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Abstract

Background: Several clinical studies suggested that antipsychotic-based medications could
ameliorate cognitive functions impaired in certain schizophrenic patients. Accordingly, we
investigated the effects of various dopaminergic receptor antagonists — including atypical
antipsychotics that are prescribed for the treatment of schizophrenia — in a model of toxicity using
cultured hippocampal neurons, the hippocampus being a region of particular relevance to cognition.

Results: Hippocampal cell death induced by deprivation of growth medium constituents was
strongly blocked by drugs including antipsychotics (10-'9-10-6 M) that display nM affinities for D,
and/or D, receptors (clozapine, haloperidol, (*)-sulpiride, domperidone, clozapine, risperidone,
chlorpromazine, (+)-butaclamol and L-741,742). These effects were shared by some caspases
inhibitors and were not accompanied by inhibition of reactive oxygen species. In contrast, (-)-
raclopride and remoxipride, two drugs that preferentially bind D, over D, receptors were
ineffective, as well as the selective D5 receptor antagonist U 99194. Interestingly, (-)-raclopride (10-
6 M) was able to block the neuroprotective effect of the atypical antipsychotic clozapine (10-¢ M).

Conclusion: Taken together, these data suggest that D2-like receptors, particularly the D,
subtype, mediate the neuroprotective effects of antipsychotic drugs possibly through a ROS-
independent, caspase-dependent mechanism.

Background

There is clinical evidence of cognitive dysfunction in cer-
tain schizophrenic patients that is likely to be independ-
ent of psychotic symptoms [1]. This dysfunction does not
seem to involve a single brain region but rather a network
that includes cortical and sub-cortical regions such as the
hippocampus. The therapeutic benefits of various antipsy-
chotic drugs are thought to be predominantly associated

with their antagonistic actions on D2-like (D,, Dyand D,)
dopamine receptors in the brain [2,3]. Although early
studies with typical antipsychotic drugs (e.g. haloperidol,
chlorpromazine) mostly failed to report significant
improvements of cognitive behaviors in schizophrenic
patients [4-6], more recent data especially obtained using
atypical antipsychotics (e.g. clozapine, risperidone, olan-
zapine) demonstrated positive effects [7-12]. For exam-

Page 1 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16573831
http://www.biomedcentral.com/1471-2202/7/28
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Neuroscience 2006, 7:28

A. Hippocampal cultured neurons

D1 D2 D3I D4 D5 M

+ — F — F — + — + —
—-600 bp
—400 bp
—200 bp
B. Striatum
D1D2D3D4D5 M
- 600 bp
- 400 bp
—200 bp

Figure |

Agarose gel electrophoresis showing RT-PCR prod-
ucts of dopamine receptor subtypes (DI to D5)
mRNA:s in rat hippocampal neurons (A) and whole
striatum (B). Lanes (+) and (-) represent the PCR products
amplified from hippocampal neurons cDNAs following
reverse transcription in the presence or absence of reverse
transcriptase, respectively. The two hippocampal cultures
gave identical results. Expected size for PCR products: DI,
300 bp; D2, 538 bp and 451 bp; D3, 523 bp and 410 bp; D4,
324 bp; D5, 403 bp. Lane M, molecular size standard 100-bp
ladder.

ple, risperidone has been associated with improved verbal
working memory and executive functions whereas clozap-
ine and quetiapine seem to improve verbal fluency
[9,13,14].

The beneficial effects of antipsychotics on cognitive func-
tions and neuroprotection are supported by in vitro and
animal studies reporting on the protective effects of these
drugs in various models of toxicity including focal
ischemia [15-19], serum deprivation [20], oxidative stress
[21] and apoptosis [22]. More recently, it has been
reported that the antipsychotic olanzapine was neuropro-
tective against various forms of toxicity through the phos-
phorylation of kinases such as Akt [23].

In the present study, the possible neuroprotective proper-
ties of low concentrations of various antipsychotic drugs
and other dopamine receptor antagonists were studied in
a model of toxicity using primary cultured neurons of the
hippocampus, an area particularly relevant to cognitive
processes.

http://www.biomedcentral.com/1471-2202/7/28

Results

Dopamine receptor transcripts are expressed in mature
cultured hippocampal neurons

We estimated first the number of mature neurons in our
3-day old hippocampal cultures using immunocytochem-
istry for the neuron-specific marker NeuN [24]. Approxi-
mately 75% of the cells were labeled thereby indicating
that a high proportion of neurons were mature at this
stage.

We determined next if the genes coding for the dopamine
receptor subtypes were expressed in these cultures. The
primer pairs for the amplification of dopamine receptor
subtypes 1 to 5 cDNAs were first tested on RNA extracted
from rat striatum using a reverse transcription-multiplex
PCR (RT-mPCR). As shown in Fig 1B, all primer pairs were
able to generate products of the expected length. RT-
mPCR was next performed on samples from untreated 3
day-old primary hippocampal cultures. Transcripts for all
five dopamine receptor subtypes were also found to be
expressed in these cultures (Fig. 1A). Itis of note that band
intensities do not necessarily reflect relative expression
levels of transcripts for the various dopamine receptor
subtypes in the starting extract since no internal standards
were used. No products were seen when reverse tran-
scriptase was omitted in the RT step indicating that ampli-
fied fragments are from transcribed mRNA. Splice
isoforms for the D, and D, receptor subtypes were
observed as well, in both striatum and hippocampal cul-
tures. Sequencing of hippocampal main PCR products
confirmed that amplifications were specific for dopamine
receptors and that the D, primer pair amplified the two
alternatively spliced transcripts coding for functionally
distinct isoforms D,L and D,S [25,26].

Effects of typical and atypical antipsychotics against
toxicity induced by N2 constituents-deprivation

As previously described in rat neuroblastoma cells [27],
deprivation of transferrin, one of the major iron transport
protein in the blood [28], selenium, an essential nutrient
with antioxidant properties [29], as well as putrescine, a
drug with growth-stimulatory properties [27], resulted in
about 70 % of hippocampal neuronal cell death as moni-
tored 3 days later using MTT and NR colorimetric assays.
Cell death was strongly reduced, in a concentration-
dependent manner, in presence of atypical antipsychotics
such as clozapine which preferentially binds to D, recep-
tors over D, or D; receptors (Fig 2A) and risperidone, a
D,/D, receptor antagonist that protected hippocampal
neurons at the highest concentration tested here [100 + 6
(CT) vs 162 + 12 (CT + risperidone 10-° M); p < 0.01]. The
effects of these atypical antipsychotics were shared by the
classical antipsychotic haloperidol which offered a maxi-
mal protection at 10° M (Fig. 2B) while, as expected, a
higher concentration (104 M) was toxic on its own to hip-

Page 2 of 10

(page number not for citation purposes)



BMC Neuroscience 2006, 7:28

B CaMTT

>

CaMTT

I NR

)
a
S

]
S
S

N
S
8
Neuronal Survival
(% of control)

Neuronal Survival
(% of control)
N
R
3

a
S

=)
S

cT 107 10® 10°® CT 107 10® 10°®
[clozapine] M

aMTT [ NR

o

E CaMmTT

IS
S
S
I
=)
=3

@
S
S}
w
S
=3

N
=3
S}

Neuronal Survival
(% of control)
o
8
8

Neuronal Survival
(% of control)

100
cT 107 10® 10°

cT 107 10% 10°
[domperidone] M

cT 10"%10°® 10°®
[haloperidol] M

CT 107 10® 10°

http://www.biomedcentral.com/1471-2202/7/28

[ NR
c COMTT

[ NR

Neuronal Survival
(% of control)

CT 107 10® 10° cT 10108 10 T 107 10® 10°

[sulpiride] M

I NR F CaMTT I NR

Neuronal Survival
(% of control)

cT 10 108 10°

cT 107 10® 10°®
[(+)-butaclamol] M

CcT 107%10® 10°

[chlorpromazine] M

Figure 2

Effects of clozapine (A), haloperidol (B), (¥)-sulpiride (C), domperidone (D), chlorpromazine (E) and (+)-buta-
clamol (F) against toxicity induced by growth medium deprivation in enriched hippocampal neuronal cultures.
Neuronal survival is estimated using the MTT and neutral red (NR) colorimetric assays. Values represent mean + SEM of at

least three separate experiments, each performed in quadruplicate. *p < 0.05, **p < 0.0] compared to vehicle-treated groups.

pocampal neurons (10 + 2 vs 100 + 4; p < 0.01). Similar
effects were obtained with (+)-sulpiride, a selective D,
dopamine receptor antagonist belonging to the benza-
mide class (Fig 2C); domperidone, a D,/D; receptor
antagonist (Fig 2D); chlorpromazine, a typical antipsy-
chotic which binds with nM affinities to D,, D;, and D,
receptors (Fig 2E); and (+)-butaclamol, a D,/D,
dopamine receptor antagonist (Fig 2F). Interestingly, a D,
receptor antagonist, 1L-741,742 (10°M) [30] somewhat
protected neurons [100 + 5 (CT) vs 186 + 10 (CT + L-
741,742) and vs 156 + 15 (CT + haloperidol 10° M); p <
0.01]. Cells treated with the N2 supplement showed the
same magnitude of protection (with MTT values ranging
from 205% to 389% vs control groups) as that of cells
treated with most of drugs at 10-° M, suggesting that deple-
tion in growth medium rather than cell washes are
responsible for decreases in MTT and NR values.

In contrast, the piperidine metabolite of haloperidol,
which is devoid of affinity for D,-like receptor [31] was
ineffective (Fig 3A). Similarly, (-)-raclopride, a D,/D,
receptor antagonist, and the D, receptor antagonist (+)-

SCH-23390 failed to protect hippocampal neurons (Fig
3B,C). The D; dopamine receptor antagonist U 99194
maleate (10-°M)[32] was also ineffective [100 + 5 (CT) vs
100 + 6 (CT + U 99194)] (Table 1). Finally, remoxipride,
another D, receptor antagonist with weak D, receptor
affinity, failed to protect neuronal cells [100 + 3 (CT) vs
108 + 3 (CT + remoxipride) vs 141 + 4 (CT + N2)].

Table 1 summarizes the apparent affinities of various
dopamine receptor antagonists for the D, and D, subtypes
with their protective effects on hippocampal neurons.

D2 but neither sigma nor NMDA receptor antagonists
blocked the protective effect of antipsychotics

Besides its well-known antidopaminergic activity, it has
been hypothesized that haloperidol protects neuronal
cells[16] through its purported activity at o, [33] or
NMDA receptors [34]. However, neither NE-100 (10-7-10
5M), a potent and selective &, receptor subtype antago-
nist, nor (+)-MK-801 (10°-10-5> M), a non-competitive
NMDA antagonist, affected neuronal survival (Table 2).
Moreover, these compounds failed to modulate the pro-
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Figure 3

Effects of piperidine metabolite of haloperidol (A),
raclopride (B) and (+)-SCH 23390 (C) against toxicity
induced by growth medium deprivation in enriched
hippocampal neuronal cultures. Neuronal survival is
estimated using the MTT and neutral red (NR) colorimetric
assays. Values represent mean + SEM of at least three sepa-
rate experiments, each performed in quadruplicate.

tective effect of haloperidol (data not shown). Interest-
ingly, the protective effect of clozapine (10¢ M) was
blocked by a 5-min pre-treatment with the (-)-raclopride,
the sole D2-like receptor antagonist that failed to protect
cells in our model (Table 2).

http://www.biomedcentral.com/1471-2202/7/28

The protective effects of antipsychotic drugs may involve
caspases but not the inhibition of the production if free
radicals

In light of the purported anti-apoptotic effects of atypical
antipsychotics drugs [22], we investigated next the effects
of various inhibitors of caspases, these enzymes likely
playing a pivotal role in apoptosis-related cell death. In
our model, the co-administration of the caspase-3 inhibi-
tor DEVDO-CHO (5 puM), the caspase-8 inhibitor IETD-
CHO (5 uM) or to a lesser extent the caspase-9 inhibitor
LEHD-CHO (5 uM) significantly reduced cell death,
DEVDO-CHO being the most potent (Table 3). The pro-
tective effects of inhibitors of caspases 3, 8 and 9 were not
accompanied by changes in ROS accumulation, as evalu-
ated by the DCF assay (Table 3). It has recently been
shown that the atypical antipsychotic olanzapine
increased cell viability after an exposure to H,0, [21] sug-
gesting that blockade of peroxide accumulation may be
involved in the protective effects of antipsychotics
reported here. However, results obtained using the DCF
assay indicated that haloperidol (10-¢ M) did not affect
intracellular ROS (in particular peroxide) accumulation
whereas the well-known Ginkgo biloba extract EGb 761
that displayed potent antioxidant properties [35] strongly
reduced ROS production [100 + 3 (CT) vs 93 + 3 (CT +
haloperidol 10-°M) and vs 62 + 3 (CT + EGb 761 50 pg/
ml), p < 0.01]. Moreover, haloperidol and other antipsy-
chotic drugs including (+)-sulpiride and chlorpromazine
did not protect hippocampal neurons from toxicity
induced by H,0, (100 uM) in our model (data not
shown).

Discussion

Our data indicate that low concentrations of various
antipsychotic drugs protect hippocampal neurons against
toxicity induced by growth medium deprivation. To our
knowledge, this is the first study that reports (with the
exception of haloperidol) on the neuroprotective effects
of various neuroleptics having high affinity for the
dopamine D, and D, receptor subtypes in hippocampal
cultured neurons. These effects are apparently not linked
to the inhibition of free radical production and may
involve a caspase-associated mechanism.

The protective effects of antipsychotics are not likely to be
related to their inhibitory action on ;- or NMDA recep-
tor-mediated responses [33,36] since neither NE-100 nor
(+)-MK-801 offered protection by themselves nor blocked
the neuroprotective effects of haloperidol. On the other
hand, our data suggest that D, and/or D, receptors medi-
ate the effects of antipsychotic drugs in our model. First,
RT-PCR data showed that D, and D, receptors are
expressed in hippocampal neurons. These data are in
agreement with previous studies reporting on the pres-
ence of these receptors subtypes in the hippocampal for-
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Table I: Comparison of the affinities (Ki values, nM) of various receptor antagonists at dopamine D, and D, receptors with their

protective effects (at 10-°M) on hippocampal neurons (expressed in % of MTT values vs control group).

D, subtype Affinity (Ki, nM)

(+)-butaclamol 0.8
Clozapine 36-190
Chlorpromazine 0.66—1.5
Domperidone 0.30
Haloperidol 0.35-1
()-sulpiride 2 9.2-15
L-741,742 > 1700
Risperidone 0.3-5.9
Haloperidol metabolite > 10000
Raclopride 0.64-1.8
Remoxipride 30-2000
U 99194 2281

D, subtype Affinity (Ki, nM) Neuroprotective activity

(% vs control, MTT values)

40 464
1.640 340
1.15-37 320
ND 299
0.84-5.1 271
52-1000 199
35 186
0.25-16 162
ND 108
237-620 110
2800-3690 108
> 10000 100

Data from [30-32, 39-45]. ND, not determined.
aS-(-)-sulpiride.

mation [37,38]. Second, all antipsychotics tested here
(with the exception of (-)-raclopride and remoxipride)
that display nM affinities for D, and D, receptors [40-46]
were neuroprotective to hippocampal neurons. Third, (-)-
raclopride, a preferential D, antagonist, almost com-
pletely blocked the neuroprotective effects of clozapine,
an atypical antipsychotic with a particularly high affinity
for the D, subtype.

A preferential role for the D, receptor in the neuroprotec-
tive effect of the various antipsychotics tested in our
model is of special interest. Haloperidol, risperidone,
chlorpromazine, (+)-butaclamol, domperidone and cloz-
apine exhibit high nM affinities for this receptor sub-type
[39,42,43,46] and are potent neuroprotective agents in
our model. Moreover, L-741,742, a rather selective D,
antagonist [30] was found to be neuroprotective in our
model while (-)-raclopride and remoxipride which bind

with only modest affinities to the D, subtype [39,44] were
not effective. U 99194, a potent and selective D, receptor
antagonist, and SCH 23390, a D, antagonist, failed to be
neuroprotective, suggesting that these two receptor sub-
types do not mediate the protective effects of antipsy-
chotic drugs in our model (see Table 1 for details).
Interestingly, in the mature mammalian brain, the level of
D, receptors is greater than that of the D, subtype in the
hippocampal formation [37]. It would now be of interest
to explore further the respective role of the D, and D,
receptors in the neuroprotective effects of antipsychotics
in hippocampal neurons using molecular approaches
such as knock-out animals and siRNA. We cannot exclude
however the possibility that their neuroprotective ability
may also be due to their purported o;-adrenoceptor
antagonist activity [47] which has been suggested to con-
tribute to their clinical effect [48]. It has recently been
shown that the atypical antipsychotic olanzapine attenu-

Table 2: Effects of NE-100, (+)-MK-801 and of a co-treatment of raclopride with clozapine in enriched hippocampal neuronal cultures,

as estimated by the MTT and NR assays

Drugs MTT (% of control) NR (% of control)
Control 100 £ 6 ND
+ N2 177 £ 10 ND
+ Raclopride (10-¢ M) 103+£5 ND
+ Clozapine (10-¢ M) 199+ 13 ND
+ Raclopride (10-¢ M) + Clozapine (10-¢ M) 117 + 81 ND
Control 100 £ 6 100 + 4
+ NE-100 (107 M) 97+ 6 93+3
+ NE-100 (106 M) 112+9 95+ 4
+ NE-100 (10> M) 127 £ 9 82 + 5*
Control 100+ 5 100 £ 8
+ (+)-MK-801 (10-6 M) 123+ 9 128 + 6
+ (+)-MK-801 (105 M) 130+ 12 112+ 14

Data represent mean + SEM of at least three separate experiments. *p < 0.01, control versus drugs-treated cells. fp < 0.01, cells treated with
clozapine alone versus cells co-treated with raclopride and clozapine. ND: not determined.
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Table 3: Effects of inhibitors of caspases 3, 8 and 9 against toxicity and ROS accumulation after serum deprivation in enriched
hippocampal neuronal cultures, as estimated by MTT and DCF assays, respectively.

Drugs MTT values (% of control) DCEF values (% of control)
Control 100 + 4 100 £ 6

+ Inhibitor of caspase 3 (DEVDO-CHO, 5 uM) 171 £12% 8514

+ Inhibitor of caspase 8 (IETD-CHO 5 pM) 141 £9* 96 +5

+ Inhibitor of caspase 9 (LEHD-CHO, 5 puM) 135+ 10 * 896

+ Clozapine (I uM) 140 £ 8 * ND

Data represent mean + SEM of at least three separate experiments. *p < 0.0 compared to vehicle-treated cells. ND: not determined

ated cell death produced by H,O, in PC12 cells through a
mechanism that involves the upregulation of the antioxi-
dant enzyme superoxide dismutase [21]. Although the
effects of D,-like receptor antagonists were shared by anti-
oxidants such as Trolox [49] and EGb 761 (data not
shown), we found that they were ineffective against toxic-
ity induced by H,O, (haloperidol, (+)-sulpiride and chlo-
rpromazine) and did not attenuate intracellular ROS
production (haloperidol), suggesting that the protective
effects of antipsychotic drugs are not due to an antioxi-
dant activity in our model. Moreover, studies from animal
models reported that olanzapine and risperidone, but not
haloperidol, stimulated neurogenesis in rat brain areas
(e.g. hippocampus) [50] and preserved cholinergic path-
ways and cognitive function, possibly by increasing levels
of nerve growth factor (NGF) [51]. This suggests that the
promoting effects of antipsychotics -particularly atypical
ones- on neuronal function may be also due to other
mechanisms including stimulatory effect on neurotrophic
factors. In support of this hypothesis, it has been demon-
strated that olanzapine and other atypical antipsychotics
including clozapine, quetiapine and risperidone exerted
protective effects in PC12 cells, possibly by decreasing the
expression of the gene encoding for the neurotrophin
receptor p75 [20,52]. This is of particular interest here
since the p75 receptor has been reported to mediate hip-
pocampal neuronal loss, possibly via the activation of cas-
pases [53]. In support of an anti-apoptotic effect of
antipsychotic drugs in our model, inhibitors of caspases 3,
8 and 9 were found to exert neuroprotective effects with-
out affecting ROS production. Interestingly, it has recently
been shown that clozapine and risperidone prevented
apoptosis and DNA damage induced by the apoptotic
agent N-methyl-4-phenylpyridinium in PC12 cells, possi-
bly by attenuating the activation of an enzyme known as
glycosylase [22].

Although only obtained using an in vitro model, our data
are in accordance with the view that treatment with atyp-
ical antipsychotics may improve cognitive functions in
schizophrenia [7-11,13,54,55]. Interestingly, only low
concentrations of the various antipsychotics tested here,
(with the exception of chlorpromazine that is only effec-

tive at 1 uM), were needed in our model to offer neuro-
protection, much lower than those (i.e. 10-50 uM) used
by others mostly in PC12 cells [20,23,56]. Considering
tissue penetration and the purported levels of antipsy-
chotics found in rodent brains [57], it is likely that upon
repeated treatments, these drugs can reach levels that are
sufficient to be neuroprotective.

Conclusion

In conclusion, our data show that various D,-like receptor
antagonists were able to protect primary hippocampal
cultured neuronal cells against cell death induced by
medium deprivation. Further studies are necessary to con-
firm the role of D,-like (D, and/or D,) dopamine recep-
tors and subsequent intracellular signaling pathways such
as the inhibition of apoptosis-related effectors. Our find-
ings also support the hypothesis that antipsychotics could
modulate, via their neuroprotective properties, cognitive
status in schizophrenic patients.

Methods

Materials

Materials used for cell cultures and Reverse Transcription-
PCR were purchased from Invitrogen-Gibco BRL (Burling-
ton, Ontario, Canada) and from Sigma Chemical Co.
(Oakville, On, Canada). Haloperidol, (-)-eticlopride,
raclopride, chlorpromazine and risperidone were
obtained from Sigma Chemical Co. (Oakville, On, Can-
ada). U 99194 maleate and L-741,742 hydrochloride were
obtained from Tocris (Ellisville, MO, USA). The ginkgo
biloba extract EGb 761 was kindly provided by IPSEN lab-
oratories (Paris, France). Unless stated otherwise, other
chemicals were purchased from Sigma-RBI (Natik, MA,
USA). All drugs were freshly prepared on the day of the
experiment in a final concentration of ethanol or DMSO
that does not exceed 0.01%.

Neuronal hippocampal cell cultures

Enriched neuronal hippocampal cells were prepared from
E19 fetuses obtained from Sprague-Dawley rats (Charles
River Canada, St-Constant, Québec, Canada) as described
previously [58]. Animal care was according to protocols
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and guidelines of the McGill University Animal Care
Committee and the Canadian Council for Animal Care.

Hippocampal cells were plated at day 0 at a density of
approximately 12 x 104 viable cells per well in 96-well
plates. They were grown in Dulbecco's modified Eagles
medium (D-MEM) medium supplemented with 20 mM
KCl, 15 mM HEPES and 1% (v/v) serum-free growth
medium N2 (final composition: 5 pu g/ml insulin, 100 pM
putrescine, 20 nM progesterone, 100 pg/ml transferrin, 30
nM selenium), and maintained at 37°C in a 95% air/5%
CO, humidified atmosphere during 3 days.

Immunochemistry

On day 0, hippocampal neurons were plated on poly d-
lysine (25 pg/mL)-coated 12 mm glass coverslips (Fisher,
Nepean, On, Canada) placed in multiwell plates and
grown in the same medium as described above. On day 3,
the medium was removed, the cells rinsed with PBS and
fixed with 4% paraformaldehyde at room temperature
(RT) for 15 min. Cells were pre-treated with 0.1% Triton
X-100 for 20 min followed by a blocking step with 5%
normal donkey serum (NDS)/bovine serum albumine
(BSA) 5%/0.1% Triton X-100 in PBS for 20 min at RT. The
cells were then incubated overnight at 4°C with a mouse
anti- NeuN monoclonal antibody (1:250; Chemicon,
Temecula, CA, USA) in PBS supplemented with 0.1% Tri-
ton X-100, NDS (5%) and BSA (0.5%). After several
washes in PBS, the secondary antibody (Alexa Fluor 568
goat anti-mouse IgG,, 1:200; Invitrogen) diluted in the
same buffer as the primary antibody was added and incu-
bation proceeded for 2 hrs at RT. The coverslips were
washed several times then mounted on slides with DAPI-
containing Vectashield (Vector Laboratories, Burlington,
On, Canada). Hippocampal cells were examined using
conventional immunofluorescence microscopy and
counted from three 40x magnification fields on one slide
for each experimental condition. Each experiment was
repeated using a different culture preparation.

Reverse Transcription-Polymerase Chain Reaction (RT-
PCR)

RT-PCR was performed using a sensitive two-step PCR
protocol according to [59] with some minor modifica-
tions. Total RNA was isolated from 3-day-old rat primary
cultured hippocampal neurons (from two different exper-
iments) and from rat striatum (P14) by using the Qiagen
(Mississauga, On, Canada) RNeasy midi-kit in conjunc-
tion with the RNase-free DNase set according to the man-
ufacturer's protocol. First strand ¢cDNA was generated
from 1 pgtotal RNA in a 20 pl reaction containing: 2.5 uM
random hexamers (Applied Biosystems, Foster City, CA,
USA), 10 mM DTT (Sigma), 20 U Ribonuclease Inhibitor
(Takara Biomedicals, Otsu, Japan), 0.5 mM dNTP, 1X First
strand buffer, and 100 U SuperScript II RNase H- Reverse

http://www.biomedcentral.com/1471-2202/7/28

Transcriptase (all from Invitrogen). Following an over-
night incubation at 42°C, the enzyme was denatured at
70°C and the RNA complementary to the cDNA was
hydrolysed with 2U RNaseH (Takara Biomedicals) for 20
min at 37°C. Reactions in which the reverse transcriptase
was omitted were run in parallel as controls for any resid-
ual genomic DNA.

In the first step PCR, cDNAs for dopamine receptor sub-
types D, to D were amplified simultaneously from 2 ul of
each reverse transcription reactions in 20 cycle multiplex
reactions (mCPR). This was followed by a second round
of 35 cycles PCR in which individual cDNAs (D, to Dy)
were amplified separately in reactions using 2% of the first
round products as substrate. All PCR amplifications
(94°C, 30s; 60°C, 30 s; 72°C, 35 s) were performed in a
96-well thermocycler (GeneAmp 9700, Applied Biosys-
tems). The final reaction volume for each amplification
reaction was 100 pl and contained 1x PCR buffer, 2 mM
MgCl,, 200 uM dNTP, 1 U Platinum Taq DNA polymerase
(all from Invitrogen), and 10 pmoles of each selected for-
ward and reverse primers. Primer pairs (custom-synthe-
sized by Invitrogen) for D,-like dopamine receptor
subtypes D,, D, and D, were designed to flank at least
one intron according to the NCBI GenBank sequence
database and to lie outside regions of significant homol-
ogy. Likewise, primer pairs amplifying sequences from
intronless coding regions of D;-like (D, and Ds) receptor
subtypes were derived from regions of low homology.
Primer positions for D, or D; were chosen in the vicinity
of those used by [60] to detect possible alternative splicing
isoforms.

The following oligonucleotide primers were used (the pre-
dicted size for PCR products are given in parentheses):
receptor D,, forward 5'-CATCACCTTCGATGTGITTGT-
GTG-3' and reverse 5'-GCTATTCCACCAGCCTCITCCIT-
3' (300 bp); receptor D,, forward 5'-GCCAACCCT-
GCCITTGTGGT-3' and reverse 5'-GCTTTCTGCGGCT-
CATCGTCT-3' (538 bp and 451 bp); receptor D5, forward
5'-GCCTGGTATGTGCTGCTGTGCT-3' and reverse 5'-
CGTTTITCTITGCCTITGCCTCA-3' (523 bp and 410 bp);
receptor D,, forward 5'-TCTACTCCGAGGGTGGCGTGT-
3' and reverse 5'-GCAGGAAGAAGGAACAAATGGATG-3'
(324 bp); receptor D, forward 5'-GGAGGAAGGCT-
GGGAGCTAGAA-3' and reverse 5'-GCTGACACAAG-
GGAAGCCAGTC-3' (403 bp).

Fifteen pul of each second round PCR were analyzed on a
2% agarose gel with 1 pug of molecular size standards (Inv-
itrogen). Discrimination between potential amplification
of genomic DNA sequences and RT-PCR on mRNA was
based on the size of the PCR product (in the case of D,,
D,, and D, receptors) and on the absence of a PCR prod-
uct when reverse transcriptase was omitted (for all 5 sub-
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types). PCR products of the anticipated sizes were then
purified with the QIAquick PCR purification kit (Qiagen),
and sequenced at Laval University's Service d'Analyse et de
Syntheése SCF Facility (Québec, Canada) to ensure they
matched the respective known cDNA sequences.

Toxicity induced by growth medium deprivation

At day 3 of plating, the medium was removed and cells
were incubated at 37°C in D-MEM medium supple-
mented with 15 mM HEPES and 5 pg/ml insulin and
devoid of putrescine, progesterone, transferrin, selenium
and KCI. Cells were then treated with either vehicle or dif-
ferent drugs. Neuronal viability was determined 3 days
later using the MTT and neutral red (NR) colorimetric
assays (see below).

Assessment of neuronal survival

Neuronal survival was estimated using the MTT [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide]
and NR [3-amino-7-dimethyl-amino-2-methylphenazine
hydrochloride] dyes, which are respectively indicators of
mitochondrial activity and lysosomal uptake of living
cells. Cell survival was spectrophotometrically deter-
mined at 570 nm (for MTT assay) and 540 nm (for NR
assay) using a micro-plate reader (Bio-Tek Instruments®
Inc., Ville St-Laurent, Québec, Canada) [58].

Assessment of intracellular reactive oxygen species
Dichlorofluorescein (DCF) fluorescence assay was used to
determine the intracellular production of reactive oxygen
species [58]. Briefly, cells were treated with the cell perme-
able 2,7-dichlorofluorescein diacetate (DCFH-DA; Molec-
ular Probes Inc., Eugene, OR) which is converted into
2',7'-dichlorofluorescein. 2',7'-dichlorofluorescein is then
able to interact with intracellular peroxides to form the
highly fluorescent compound DCF. The medium was
removed 3 days after plating and replaced with fresh
medium containing 15 mM HEPES, 5 pg/ml insulin and
5 uM DCFH-DA in the presence of absence of either
haloperidol (1 uM) or EGb 761 (50 pg/ml). DCF fluores-
cence was quantified (excitation = 485 nm, emission =
530 nm) the day after using a fluorescence multiwell plate
reader (Bio-Tek Instruments® Inc., Ville St-Laurent,
Québec, Canada).

Statistical analyses

Optical density (OD) reflecting MTT reduction and NR
intake into intact cells, was proportional to the number of
viable cells. The OD of the control group (CT, i.e. the
group of non-treated cells deprived during 3 days with
growth medium) was regarded as 100%. The rate of sur-
viving cells treated with various drugs during 3 days was
expressed as percent of control groups. Statistical analysis
was performed using one-way ANOVA followed by a
Newman Keuls' multiple comparison test with p < 0.05

http://www.biomedcentral.com/1471-2202/7/28

being considered statistically significant. An unpaired t-
test was used to compare reactive oxygen species produc-
tion (as estimated by the DCF assay) between control
group and groups treated with drugs, survival of cells
treated with clozapine alone and cells treated with raclo-
pride and clozapine (Table 2), and survival of non-treated
cells and cells treated with caspases (Table 3).
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