TH (1:500, Cat #
AB152, Chemicon, Temecula, CA, USA), which was local-
ized with a biotinylated goat anti-rabbit IgG (1:500, Cat #
AP132P, Chemicon, Temecula, CA, USA; 1 h at room tem-
perature). Staining (DAB), counterstaining (hematoxy-
lin), mounting and viewing was the same as described for
TUNEL staining.

Immunohistochemical (IHC) staining of estrogen receptor
(ER) alpha and beta

As described above for TUNEL and TH IHC staining, the
sections were deparaffinized, rehydrated and perme-
ablized, followed by the antigen retrieval in sodium cit-
rate buffer and inactivation of endogenous peroxidase in
3% hydrogen peroxide. After being blocked in 3% goat
serum in PBS for 1 h at room temperature, the sections
were incubated in a humidity chamber at 4°C overnight
with rabbit anti-ERalpha (1:1000, Cat # 06-935, Upstate,
Lake Placid, NY, USA) or rabbit anti-ERbeta (1:100, 10 pg/
ml, Cat # 06-629, Upstate, Lake Placid, NY, USA; these
antibodies have been employed previously with validated
methods [41,42]. Immunoparticipate was visualized by
an ABC Elite kit and DAB methods (Cat # PK-6101 and
Cat # SK-4100, respectively, Vector Laboratories, Burlin-
game, CA, USA). Counterstaining (hematoxylin), mount-
ing and viewing was the same as described for TUNEL
staining.

ER-positive apoptotic cells exhibited a brown nuclear
staining. The total number of counterstained cells in
AVPV in a single section was counted (n = 5). Then, the
total number of ER-positive cells in AVPV on the same sec-
tion was recorded. Finally, the percentage of ER-positive
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cells of total cells in AVPV was calculated for each animal.
Negative controls for all labeling studies were carried out
by omitting TdT (TUNEL) or the primary antibodies.

Equol injection treatment

Male Long-Evans rats at 50 days of age were placed on the
Phyto-free diet. At 150 days of age the rats were matched
by body weight and then divided into control and equol
treatment groups (n = 4). At 190 days, the rats received
daily s.c. (0.1 cc) injections of control vehicle (DMSO) or
equol at approx. 2.5 mg/Kg for 25 consecutive days. At
215 days of age the animals were sacrificed, blood was
collected for equol levels; the brains processed via stand-
ard staining and analyzed via Bioquant® for morphomet-
ric AVPV parameters by treatments [2,16]. The serum
equol levels were equivalent to consuming Phyto-600
diet.

Statistical analysis

All the data were expressed as Mean + SEM and were tested
by 2-sample Student T-test in Minitab. Values were con-
sidered significantly different if p < 0.05.
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