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Abstract

Background: Knowledge of how synapses alter their efficiency of communication is central to the
understanding of learning and memory. The most extensively studied forms of synaptic plasticity
are long-term potentiation (LTP) and its counterpart long-term depression (LTD) of AMPA
receptor-mediated synaptic transmission. In the CA| region of the hippocampus, it has been shown
that LTP often involves a rapid increase in the unitary conductance of AMPA receptor channels.
However, LTP can also occur in the absence of any alteration in AMPA receptor unitary
conductance. In the present study we have used whole-cell dendritic recording, failures analysis and
non-stationary fluctuation analysis to investigate the mechanism of depotentiation of LTP.

Results: We find that when LTP involves an increase in unitary conductance, subsequent
depotentiation invariably involves the return of unitary conductance to pre-LTP values. In contrast,
when LTP does not involve a change in unitary conductance then depotentiation also occurs in the
absence of any change in unitary conductance, indicating a reduction in the number of activated
receptors as the most likely mechanism.

Conclusions: These data show that unitary conductance can be bi-directionally modified by
synaptic activity. Furthermore, there are at least two distinct mechanisms to restore synaptic
strength from a potentiated state, which depend upon the mechanism of the previous potentiation.

Background persistent changes have been proposed to be key synaptic
Fast excitatory synaptic transmission in the central nerv-  processes involved in learning and memory. The best
ous system, which is mediated predominantly by the  characterised form of bi-directional synaptic plasticity is
AMPA subtype of glutamate receptors, can undergo long-  LTP / LTD of glutamatergic transmission in the CAl
term bi-directional modifications in strength [1-3]. These  region of the hippocampus. Although there has been
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intensive investigation of the induction and expression of
LTP and LTD (see [4]), the precise molecular mechanisms
by which these alterations in synaptic strength occur
remain unclear. Possible mechanisms could be presynap-
tic such as changes in the release process (probability of
neurotransmitter release or the amount of L-glutamate
released from vesicles (e.g., [5-9]), and / or postsynaptic
(e.g., [10-12]), such as a change in the number of AMPA
receptors (AMPARs) available to bind transmitter, or in
the properties of existing receptors (P, activation or de-
activation kinetics, desensitisation or single-channel con-
ductance, y).

Recent studies have provided information on the possible
mechanisms underlying postsynaptic alterations in syn-
aptic strength. There is evidence that AMPA receptors are
inserted into the postsynaptic membrane during LTP [13-
15] and removed from the synapse upon induction of
LTD [16,17]. However, it has also been shown that LTP
can involve a rapid increase in y of existing AMPA recep-
tors [18]. This could be caused by a Ca?*/calmodulin-
kinase II (CaM-KII)-mediated phosphorylation of GluR1
which occurs during LTP [19], and which causes an
increase in y of GluR1 homomers in transfected cells [20].
Therefore, another potential mechanism for LTD could be
a decrease in y caused by a dephosphorylation of
AMPARSs.

We have recently used peak-scaled non-stationary fluctua-
tion analysis (non-SFA; [21]) of synaptic currents
recorded from CA1 pyramidal cell dendrites [18], to
investigate the molecular basis of de novo LTD (LTD at
naive pathways; [22,23]). In these studies, LTD was never
associated with a change in y [17]. Indeed, evidence was
presented that the underlying mechanism involved a
reduction in the number of surface expressed AMPA
receptors (LTDy).

In the present study we have investigated a second form of
LTD known as depotentiation (DP), which is a reversal of
pre-established LTP [24-27]. LTP can be associated with
either an increase in y (LTPy) or no change in y (LTPy)
[18]. We were, therefore, interested to determine whether
DP of LTPy involved a decrease in y and hence whether y
is a bi-directionally modifiable parameter. We find a
reciprocal relationship between LTP and DP, such that DP
of LTPy invariably involves a restoration of the pre-LTP y
(DPy) whereas DP of LTPy never involves a change in y
(DPy). These data show, firstly, that there are two distinct
molecular mechanisms for the reduction of synaptic
strength that are dependent on the nature of the preceding
LTP and, secondly, that y can indeed be bi-directionally
modified in response to synaptic activity.

http://www.biomedcentral.com/1471-2202/5/44

Results

Using whole-cell recordings from the proximal apical
dendrites of hippocampal CA1 pyramidal cells, minimal
stimulation of nearby afferents evoked EPSCs that could
be reliably resolved from failures (trials in which stimula-
tion produced no synaptic response; Figure 1, see also Fig-
ure 3). These high resolution recordings enabled both a
failures analysis to be performed [28] and, using non-SFA,
an estimate of y of synaptically-activated AMPARSs to be
obtained [18].

LTP
To investigate the mechanism of DP, LTP was first induced
in 18 cells by pairing afferent stimulation (baseline fre-
quency) with a holding potential of 0 mV. This resulted in
stable LTP (EPSC amplitude = 186 + 16 % of baseline, n =
18).

In agreement with a previous study [18], cells fell into two
groups with respect to changes (> 20%) in y of AMPA
receptor channels during LTP. In the majority of cases (11/
18 cells), LTP was associated with an increase in y (LTPy;
246 + 26% of baseline; range 136 - 363%). In the other 7
cells there was no increase in y during LTP (100 + 4 % of
baseline; range 85 — 118 %), indicating that there was an
increase in the functional number of channels activated
(LTPy). As noted previously [18], there were no differ-
ences between the two groups of neurons with respect to
a variety of baseline parameters.

Depotentiation of LTPy

Figure 1 shows two examples from the group of cells that
exhibited LTPy, as indicated by the change in the current-
variance plot obtained from non-SFA (Figure 1B). As pre-
viously reported [18], the increase in y was not associated
with any change in EPSC kinetics (Figure 1C) indicating
that AMPA receptor channel kinetics were not affected
[29]. Failures analysis (Figure 1C) of this group of cells
(Figure 2) revealed that LTP was associated with changes
in success rate (1 - failure rate) in some cells (Figure 2B),
and potency (mean EPSC amplitude excluding failures) in
all cells (Figure 2C), as previously reported under these
recording conditions [18,28].

For this group of cells, DP, induced by pairing stimulation
(baseline frequency) with a holding potential of -40 mV,
always resulted in a reversal of the y increase, as indicated
by the current-variance plot (Figure 1B; Figure 2D). Simi-
lar to the preceding LTPy, this form of DP (DPy) was also
associated with no change in EPSC kinetics (1,,.: baseline
=1.6+0.2ms, LTPy=1.7+ 0.3 ms, DPy=1.7 £+ 0.2 ms, n
= 11; Tgecay: Daseline = 8.3 + 0.6 ms, LTPy = 8.2 + 0.6 ms,
DPy = 89 + 0.7, n = 11; Figure 1C). Failures analysis
showed that DPy was associated with a decrease in success
rate in most cells (Figure 2B) and a full reversal of the
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Bi-directional modification of AMPA receptor conductance (y) during LTP (LTPy) and DP (DP,). (Al,2) Plot of amplitude vs.
time from two representative experiments. Black bar represents LTP pairing, grey bar DP pairing protocol. Throughout the fig-
ure, green represents baseline, red LTP and blue DP. (B1,2) Current-variance relationship for baseline, LTP and DP (y values
for the same cells (pS): cell I:baseline =2.2, LTP = 6.5, DP = 3.7; cell 2: baseline = 4.5, LTP = 7.4, DP = 3.2). For this figure and
in Figure 3, lines are parabolic fits of the data (see Methods). (Cl,2) Inset. Mean EPSCs (average of all responses used for non-
SFA) superimposed (left) and peak scaled (right). Amplitude histograms (bin width = 2 pA; number of trials: cell I: N = 130 for
baseline, N = 245 for LTP, N = 533 for DP; cell 2: N = |50 for baseline, N = 267 for LTP, N = 337 for DP; frequency normal-
ised to the data set with the smallest number of observations for baseline, LTP and DP).

potency increase (Figure 2C). These data show that the
primary mechanism for DP is the reversal of any increase
iny caused by LTP. Indeed, the changes in y were sufficient
to account for the potency changes during both LTPy and
DPy. (In most cells the alterations in y actually exceeded
the potency changes. This is most likely due to an under-
estimate of the potency change due to dendritic filtering,
which affects measurements at the peak of EPSCs greater
than during the tail, from where the non-SFA estimates are
obtained; see [18]).

Depotentiation of LTPy,

Figure 3 shows an example from the group of cells that
exhibited no change in y during LTP (LTPy), as indicated
by the current-variance plot (Figure 3B). The change in
EPSC amplitude for LTPy neurons (Figure 4A) was similar
to that for LTPy neurons (Figure 2A). Failures analysis
(Figure 3D) of this group of cells (Figure 4) revealed that
LTP was associated with changes in success rate in some
cells (Figure 4B), and potency in most cells (Figure 4C; P
< 0.01), as previously reported under these recording con-
ditions [18,28].

In contrast to DPy, DP in these cells was never associated
with a change in y (DPy; Figure 3B, Figure 4D). There was
also no change in EPSC kinetics with LTP or DP (7
baseline = 1.9 + 0.4 ms, LTP=2.0 + 0.3 ms, DPy=1.8 +
0.3 ms, N = 7; Tgeq,y: baseline =9.7 + 0.7 ms, LTPy= 9.7 +
0.6 ms, DPy=10.1 £ 0.9, n = 7; Figure 3C). Failures anal-
ysis of LTP and DPy, (Figure 3D, Figure 4) showed similar
changes to the LTPy group of cells in EPSC amplitude (Fig-
ure 4A), success rate (Figure 4B) and potency (Figure 4C).
These data suggest that there is a second mechanism for
DP, not involving a decrease in y, which co-exists at CA1
synapses. Therefore, there are two mechanisms for the
expression of DP that depend upon the expression mech-
anism of the previous potentiation.

Role of NMDA receptors in depotentiation

It has been shown previously that DP at CA1 synapses
may be blocked either by NMDA receptor antagonists [26]
or by mGlu receptor antagonists [27] and that this may
depend on previous history [30]. In the present study we
wished to focus on NMDA receptor-dependent synaptic
plasticity and therefore used pairing protocols designed to
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Figure 3

DP can occur without alterations in y (DPy)) but only when
preceded by LTP that does not involve a change in y (LTPy).
(A) Plot of amplitude vs. time from a representative experi-
ment. Black bar represents LTP pairing, grey bar DP pairing
protocol. Throughout the figure, green represents baseline,
red LTP and blue DP. (B) Current-variance relationship for
baseline, LTP and DP (y values for this cell (pS): baseline =
6.5, LTP = 6.7, DP = 6.0). (C) Mean EPSCs (average of all
responses used for non-SFA) superimposed (left) and peak
scaled (right). (D) Amplitude histogram (bin width =2 pA; N
= |51 for baseline, N = 21| for LTP, N = 513 for DP) for
baseline, LTP and DP. Inset: 10 consecutive responses for
baseline, LTP and DP.

activate NMDA receptors sufficiently to, firstly, induce
NMDA receptor-dependent LTP and, secondly, to induce

http://www.biomedcentral.com/1471-2202/5/44

NMDA receptor-dependent DP. To verify that we were
indeed investigating NMDA receptor-dependent DP we
performed a series of experiments using the NMDA recep-
tor antagonist D-AP5 interleaved with control experi-
ments. Following the induction of LTP, D-AP5 (50 uM)
was bath applied for 15 minutes before delivering the DP
induction stimulus. Whilst DP was induced in the control
experiments (25 + 11% of baseline, n = 5; p < 0.05) it was
blocked by D-AP5 (89 + 21%, n = 4; Figure 5).

Relationship of changes in success rate, potency and yto
the magnitude of DP

To gain further insights into the underlying mechanisms
of DP we compared changes in EPSC amplitude, success
rate, potency and y for the individual experiments (Figure
6). A decrease in success rate indicates a reduction in prob-
ability of transmitter release (Pr) and/or a reduction in the
number of functional synapses (n). A decrease in potency
indicates a reduction in quantal amplitude (postsynaptic
response to the release of a single quantum of transmitter,
q) or, if multiple synapses are activated, a reduction in Pr
or n.

In both types of neuron (i.e., LTPy and LTPy), a small
depression of less than 50 % (to 71 + 7% of baseline; n =
4) was associated with no change in success rate (Figure
6A; success rate ratio = 1.00 + 0.01) but an equivalent
decrease in potency (Figure 6B; potency ratio = 0.70 +
0.08), as is also observed for de novo LTD [17]). This indi-
cates that the depression in these cells was associated pri-
marily with a decrease in q. For larger depressions (to 26
+ 4 % of baseline; n = 14) there was also a marked
decrease in success rate (success rate ratio = 0.52 + 0.08; P
< 0.01 vs success rate ratio for the group with DP < 50%)
as well as a decrease in potency (potency ratio = 0.54 +
0.04). This suggests that in these cells there was an addi-
tional decrease in Pr or n. Therefore, for DPy, the change
in y did not fully account for the amplitude change in
every cell (Figure 6C) but did account for the potency
change (Figure 6D).

Discussion

In this study we have shown that there are two mecha-
nisms for NMDA receptor-dependent DP, a reduction iny
(DPy) and a decrease in the number of activated AMPA
receptors (DPy). As reported previously for different data
sets from this age of rats [9,18] there are two forms of LTP;
in approximately two-thirds of neurons LTP was associ-
ated with an increase in y (LTPy) whilst in the remainder
there was no change in y (LTPy). In the present study we
saw a similar proportion of LTP expressed by changes in y
versus N. Strikingly, we observed a precise relationship
between the mechanism of DP and the form of preceding
LTP; LTPy was always reversed by DPy, and LTPy was
always reversed by DPy.
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NMDA receptor-dependence of DP. (A) Plot of amplitude vs.
time from an experiment in which the DP induction protocol
was delivered in the presence of D-AP5 (50 puM). Black bar
represents LTP pairing, grey bar DP pairing protocol. (B)
Changes in mean EPSC amplitude for normalised pooled
data. Filled symbols: control (n = 5); open symbols: D-AP5 (n
= 4). (C) Changes in potency for normalised pooled data
(symbols as in B). For the analysis of LTP, amplitude and
potency were measured for the 200 trials immediately pre-
ceding the DP pairing protocol.

In some experiments, induction of DP caused a decrease
in EPSC amplitude below the initial baseline. This is most
likely due to the simultaneous induction of DP and de
novo LTD since in slices taken from juvenile animals, de
novo LTD is readily induced by this [17] and other [22,23]
induction protocols. This is in contrast to previous exper-
iments using adult tissue in which DP induction
depressed synaptic responses only as far as the initial base-
line and where the same induction protocol was unable to
induce de novo LTD [27]. Analysis of the mechanism of de
novo LTD under the present experimental conditions dem-
onstrated that it was associated with no change in y [17].
Therefore the coexistence of DP and de novo LTD does not
interfere with the analysis of DPy.

In addition, there is sometimes a small, gradual run-down
of synaptic responses observed in minimal stimulation
experiments using two-week-old animals [17] see also
[31]. Whilst this effect tends to exaggerate changes in

http://www.biomedcentral.com/1471-2202/5/44

amplitude and success rate during DP in some neurons, it
does not significantly interfere with estimates of potency
ory (see [17]).

Mechanisms underlying DP,,

What might be the mechanism underlying DP that is not
associated with a decrease in y (i.e., DPy)? It is unlikely
that this type of depression is due to a change in channel
kinetics because there was no change in EPSC kinetics (see
[18,29]). Therefore the mechanism is most likely a reduc-
tion in the number of activated AMPARs. This could be
due to a presynaptic mechanism such as a reduction in
release probability, the L-glutamate content of vesicles or
the amount of L-glutamate discharged during fusion.
Indeed there is evidence that some forms of LTD are
expressed presynaptically [5,35]. Postsynaptic mecha-
nisms for a reduction in the number of activated AMPA
receptors include a reduction in their P, [36]or in the
physical number of receptors present in the postsynaptic
membrane [37].

The present observations for DPy are indistinguishable
from those that we and others have reported recently for
de novo LTD [17,38]. For example, we showed that similar
effects were obtained using the postsynaptic injection of a
peptide (pep2m) that disrupts the interaction between
NSF and GluR2 [39-42]. The effects of pep2m and those
of de novo LTD were mutually occlusive, indicating a con-
vergence of mechanisms. These data argue strongly for a
postsynaptic mechanism of expression. Furthermore,
since pep2m causes the removal of AMPA receptors from
the membrane surface, as determined immunocytochem-
ically [38,42], it is most likely that de novo LTD is due to
the physical elimination of synaptic AMPA receptors.
Other evidence for a postsynaptic mechanism for de novo
LTD includes a reduction in the postsynaptic sensitivity to
glutamate [43,44], the dephosphorylation of serine 845
of the GluR1 subunit [45,46] and a rapid internalisation
of AMPA receptors [47] associated with LTD. Therefore, by
analogy, we feel that the postsynaptic removal of AMPA
receptors is also the most likely explanation for DDy (Fig-
ure 7A). Accordingly, a reduction in AMPA receptor
number would account for the changes in potency with-
out changes in success rate observed with modest DPy.
The removal of an entire synaptic complement of AMPA
receptors would explain the additional change in success
rate seen with large depressions associated with DPy in
some cells.

Mechanisms underlying DP,

A number of possible underlying mechanisms could
account for the change in y during LTPy and DPy. Non-
SFA cannot distinguish between 1) a change from a single
low conductance state to a single high conductance state,
2) changes in open times within a burst and, 3) changes

Page 7 of 12

(page number not for citation purposes)



BMC Neuroscience 2004, 5:44

>

10 ————5 —DD—-;J{

Success rate ratio

|
|
0.5 A mE / :
|
|
|

O |
10 ———g —=——o0——+&-
O o |
o " P
® =
E " m / =
05 - '/f/- |
I/ :
yd
0.0 w l
0.0 0.5 1.0

Amplitude ratio

Figure 6

http://www.biomedcentral.com/1471-2202/5/44

[
b J{
] D//
o |
© i g A |
? : Em g / |
0.5 1
g Moo A
o O )y |
s |
0.0 w l
0.0 0.5 1.0
Amplitude ratio
m] [
10 ————g——— o0 —+&-
Oog yd |
o -/ / |
S ‘i./ " :
’ ]
“p " |
yd
p |
0.0 w l
0.0 0.5 1.0

Potency ratio

Further analysis of DP experiments. (A) Success rate ratio (DP / preceding LTP) vs. amplitude ratio for individual DP experi-
ments (open symbols represent experiments for which y did not change, closed symbols for experiments in which there was a
change in y). These symbol codes apply to the rest of the figure. (B) Potency ratio vs. amplitude ratio. (C) vy ratio vs. amplitude

ratio. (D) y ratio vs. potency ratio.

in the proportion of time spent in different conductance
states. Since AMPA receptors are known to have multiple
conductance states [32,33] we have postulated that the
proportion of time spent in different conductance states is
the modifiable parameter [18]. Such a change is detecta-
ble with the type of analysis that we have used, which pro-

vides a weighted mean of the various sub-conductance
states [48]. Independent support for this hypothesis is
provided by a study which shows that phosphorylation of
GluR1 at serine 831 increases the proportion of time
AMPA receptors spend in high conductance states, as
determined by single channel recording [20]. Indeed,
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synapses. De novo LTD [17] is due to the same mechanism. (B) DP is due to a reduction in y (DPy) when preceded by LTPy.

phosphorylation of this residue occurs during LTP [19].
Thus a possible mechanism of DPy is the dephosphoryla-
tion of serine 831 [45], perhaps involving calcineurin
[49], resulting in a lower proportion of time AMPA recep-
tors spend in the higher conductance states (Figure 7B).

Other theoretical possibilities exist to explain DPy. For
example, the silencing of synapses close to the patch
electrode leaving more distant synapses contributing a
lower net y due to electrotonic filtering, or a decrease in
trial-to-trial asynchrony of transmitter release. We believe
that these possibilities are unlikely because in every cell in
which de novo LTD was induced there was never a change
iny [17]. If such possibilities were likely, statistically one
would expect similar changes to occur for both de novo
LTD and DP. Moreover, we have also investigated these
possibilities using our standard compartmental model
[29]. This shows that 1) the electrotonic filtering required
to achieve an artefactual decrease in y would have a pro-

nounced effect on t4,,, which was never observed experi-
mentally, and 2) pronounced changes in asynchrony
necessary to cause an artefactual change in y cause large
deviations from the parabolic relationship in the current-
variance plot (unpublished observations) and alterations
in 1. [29], also never observed experimentally. Another
possibility is that alterations in vesicle fusion pore dynam-
ics leading to substantial changes in the peak and time-
course of cleft glutamate are caused by synaptic plasticity
[7]. Such changes could differentially affect estimates of y
[50], however they would be associated with substantial
changes in 1, and Tyeqy [7], which were never observed
experimentally.

Conclusions

In summary, we have shown that there are two distinct
molecular mechanisms for the reduction of synaptic
strength. Although previous studies have provided evi-
dence that LTD is associated with dephosphorylation of
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serine 845 on GluR1 [45] and internalisation of AMPA
receptors [16,17] it is not known whether this represents
two separate mechanisms or two components of the same
process. For example, dephosphorylation of GluR1 could
drive the internalisation of AMPA receptors. Here we
show, for the first time, the co-existence of two distinct
mechanisms for the expression of DP, using functional
criteria under identical experimental conditions. The
relationship between the two mechanisms is critically
dependent upon the recent experience of the synapse,
which may be governed by the phosphorylation state of
the AMPA receptor complement [45]. Further work is now
required to elucidate the relationship between these two
fundamental mechanisms for modulating synaptic
strength and the precise molecular mechanisms involved
in each form of plasticity.

Methods

Electrophysiology

Hippocampal slices (400 pm) were obtained from 12-15
day old rats and perfused with an extracellular solution
containing (in mM): 124 NaCl, 3 KCl, 1.25 NaHPO,, 26
NaHCO,, 2 CaCl,, 1 MgSO,, 15 glucose, 2 ascorbic acid,
0.05 picrotoxin, saturated with 95% O, / 5% CO,, at
room temperature (23-25°C). Individual dendrites were
visualised using infrared illumination and DIC optics and
approached under visual control. Whole-cell dendritic
recordings of synaptic currents were obtained at a holding
potential of -70 mV using patch electrodes (6-10 MQ)
filled with a solution containing (in mM): 135 CsMeSO,,
8 NaCl, 10 HEPES, 0.5 EGTA, 4 Mg-ATP, 0.3 Na-GTP, 5
QX-314, pH 7.25, 285 mOsm. Schaffer collateral-com-
missural fibers were stimulated at 0.5 Hz using a platinum
monopolar or concentric bipolar electrode, which was
positioned 20-40 um from the dendrite parallel to the
input pathway. The stimulus intensity was set to evoke
some failures to enable a failures analysis to be performed
and to ensure that the majority of EPSCs were, for any
given trial, evoked by release from a single site. However,
to elicit sufficient EPSCs to obtain a baseline estimate of y
before "washout" of LTP it was usually necessary to set the
success rate fairly high (usually above 50%). As a result it
is likely that multiple release sites contributed to the
recordings. LTP was induced by pairing 40-60 stimuli
(baseline frequency) with a holding potential of 0 mV. DP
was induced following the induction of stable LTP by
100-200 stimuli (baseline frequency) at -40 mV holding
potential. All recordings were made using an Axopatch 1B
amplifier, signals were filtered at 5 kHz (8 pole Bessel fil-
ter), digitised at 10 kHz and stored on computer. EPSC
amplitude and input resistance were analysed and dis-
played on-line using the 'LTP' program [51]). Series resist-
ance was estimated by measuring the peak amplitude of
the fast whole-cell capacitance current in response to a -1
mV step applied to the cell during each sweep. The ampli-
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tude was estimated by fitting the capacitance transient
with a double exponential (from 0.5 ms after the peak)
and determining the current at the beginning of the step.
Series resistance was stable throughout recordings (series
resistance values [MQ]: baseline =42 + 3, LTP =40 + 3, DP
=43 +3,n=17).

Analysis

Non-SFA was performed as described previously [18].
Briefly, synaptic currents were aligned by their point of
maximal rise, and averaged. The average response wave-
form was scaled to the peak, subtracted from individual
responses and the variance of the decays calculated. The
variance was plotted vs. the mean current amplitude and
the single channel current was estimated by fitting the
data to: 62 =il - I2/N + b;, where 62 is the variance, I is the
mean current, N is the number of channels activated at the
peak, i is the single channel current and b, is the back-
ground variance. The single channel conductance (y) is
then y = i/V, where V is the driving force (holding poten-
tial - assumed reversal potential of 0 mV). Response
amplitude was measured in two ways. For failures, ampli-
tude was estimated by measuring the difference between
the average current over two time windows of equal
length, one immediately before the stimulus artefact and
the other centred on the peak of the mean EPSC. For esti-
mation of the amplitude of successes the peak amplitude
over a set time window was determined. Failures were
identified visually, and potency was calculated as the
mean EPSC amplitude excluding failures. For analysis of
EPSC kinetics, rise time was estimated by the time-con-
stant of a single exponential fit of the rising phase of the
mean EPSC waveform. For decay, the time-constant of the
single exponential fit to the decay phase was used. For dis-
play of individual EPSC traces in the figures, the stimulus
artefact was digitally subtracted using an average of iden-
tified failures. All histograms are represented as smoothed
line plots (SigmaPlot ver 5.0). Data are expressed as % of
baseline (i.e., 100 % = no change). Statistical significance
was assessed using the Student's ¢-test (one or two-tailed,
paired or unpaired as appropriate; P < 0.05 as significant).
All values are expressed as mean + s.e.m.
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