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Abstract
Background: The suprachiasmatic nucleus (SCN) contains the master circadian clock that
regulates daily rhythms of many physiological and behavioural processes in mammals. Previously we
have shown that prokineticin 2 (PK2) is a clock-controlled gene that may function as a critical SCN
output molecule responsible for circadian locomotor rhythms. As light is the principal zeitgeber
that entrains the circadian oscillator, and PK2 expression is responsive to nocturnal light pulses, we
further investigated the effects of light on the molecular rhythm of PK2 in the SCN. In particular,
we examined how PK2 responds to shifts of light/dark cycles and changes in photoperiod. We also
investigated which photoreceptors are responsible for the light-induced PK2 expression in the
SCN. To determine whether light requires an intact functional circadian pacemaker to regulate
PK2, we examined PK2 expression in cryptochrome1,2-deficient (Cry1-/-Cry2-/-) mice that lack
functional circadian clock under normal light/dark cycles and constant darkness.

Results: Upon abrupt shifts of the light/dark cycle, PK2 expression exhibits transients in response
to phase advances but rapidly entrains to phase delays. Photoperiod studies indicate that PK2
responds differentially to changes in light period. Although the phase of PK2 expression expands as
the light period increases, decreasing light period does not further condense the phase of PK2
expression. Genetic knockout studies revealed that functional melanopsin and rod-cone
photoreceptive systems are required for the light-inducibility of PK2. In Cry1-/-Cry2-/- mice that lack
a functional circadian clock, a low amplitude PK2 rhythm is detected under light/dark conditions,
but not in constant darkness. This suggests that light can directly regulate PK2 expression in the
SCN.

Conclusion: These data demonstrate that the molecular rhythm of PK2 in the SCN is regulated
by both the circadian clock and light. PK2 is predominantly controlled by the endogenous circadian
clock, while light plays a modulatory role. The Cry1-/-Cry2-/- mice studies reveal a light-driven PK2
rhythm, indicating that light can induce PK2 expression independent of the circadian oscillator. The
light inducibility of PK2 suggests that in addition to its role in clock-driven rhythms of locomotor
behaviour, PK2 may also participate in the photic entrainment of circadian locomotor rhythms.
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Background
Light is the principal zeitgeber that entrains circadian
rhythms of physiology and behaviour [1,2]. The major
light input pathway to the suprachiasmatic nucleus (SCN)
is the retinohypothalamic tract [3], which arises from a
population of retinal ganglion cells [4]. Recent studies
have demonstrated that melanopsin-containing retinal
ganglion cells, rods, and cones all convey photic informa-
tion to the SCN, and mice lacking these photoreceptive
systems cannot be entrained by light [5-11]. Excellent
progress has been made in the understanding of circadian
photic entrainment [12-15]. This includes light-induced
transcriptional activation of core clock genes in the SCN,
such as Per1 and Per2, as well as immediate-early gene c-
fos. Exposure to light pulses at night induces expression of
these genes in the SCN, and this light induction mecha-
nism has been suggested as a critical pathway for the reset-
ting of circadian clock in response to changes in light/dark
conditions [16-19]. Intercellular signalling mechanisms
between SCN neurons are also important in circadian
photic entrainment, as mice with mutation in a neuropep-
tide receptor for VIP (Vasoactive Intestinal Peptide) and
PACAP (Pituitary Adenylate Cyclase Activating Peptide)
are unable to sustain normal circadian behaviour and
exhibit loss of sensitivity to light [20].

In addition to the effect of light on circadian entrainment,
light also has a direct effect on physiology and behaviour,
generally termed as "masking" [21,22]. For instance, light
pulses given at night acutely suppress the locomotor
behaviour of nocturnal rodents [21,22], and this can
occur without functional clockwork [23-27]. Masking
may account for the maintenance under normal light/
dark conditions of wheel-running rhythms in crypto-
chrome-deficient (Cry1-/-Cry2-/-) mice, which are behav-
iourally arrhythmic under constant darkness. The
contribution of masking to normal locomotor activity
rhythms is unclear, as is the participation of the SCN in
masking effects of light. Vitaterna et al (1999) first
observed a light-driven Per2 rhythm in the SCN in Cry1-/-
Cry2-/- mice, and have suggested that the light-driven
molecular rhythm in the SCN may be related to the pres-
ervation of their locomotor rhythm [25].

We previously found that prokineticin 2 (PK2) is a first
order clock-controlled gene, whose expression in the SCN
is regulated by CLOCK and BMAL1 acting on the E-boxes
in the gene's promoter [28]. We have also demonstrated
that PK2 may function as a SCN output molecule that
transmits circadian locomotor rhythm via activation of a
G protein-coupled receptor [28,29]. Interestingly, we also
observed that PK2 expression is rapidly induced by light
pulses administered at night [28], a characteristic that is
usually seen with core clockwork genes but not clock-con-
trolled genes. Here we further investigated the light regu-

lation of the rhythm of PK2 expression in the SCN. In
particular, we investigated the photoreceptive mecha-
nisms responsible for the light-induced PK2 expression in
the SCN. Utilizing Cry1-/-Cry2-/- mice, we also deter-
mined whether light can drive PK2 expression in the SCN
independent of a functional circadian clock.

Results
PK2 responds differentially to the delay and advance of 
light/dark cycles
We first examined the effects of abrupt shifts of light/dark
cycles on PK2 mRNA rhythm in the SCN. Animals were
first entrained for two weeks under 12 hour light: 12 hour
dark (LD), then subjected to either a 6 hour delay (6hrD)
shift or 6 hour advance (6hrA) shift of light/dark cycles.
We measured PK2 mRNA in the SCN of these animals to
examine how quickly the PK2 mRNA rhythm re-entrains
to the shifted light/dark cycles. Under LD, PK2 mRNA
peaks during the day and remains low or undetectable
during the night. During the first cycle of the delayed shift
(6hrD), the PK2 mRNA rhythm responds quickly: the ris-
ing phase of PK2 expression adjusts rapidly to the delayed
light/dark cycles, while the falling phase still resembles
that of the unshifted light/dark cycles (Figure 1A). In con-
trast, the PK2 mRNA rhythm responds very little to a 6
hour advance shift (6hrA). During the first cycle of the
advance shift, the PK2 oscillation pattern remains similar
to that of the unshifted LD (Figure 1B). These changes in
PK2 expression during 6hrD or 6hrA shift indicate that the
endogenous circadian clock exerts dominant control over
the PK2 rhythm, as PK2 expression cannot respond imme-
diately and completely to the shifts of light/dark cycles.

As it normally takes about 1–2 days for locomotor
rhythms to stably entrain to phase delays and about 5–6
days to entrain to phase advances [30,31], we next exam-
ined the timecourse of shifts of the PK2 rhythm to 6 hour
phase advances and delays. Consistent with the animal's
locomotor behaviour, the PK2 mRNA rhythm reaches sta-
ble phase within 2 days of 6hrD shift (Figure 1C). In con-
trast, only the rise of PK2 reaches stable phase within 2
days of 6hrA shift, while the fall of PK2 takes longer (Fig-
ure 1D). Thus, we further examined whether the PK2
rhythm is stably entrained after 6 days of 6hrA shift. As
expected, the PK2 rhythm is completely entrained to 6hrA
shift after 6 days (Figure 1D). Together, the differential
responses of PK2 rhythm to a 6hrD or 6hrA shift indicate
that the endogenous circadian clock predominantly con-
trols PK2 rhythm, as circadian oscillators typically show
rapid phase delays but advance with transients [31,32].
The entrainment patterns of PK2 during phase shifts are
consistent with behavioural studies in animals and
human subjects [30,31].
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PK2 rhythm is entrained by different photoperiods
We next examined the effect of photoperiod on the PK2
molecular rhythm in the SCN. PK2 mRNA was measured
in the SCN of mice entrained under different photoperi-
ods: 8 hour light: 16 hour dark (8L:16D), 16 hour light: 8
hour dark (16L:8D), or 20 hour light: 4 hour dark
(20L:4D). During 12L:12D, PK2 mRNA is highly

expressed during the 12 hour light phase with peak level
at ZT4 (Figure 1A, Figure 3A). Under 16L:8D, PK2 mRNA
expands to the entire 16 hour light phase and is essentially
undetectable during the 8 hour dark period (Figure 2B).
However, the expression of PK2 mRNA is not confined to
the light phase of the shorter photoperiod (8L:16D), as
PK2 mRNA rises before lights on and persists after lights

Temporal profiles of PK2 mRNA in the SCN in response to abrupt shifts of light/dark cyclesFigure 1
Temporal profiles of PK2 mRNA in the SCN in response to abrupt shifts of light/dark cycles. Animals were 
entrained to 12L:12D (LD) and subjected to either 6-hour delay of light/dark cycles (6hrD), 6-hour advance (6hrA), 6-hour 
delay followed by adaptation of 2 additional LD (6hrD+2LD), or 6-hour advance followed by adaptation of 2 additional LD 
(6hrA+2LD) or 6 additional LD (6hrA+6LD). Open and filled horizontal bars indicate light and dark periods, respectively. The 
LD data is doubled plotted as dashed line (open square) in all graphs. The zeitgeber time (ZT) on the x-axis reflects the times-
cale for LD, 6hrD or 6hrA. Please note that the additional LD adaptation groups use the same timescale as the 6hrD or 6hrA. 
(A) Temporal profiles of PK2 mRNA under 6hrD and LD. Note that PK2 mRNA responds quickly to the 6hrD shift. (B) Tem-
poral profiles of PK2 mRNA rhythm under 6hrA and LD. Note that PK2 mRNA did not adjust to the 6hrA shift. (C) Temporal 
profiles of PK2 mRNA rhythm under 6hrD, 6hrD+2LD and LD to indicate adaptation of PK2 rhythm under 6hrD. Note that 
PK2 rhythm is stably entrained to 6hrD after two days. (D) Temporal profiles of PK2 mRNA rhythm under 6hrA, 6hrA+2LD, 
6hrA+6LD and LD to illustrate adaptation of PK2 rhythm under 6hrA. Note that PK2 rhythm did not stably entrained to 6hrA 
until after 6 days. Each value is the mean ± SEM of 3 animals.
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off (Figure 2A). The temporal profile of PK2 mRNA under
this short photoperiod (8L:16D) is very similar to that
observed under 12L:12D (Figure 1A, Figure 3A) or con-
stant darkness (2DD) [28]. Thus, although light can
induce PK2 mRNA and expand the duration of PK2
expression, the phase angle of PK2 expression is deter-
mined by the circadian clock, and its duration cannot be
further compressed under shorter photoperiods. Interest-
ingly, the peak of PK2 mRNA expression was significantly
higher in long days (16L:8D) than in shorter days
(8L:16D) (Figure 2A–B), further indicate the enhancing
effect of light on PK2 expression. However, a significant
reduction in the PK2 peak level is observed under a very
long photoperiod (20L: 4D) (Figure 2C). We also noticed
that under 20L:4D, PK2 mRNA is further expanded and
becomes detectable even in dark phase (Figure 2C). Under
this long photoperiod (20L:4D), the difference between
the peak and basal level of PK2 is only about 4 fold (Fig-
ure 2C). As it has been reported that the rhythms of mPer1
and mPer2 mRNAs in the SCN are also entrained with dif-
ferent phase angles under a variety of photoperiods [33-
35], we have also examined Per1 and Per2 rhythm in our
photoperiod studies (see Additional file 1). The Per1 and
Per2 rhythm we observed under these photoperiods are
consistent with previous findings [35]. Taken together,
these results indicate that changes in photoperiod alter

PK2 rhythm in the SCN, and the amplitudes of PK2
mRNA oscillation are greatly reduced in very long
photoperiods.

Light inducibility of PK2 is eliminated in mice that lack 
melanopsin, rod and cone phototransduction system 
(Opn4-/-, Gnat1-/- Cnga3-/- mice)
As melanopsin has been implicated in circadian photore-
ception [5-11], we examined whether the PK2 molecular
rhythm is normally entrained in melanopsin-deficient
(Opn4-/-) mice. Figure 3 shows that the oscillation profile
of PK2 in the SCN of Opn4-/- mice is essentially identical
to that observed in the wild type mice under LD. This nor-
mal temporal profile of PK2 mRNA corresponds with the
normal locomotor rhythm of Opn4-/- mice under light/
dark conditions [7,8]. As Opn4-/- mice display attenuated
phase resetting in response to light pulses and exhibit
impaired light masking responses to bright light [36], we
also examined whether light inducibility of PK2 is blunted
in Opn4-/- mice. Figure 3B shows that light pulse-induced
PK2 in the SCN of Opn4-/- mice was significantly reduced
by about 50% and 60%, one and two hours after the light
pulse, respectively.

The Opn4-/- light pulse studies show that a residual PK2
expression is still present after a light pulse, suggesting

Effects of photoperiods on PK2 mRNA rhythm in the SCNFigure 2
Effects of photoperiods on PK2 mRNA rhythm in the SCN. Temporal profiles of PK2 rhythm under 8L:16D (A), 
16L:8D (B) and 20L:4D (C). Open and filled bars indicate light and dark periods, respectively. The zeitgeber time (ZT) on the 
x-axis reflects the timescale for each photoperiod. Each value represents the mean ± SEM of 3–4 animals. One-way ANOVA 
indicated that peak levels of all groups are significantly different from each other, p < 0.05–0.001 using Bonferroni's post-hoc 
test. Autoradiographic images show representative mRNA expression of PK2 during these photoperiods.
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PK2 mRNA rhythm in the SCN of melanopsin-deficient (Opn4-/-) mice and triple knockout mice (Opn4-/- Gnat1-/- Cnga3-/- mice)Figure 3
PK2 mRNA rhythm in the SCN of melanopsin-deficient (Opn4-/-) mice and triple knockout mice (Opn4-/- 
Gnat1-/- Cnga3-/- mice). (A) Temporal profiles of PK2 mRNA rhythm in wildtype (filled squares) and Opn4-/- mice (open tri-
angles) under LD. Open and filled bars indicate light and dark periods, respectively. Each value represents the mean ± SEM of 
3–4 animals. Two-way ANOVA indicated that there is no significant difference between genotypes. (B) Light pulse-induced PK2 
mRNA expression in wildtype (shaded bars) and Opn4-/- mice (filled bars). PK2 mRNA was measured one and two hours after 
brief light pulse at ZT14. Each value represents the mean ± SEM of 6–8 animals. *p < 0.05, **p < 0.01, Student's t-test. (C) 
Light-pulse induced PK2 mRNA expression in triple knockout mice that lack melanopsin, rod and cone photoreceptive system 
(Opn4-/- Gnat1-/- Cnga3-/- mice). Dark controls received no light pulse. Each value represents the mean ± SEM of 3 animals. (D) 
PK2 mRNA expression in triple knockout mice at circadian time (CT) 3 and 15.
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that without melanopsin, other phototransduction sys-
tem can still transmit light information to induce PK2
expression. Thus, we decided to examine the light induci-
bility of PK2 in triple knockout mice lacking melanopsin,
rod and cone phototransduction systems (Opn4-/- Gnat1-
/- Cnga3-/- mice), as these animals free run under light
dark conditions (LD) and lack masking responses to light
[10]. Figure 3C shows that the light pulse-induced PK2 in
the SCN is completely eliminated in these triple knockout
mice, consistent with their malfunctioning photoentrain-
ment systems and their lack of masking responses to light
[10]. In addition, we also observed that PK2 mRNA fol-
lowed the free-running locomotor rhythms in these triple
knockout mice (Figure 3D), with high levels of PK2 dur-
ing the inactive phase (CT3) and low levels during active
phase (CT15). Together, these results suggest that melan-
opsin contributes to the light inducibility of PK2, and
intact melanopsin with functional rod/cone phototrans-
duction systems are required for the light inducibility of
PK2.

A low amplitude PK2 rhythm is preserved in 
cryptochrome-deficient (Cry1-/-Cry2-/-) mice under light/
dark conditions
Previous studies have shown that the light-regulated Per2
rhythm is maintained in the SCN of cryptochrome-defi-
cient (Cry1-/-Cry2-/-) mice that lack functional circadian
clock [25,37]. In order to determine whether the regula-
tion of PK2, Per1, Per2 and Bmal1 expression by light
requires an intact circadian pacemaker, we systematically
assessed the temporal mRNA profiles of clockwork genes
in Cry1-/-Cry2-/- mice under both light/dark (LD) and
constant dark (DD) conditions. Figure 4 shows that the
molecular rhythm of Per2 remained largely intact in Cry1-
/-Cry2-/- mice entrained under12L:12D, with levels about
4-fold higher during the light phase than the dark phase.
This amplitude of the Per2 oscillation profile was similar
to that observed in wild type mice [18,38]. A low ampli-
tude Per1 rhythm in Cry1-/-Cry2-/ mice was also apparent
under LD, but not DD (Figure 4B). We further detected a
light-driven Bmal1 rhythm in the SCN of Cry1-/-Cry2-/-
mice under LD, but not DD (Figure 4C). Interestingly, this
Bmal1 rhythm in Cry1-/-Cry2-/- mice peaked during light
phase, opposite from the Bmal1 rhythm in wild type mice
and in phase with Per1 [39,40]. As it has been suggested
that PER2 can positively regulate Bmal1 expression via
inhibition of the orphan nuclear receptor REV-ERBα
[41,42], it is possible that this Bmal1 rhythm is secondary
to the light-driven Per2 rhythm. Further studies are
required to clarify this observation.

We also examined the molecular rhythm of PK2 in Cry1-/
-Cry2-/- mice. Figure 4D shows that PK2 mRNA rhythm in
the SCN of Cry1-/-Cry2-/- mice was apparent under LD,
with the presence of a low level PK2 during light phase

and absence of PK2 during dark phase (see Additional file
2). Similar to wild type mice, the peak level of this low
amplitude PK2 rhythm was around ZT4, although its peak
was only about 8% of that observed in wild type mice
(Figure. 4D, Figure 1A, Figure 3A). No PK2 rhythm was
evident when Cry1-/-Cry2-/- mice were placed under DD
(Figure 4D). Furthermore, the inducibility of PK2 to noc-
turnal light pulses is also maintained in Cry1-/-Cry2-/-
mice. PK2 mRNA increased one and two hours after a
brief light pulse at ZT14 (Figure 4E). Nevertheless, light-
induced PK2 was still detected in Per1,2,3-/- mice and Clk-
/- mice that lack functional circadian clock (Cheng,
Weaver & Zhou, unpublished observations). As PK2
remains responsive to light in these clock mutant mice
that lack functional circadian clock, it is likely that the low
amplitude PK2 rhythm in Cry1-/-Cry2-/- mice under LD is
directly driven by light.

In order to test whether this light-driven PK2 rhythm may
be related to the maintenance of behavioural rhythms
observed in Cry1-/-Cry2-/- mice under LD, we studied the
responses of Cry1-/-Cry2-/- mice to a 6 hour advance of
lighting schedule. In contrast to the transients of entrain-
ment of locomotor rhythms in wild type mice (which
takes about 4-5 days to re-entrain to phase advance), the
locomotor activity of Cry1-/-Cry2-/- mice adjusted rapidly
to 6 hr advance (Figure 4F). Such a rapid response is char-
acteristic of masking. A correlative rapid adjustment of
PK2 was also observed in the SCN of Cry1-/-Cry2-/- mice
(Figure 4G). As Cry1-/-Cry2-/- mice lack functional circa-
dian clock and their locomotor behaviour and PK2
expression patterns are completely light driven, our results
suggest that this low amplitude, light-driven rhythm of
PK2 may contribute to or underlie the masking of loco-
motor behaviour in these animals.

Discussion
Our studies indicate that the molecular rhythm of PK2 in
the SCN is predominantly controlled by the circadian
clock, with light playing a modulatory role. Abrupt shifts
of light/dark cycles significantly altered the phase of the
PK2 rhythm. While PK2 expression re-entrained rapidly to
phase delays, it takes several cycles of transients for PK2 to
be stably entrained to phase advances (Figure 1). The rate
of re-entrainment of PK2 molecular rhythms to these
shifts is consistent with that of behavioural adaptation of
animals and human subjects [30,31]. Our photoperiod
studies indicate that PK2 expression in the SCN responds
differentially to changes in photoperiod length (Figure 2).
Although increasing light period can induce PK2 expres-
sion and expand the duration of PK2 rhythm (Figure 2B),
shortening of the light period does not lead to corre-
sponding reduction of the duration of PK2 expression
(Figure 2A). It appears that a minimal duration of PK2
expression is maintained under short photoperiod (Figure
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Light-driven molecular rhythms in the SCN of Cry1-/-Cry2-/- miceFigure 4
Light-driven molecular rhythms in the SCN of Cry1-/-Cry2-/- mice. Temporal mRNA profiles of Per2 (A), Per1 (B), 
Bmal1 (C) and PK2 (D) in Cry1-/-Cry2-/- mice under 12L:12D (LD) or two days constant darkness (2DD). Each value represents 
the mean ± SEM of 3–4 animals. Two-way ANOVA with Bonferroni's posthoc analysis was used to test for significant interac-
tions between expression across time of sampling and under different lighting conditions (LD vs 2DD). p < 0.0001 (Per2), p < 
0.002 (Per1), p < 0.0001 (Bmal1) and p < 0.0001 (PK2). (E) Light pulse-induced PK2 mRNA in Cry1-/-Cry2-/- mice. PK2 mRNA 
was measured one and two hours after brief light pulse at ZT14 (shaded bar). Black bar represents dark controls that did not 
receive light pulse. Each value represents the mean ± SEM of 5–6 animals. Two-way ANOVA indicates a significant difference in 
PK2 expression between light and dark treatment (p < 0.05), however, the PK2 induction is not significantly different between 
the two timepoints (1 hr vs 2 hr). (F) Locomotor behavioural rhythms of wild type (left) and Cry1-/-Cry2-/- mice (right) in 
response to 6 hour advance of light/dark cycle. Open and filled bars indicate light and dark periods, respectively. Black arrow 
indicates the day of 6 hour advance shift (6hrA). Numbers above and below the actograms represent timescale in zeitgeber 
time (ZT) for LD and 6hrA. (G) Rapid adjustment of PK2 rhythm in Cry1-/-Cry2-/- mice to 6 hour advance (6hrA). PK2 mRNA 
was quantitated in the SCN of wildtype and Cry1-/-Cry2-/- mice under LD (shaded) or 6hrA (black). Each value represents the 
mean ± SEM of 3–4 animals. Three-way ANOVA with Bonferroni's post hoc analysis indicates a significant interaction between 
light/dark cycle (LD vs 6hrA), timepoint (ZT4 vs ZT16) and genotype (wildtype vs Cry1-/-Cry2-/- mice), p < 0.001. Two-way 
ANOVA with Bonferroni's post hoc analysis show that there is significant difference in wildtype PK2 expression level between 
LD and 6hrA, (ZT4, ***p < 0.001; ZT16, **p < 0.01), but not in Cry1-/-Cry2-/- mice (ZT4, p = 1.000; ZT16, p = 1.000).
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2A) and constant darkness [28], which further indicate the
dominant control of PK2 expression by the circadian
clock. Interestingly, the amplitude of the PK2 oscillation
was greatly reduced under very long photoperiod
(20L:4D) (Figure 2C). As the amplitude of both Per1 and
Per2 rhythms were also reduced during 20L:4D (see Addi-
tional file 1), it is likely that these depressed rhythms of
clockwork genes may contribute to the depressed PK2
rhythm observed. Whether reduction in the amplitude of
expression in any of these genes is related to arrhythmicity
in LL deserves further examination.

Our studies with Cry1-/-Cry2-/- mice revealed the presence
of a light-driven PK2 molecular rhythm in the SCN under
LD, indicating that light can drive PK2 rhythm independ-
ent of functional circadian clock. Interestingly, the molec-
ular rhythms of some clockwork genes such as Per2, Per1,
and Bmal1 were also partially maintained in the SCN of
Cry1-/-Cry2-/- mice under LD (Figure 4). Thus, light-
driven molecular oscillations of clockwork or clock-con-
trolled output genes exist in the absence of functional cir-
cadian clock. Vitaterna et al (1999) first noticed such
light-regulated Per2 molecular rhythm in the SCN of Cry1-
/-Cry2-/- mice, and suggested the term of "light-driving"
effect [25]. As Cry1-/-Cry2-/- mice lack functional circa-
dian clocks and their locomotor behaviour remains rhyth-
mic under LD, but not under DD conditions [24,25], it is
likely that these light-driven molecular rhythms may drive
the locomotor rhythms in these animals. As we have
previously shown that PK2 may be a critical output mole-
cule responsible for circadian locomotor rhythms, the
presence of this light-driven PK2 rhythm in Cry1-/-Cry2-/-
mice may thus contribute to or underlie masking as well
as the free running behavioural rhythms in these animals.
It is well established that an intact SCN is necessary for the
preservation of free running locomotor rhythms [43]. The
role of the SCN in masking of locomotor activity by light
is controversial, with similar studies having produced
contradictory results [23,44]. Thus, it is possible that there
might be common signal molecule(s) that mediate(s) the
light-masking and the circadian clock-controlled locomo-
tor behaviour. Construction of PK2-deficient mice will be
necessary to resolve the exact role of PK2 in the light-
driven locomotor rhythms.

The light inducibility of PK2 in the SCN is an unusual
characteristic for a clock-controlled gene. Our results dem-
onstrate that melanopsin-positive retinal ganglion cells,
in conjunction with rods and cones, are responsible for
the light-inducibility of PK2 (Figure 3). The same photore-
ceptive system has been shown responsible for the
entrainment of locomotor rhythm [5-11]. The light induc-
ibility of PK2 may be related to the presence of a putative
cyclic AMP response element (CRE) in the promoter of
the PK2 gene [28]. CRE-dependent activation is critical for

light-induced gene expression in the SCN [45-48]. The
reduced light inducibility of PK2 in mutant mice that lack
functional clock may indicate that CRE-dependent path-
way and CLK/BMAL1 transcriptional factors may interact
in the light-induced PK2 expression in the SCN. Accumu-
lative data have implicated the photic regulation of the
transcription of clock genes such as Per1 and Per2 in the
entrainment of behavioural rhythms [30,34]. The phase
of the core SCN clock gene expression determines the tim-
ing of clock-controlled SCN output signals that ultimately
regulate physiology and behaviour. Unlike the Per1 pro-
moter, whose activation in the SCN shifts rapidly when
the LD cycle is advanced [31], PK2 exhibits transients
during phase advance, more similar to those of Cry1 and
Cry2 [30,31]. This is consistent with the role for PK2 as a
clock-controlled gene and thus is downstream from the
light-regulated expression of Per1 or Per2. The presence of
E box motifs in the PK2 promoter suggests that light-regu-
lated Per1 (and perhaps Per2) expression can influence
PK2 expression. However, the light inducibility of PK2
indicates that PK2 may have a more direct and central role
in entrainment in addition to its putative role as an SCN
output signal. In other words, whether PK2 functions
completely outside the central circadian loops or partly
within them has yet to be determined. It is well estab-
lished that the activation of glutamate receptor and its
downstream actions are critical for the retinohypotha-
lamic inputs of light to the SCN [49]. As receptor for PK2
is highly expressed in the SCN [28] and activation of the
PK2 receptor triggers similar signalling pathways as that of
glutamate receptors [29], it is possible that the circadian
clock and/or light-driven PK2 may feed back to the core
circadian loops in the SCN. In addition, PK2 has recently
been shown to excite neurons that express PK2 receptor
[50], further suggesting that PK2 may activate the firing of
SCN neurons, and thus possibly participate in the syn-
chronization of the circadian clock. Thus, the light induc-
ibility of PK2 may be relevant to both the phase resetting
of the core circadian loops and critical SCN output
signals.

Conclusion
Our studies demonstrate that PK2 is predominantly
driven by the circadian clock, as PK2 expression exhibits
circadian transients in response to phase advances. Fur-
thermore, shortening of the light period does not result in
corresponding reduction of the phase of PK2 rhythm, also
consistent with the dominant control from the circadian
clock on PK2 expression. However, light also modulates
PK2 rhythm. Nocturnal light pulses can directly induce
PK2 expression in the SCN. Studies with Cry1-/-Cry2-/-
mice revealed that light can drive a low amplitude PK2
molecular rhythm in the SCN in the absence of functional
circadian oscillators. These studies demonstrate that PK2
molecular rhythm in the SCN is controlled by dual mech-
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anisms: dominantly by the circadian transcriptional loops
but also directly by light. The light inducibility of PK2 in
the SCN suggest that in addition to PK2's role as a SCN
output signal, PK2 may also participate in the photic
entrainment of circadian clock and perhaps in masking.

Methods
Experiments of light/dark cycle shifts
Male adult C57BL/6 mice (Taconic Farms, New York)
were entrained under 12 hour light: 12 hour dark
(12L:12D, lights on at 0700 h) cycle for two weeks with
food and water available ad libitum. Light phase was
either delayed by 6 hours (lights on at 1300 h) or
advanced by 6 hours (lights on at 0100 h) and samples
were taken every three hours for the 24 hour period (Zeit-
geber time, ZT, ZT1-22). To examine PK2 expression two
days after the shift, animals were placed in two additional
light/dark cycles and brain samples were collected. All
animal procedures were approved by the Institutional
Animal Care and Use Committee and consistent with Fed-
eral guidelines. In situ hybridization was used in all stud-
ies to examine PK2 mRNA expression in the SCN [28].
Antisense and sense riboprobes containing the coding
region of mouse PK2 (accession number AF487280 1-528
nt), mouse Per1 (accession number AF022992 340-
761nt), mouse Per2 (accession number AF035830 9-489
nt) and mouse Bmal1 (accession number AB015203 864-
1362 nt) were generated.

Photoperiod studies
Animals were initially entrained under 12L:12D for one
week, followed by placement in different photoperiods
(light intensity ~400 lux) for three to four weeks: 8 hour
light:16 hour dark (8L:16D, lights on at 0900 h, lights off
at 1700 h), 16 hour light: 8 hour dark (16L:8D, lights on
at 0500 h, lights off at 2100 h). For the 20 hour light: 4
hour dark (20L:4D, lights on at 0300 h, lights off at 2300
h), animals were first placed in 14L:10D for one week,
transferred to 16L:8D for another week, followed by two
weeks in 20L:4D. All brain samples were taken every two
hours throughout the 24 hour cycle, except the first and
the last two time points which were sampled every three
hours.

Studies of melanopsin-deficient mice and mice that lack 
melanopsin, rods and cones
Wild type and melanopsin-deficient (Opn4-/-) mice (on
C57BL/6:129 hybrid background) [5] were entrained to
12L:12D and sampled every three hours for the 24 hour
period (ZT1-22). For light pulse studies, wild type, Opn4-
/- mice and triple knockouts (Opn4-/- Gnat1-/- Cnga3-/-
mice) that lack melanopsin, rod and cone phototransduc-
tion systems were used [10]. Animals received a 15 min
light pulse (~200 lux) at ZT14 and brains were sampled

one or two hours after light pulse. Dark control animals
did not receive a light pulse.

Studies of cryptochrome-deficient (Cry1-/-Cry2-/-) mice
Cryptochrome-deficient (Cry1-/-Cry2-/-) mice on a
C57BL/6:129 hybrid background were kindly provided by
Dr. Aziz Sancar (University of North Carolina at Chapel
Hill). Wild type and Cry1-/-Cry2-/- mice were entrained to
12L:12D and sampled every three hours for the 24 hour
period (ZT1-22). A second group of Cry1-/-Cry2-/- mice
were placed into two days of constant darkness (2DD)
(Circadian time, CT, CT1-22). The mRNA levels of PK2,
Per2, Per1 and Bmal1 were measured in the SCN. For light
pulse experiments, Cry1-/-Cry2-/- mice received a 15 min
light pulse (~400 lux) at ZT14, and sampled one or two
hours after light pulse. Dark control Cry1-/-Cry2-/- mice
did not receive a light pulse. For the shifting experiments,
wildtype and Cry1-/-Cry2-/- mice were initially entrained
under 12L:12D, then subjected to an acute 6 hour advance
of lighting schedule. Running-wheel activities of these
mice were monitored 10 days before and 10 days after the
6 hour advance shift. The 6 hour phase advance was then
repeated and brains were collected at ZT4 and ZT16 on the
day of the shift.
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Additional material

Additional File 1
Effect of different photoperiods on molecular rhythms in the SCN. Tem-
poral profiles of Per1 (a) and Per2 (b) mRNA under 8L:16D, 16L:8D, 
20L:4D. Open and filled bars indicate light and dark periods, respec-
tively. The zeitgeber time (ZT) on the x-axis reflects the timescale for each 
photoperiod. Each value represents the mean ± SEM of 3–4 animals.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-6-17-S1.pdf]

Additional File 2
PK2 mRNA expression in Cry1-/-Cry2-/- and wildtype mice. Representa-
tive autoradiograms of PK2 mRNA in the SCN of Cry1-/-Cry2-/- mice 
(Cry) and wild type mice (WT) under LD (ZT1-22) are shown (top and 
bottom row, respectively). Scale bar = 1 mm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2202-6-17-S2.pdf]
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