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Abstract
Background: Lithium, a mood stabilizer widely used to treat bipolar disorder, also is a
neuroprotectant, providing neurons protection from apoptosis induced by a broad spectrum of
toxic conditions. A portion of this neuroprotection is due to lithium's inhibition of glycogen
synthase kinase-3. The present investigation examined if the neuroprotection provided by lithium
included apoptosis induced by stimulation of the death domain-containing receptor Fas.

Results: Instead of providing protection, treatment with 20 mM lithium significantly increased
apoptotic signaling induced by activation of Fas, and this occurred in both Jurkat cells and
differentiated immortalized hippocampal neurons. Other inhibitors of glycogen synthase kinase-3,
including 20 µM indirubin-3'-monoxime, 5 µM kenpaullone, and 5 µM rottlerin, also facilitated Fas-
induced apoptotic signaling, indicating that the facilitation of apoptosis by lithium was due to
inhibition of glycogen synthase kinase-3.

Conclusions: These results demonstrate that lithium is not always a neuroprotectant, and it has
the opposite effect of facilitating apoptosis mediated by stimulation of death domain-containing
receptors.

Background
Lithium has long been the mainstay treatment for bipolar
disorder. However, its therapeutic mechanism of action
remains unclear, in part because of the large number of
biochemical effects attributed to lithium [1]. Nonetheless,
two actions are prime candidates as lithium's therapeutic
targets, inhibition of inositol monophosphatase [2] and
inhibition of glycogen synthase kinase-3 (GSK3) [3]. Both
enzymes are directly inhibited by lithium, but since lith-
ium has numerous diverse effects, it is presently unknown
which actions contribute to its therapeutic effects.

In addition to stabilizing mood, lithium is a broadly act-
ing cellular protectant, providing neurons and other cells
protection from many insults (reviewed in [4-6]). These
include, but are not limited to, growth factor withdrawal
and inhibition of the phosphoinositide 3-kinase (PI3K)/
Akt signaling pathway [7], treatment with amyloid β-pep-
tide [8-11], DNA damage [12], endoplasmic reticulum
stress [13], ischemia [14,15], and a variety of toxic agents
[5,16,17]. While the mechanistic basis for protection by
lithium in all conditions is not known, in some instances
protection is due to its inhibition of GSK3 [12,13,18-20].
This neuroprotective effect of lithium due to inhibition of
GSK3 complements accumulating evidence that GSK3
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promotes apoptosis in a large number of conditions
(reviewed in [4]). Regardless of the mechanism, the broad
neuroprotective capacity of lithium has led many investi-
gators to suggest the possibility that the therapeutic use of
lithium be expanded from mood disorders to also include
neurodegenerative conditions where lithium may be able
to retard neuronal dysfunction and death.

Conspicuously absent from reports of lithium's protective
effects are studies of neuronal apoptosis induced by acti-
vation of death domain-containing receptors, such as Fas
(also called CD95) and the receptor for tumor necrosis
factor-α (TNFα). These receptors contain an intracellular
death domain motif that is required for stimulating apop-
tosis, a major function of these receptors that is initiated
through activation of intracellular proteins and proceeds
to caspase-3 activation [21]. Interestingly, several years
ago lithium was reported to promote the cytotoxic actions
of TNFα [22-24], indicating that lithium's influence on
neuronal responses to stimulation of death domain-con-
taining receptors may differ from other conditions in
which lithium affords neuroprotection.

Therefore, this study examined the effects of lithium on
the activation of apoptotic signaling induced by stimula-
tion of the death domain-containing receptor Fas in two
types of cells, Jurkat cells and immortalized mouse hip-
pocampal neurons that were differentiated to a neuronal
phenotype. In both cell types, 20 mM lithium signifi-
cantly increased caspase-3 activation following stimula-
tion of Fas. These results demonstrate that in contrast to

many other modes of cell death, lithium is not protective
following Fas activation, but conversely promotes
apoptosis.

Results
Lithium potentiates apoptosis stimulated by Fas in Jurkat 
cells
Jurkat cells were used initially to test if lithium modulates
apoptotic signaling induced by activation of Fas. Immu-
noblots of active caspase-3 and of a poly(ADP-ribose)
polymerase (PARP) 85 kDa cleavage product, which is
generated by caspase-3-mediated proteolysis, provided
indicators of activation of apoptotic signaling. Treatment
with an agonistic anti-Fas antibody (5 to 50 ng/ml)
caused concentration-dependent increases in active cas-
pase-3 (Fig. 1A) and cleaved PARP (Fig. 1B). Since the Ki
of lithium's inhibitory effect on GSK3 is approximately 2
mM, a concentration of 20 mM lithium was used to
achieve 80–90% inhibition as indicated by previously
published concentration-response studies [3]. Pretreat-
ment with 20 mM lithium (30 min) potentiated Fas-
induced caspase-3 activation by 5.8-fold at the lowest con-
centration of agonistic Fas antibody. PARP cleavage
induced by stimulation of Fas also was potentiated by
lithium, with the greatest potentiation evident at the low-
est concentration of agonistic Fas antibody. Treatment
with lithium alone caused no activation of caspase-3 or
PARP cleavage. Thus, lithium treatment facilitated Fas-
mediated activation of apoptotic signaling, having the
greatest effects at sub-maximal concentrations of Fas
antibody.

Lithium promotes apoptotic signaling mediated by Fas in Jurkat cellsFigure 1
Lithium promotes apoptotic signaling mediated by Fas in Jurkat cells. Jurkat cells were pretreated with 20 mM lithium for 30 
min as indicated, followed by treatment with an agonistic anti-Fas antibody (5, 10, 20, or 50 ng/ml). After 24 hr, immunoblots 
were used to detect (A) active caspase-3, and (B) cleaved PARP. Densitometry was used to measure immunoreactive bands 
and the ratios of the responses in the presence and absence of lithium were calculated (shown under the immunoblots; Mean 
± SEM; n = 3).
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Flow cytometry was used to quantitate the time-depend-
ence of Jurkat cell death caused by Fas stimulation in the
absence and presence of lithium (Fig. 2). Stimulation of
Fas caused a time-dependent increase in the number of
apoptotic cells, and lithium treatment approximately
doubled Fas-induced apoptosis at all times measured.
Thus, lithium promoted apoptosis induced by stimula-
tion of Fas death domain-containing receptors in Jurkat
cells.

Lithium promotes Fas signaling in hippocampal neurons
The next goal was to identify a neuronal model system in
which Fas-stimulated apoptosis could be investigated,
because few cultured neuronal cell lines express the
appropriate receptors and signaling activities. Preliminary
experiments showed that differentiated immortalized
hippocampal neurons responded to Fas stimulation with
caspase-3 activation and cell death, therefore these cells
were used to test if lithium modulated this response.

Treatment of differentiated immortalized hippocampal
neurons with an agonistic anti-Fas antibody (1 µg/ml), in
the absence or presence of 20 mM lithium caused a time-
dependent activation of caspase-3 (Fig. 3A) and of PARP
proteolysis (Fig. 3B). Both of these apoptotic responses to
stimulation of Fas were increased by treatment with 20
mM lithium (Fig. 3), whereas lithium alone had no effect
on these parameters. As indicated by the values given
below the western blots, lithium treatment increased Fas-
induced caspase-3 activation by approximately two-fold
throughout the experimental time course.

Inhibition of GSK3 facilitates Fas-induced apoptosis 
activation
The two predominantly studied actions of lithium are
inositol depletion and inhibition of GSK3. Therefore, we
examined if either of these two actions could account for
lithium's facilitation of Fas-induced apoptosis. Inhibition
of inositol monophosphatase by lithium could conceiva-
bly result in depletion of inositol [25] which might facili-
tate Fas-induced apoptosis. To test this, cells were

Lithium promotes Fas-induced apoptosis in Jurkat cellsFigure 2
Lithium promotes Fas-induced apoptosis in Jurkat cells. Flow cytometry with propidium iodide was used to identify apoptotic 
cells 4, 7, and 11 hr after treatment with anti-Fas (20 ng/ml) in the absence (top row) or presence (bottom row) of 20 mM 
lithium.
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pretreated with 20 mM myo-inositol to eliminate any
potential inositol depletion. This treatment had no effect
on Fas-induced apoptotic signaling in the presence or
absence of lithium (Fig. 4A), indicating that inositol
depletion did not account for the facilitation of caspase-3
activation caused by lithium.

To test if Fas-induced apoptosis was facilitated by lith-
ium's inhibition of GSK3, additional GSK3 inhibitors
were tested, including 20 µM indirubin-3'-monoxime
[26], 5 µM kenpaullone [27], and 5 µM rottlerin [28]. As
with lithium, to varying degrees each of these GSK3 inhib-
itors also increased Fas-induced caspase-3 activation and
PARP proteolysis in both Jurkat cells and differentiated
hippocampal cells (Fig. 4B). These findings indicate that
inhibition of GSK3 facilitates Fas-induced caspase
activation.

Discussion
The results of this study demonstrate for the first time that
lithium and other GSK3 inhibitors promote death
domain-containing receptor-mediated apoptosis in neu-
ral cells, and that Fas-mediated apoptotic signaling is
facilitated by lithium. Thus, in contrast to much current
literature, lithium is not always neuroprotective and GSK3
is not always pro-apoptotic.

Lithium facilitated apoptotic signaling induced by stimu-
lation of Fas, and this facilitation by lithium occurred in
two dissimilar types of cells, Jurkat cells and differentiated
hippocampal neurons. These findings extend to Fas, and
to neurons, previous reports that lithium promotes TNFα-
induced cytotoxicity [22-24,29]. Lithium and another spe-
cific inhibitor of GSK3 also recently were reported to
enhance apoptosis induced by tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) in human
prostate cancer cell lines [30]. Taken together, it is evident
that apoptosis induced by activation of death domain-
containing receptors is facilitated by lithium, as opposed
to the protective action of lithium in many other condi-
tions. For example, pretreatment with a high concentra-
tion of lithium (10 to 30 mM) previously was reported to
protect cells from apoptosis and/or loss of viability caused
by amyloid β-peptide [8,11], withdrawal of nerve growth
factor [31], DNA damage [12], hypoxia [32], trophic fac-
tor withdrawal [33,34], hypertonic stress [35], potassium-
withdrawal or inhibition of PI3K [36], endoplasmic retic-
ulum stress [13], platelet activating factor [37], rotenone,
and 1-methyl-4-phenylpyridinium (MPP) [17]. This dif-
ferent effect of lithium among apoptotic conditions is
likely related to the mechanisms mediating the two major
classes of apoptosis: intrinsic and extrinsic apoptosis [38].
Many, if not all, of the conditions in which lithium is pro-
tective appear to activate the intrinsic apoptotic signaling

Lithium promotes apoptotic signaling mediated by Fas in differentiated immortalized hippocampal neuronsFigure 3
Lithium promotes apoptotic signaling mediated by Fas in differentiated immortalized hippocampal neurons. Differentiated 
immortalized hippocampal neurons were pretreated with 20 mM lithium for 30 min as indicated, followed by treatment with an 
agonistic anti-Fas antibody (10 µg/ml). Immunoblots were used to measure the time-dependent (A) activation of caspase-3, and 
(B) PARP cleavage. Ratios of the responses in the presence and absence of lithium are shown under the immunoblots (Mean ± 
SEM; n = 3–5).
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pathway. In contrast, the extrinsic apoptosis pathway is
induced by activation of Fas, TRAIL, and TNFα receptors.
The fundamental differences in these apoptotic mecha-
nisms appear linked to the differential effects of lithium.

The mechanism by which lithium promotes the cytotoxic-
ity caused by stimulation of Fas appears due to inhibition
of GSK3 because other GSK3 inhibitors had the same
effect. This is in accordance with the conclusions that lith-
ium's inhibition of GSK3 facilitates apoptosis induced by
TRAIL [30] and by TNFα [39], and that TNFα-induced
hepatotoxicity was potentiated by elimination of GSK3β
or treatment with lithium [40]. However, other investiga-
tors concluded that lithium's facilitation of TNFα-induced
apoptosis was independent of GSK3 inhibition [29]. In
contrast with our findings, Schotte et al [29] reported that
in stable lines of fibrosarcoma cells transfected with Fas
there was no potentiation by lithium of agonistic anti-Fas-
induced cell death. Whether this difference from our
results is caused by different cell types, over-expressed Fas,
or other reasons is unknown. We speculate that since we
observed the greatest effects of lithium at sub-maximal
activation of Fas, facilitation by lithium might be difficult
to detect in cells overexpressing Fas.

These results indicate that GSK3 attenuates extrinsic apop-
tosis, and that lithium and other GSK3 inhibitors block
this effect to promote extrinsic apoptosis. As a corollary,
this raises the question of whether or not such an action
of lithium could occur in vivo in humans treated with
therapeutic concentrations of lithium. Initially, when lith-
ium's direct inhibition of GSK3 was described [3] investi-
gators were skeptical that this could have any therapeutic
relevance because the Ki for inhibition is about 2 mM,
much above the therapeutic level of near 1 mM. However,
lithium has the intriguing ability to inhibit GSK3 in two
ways in vivo. First it causes direct inhibition. Second, this
direct inhibition at a low concentration is amplified in
vivo after chronic lithium treatment by an increase in the
inhibitory serine-phosphorylation of GSK3 [41]. These
dual mechanisms were recently reviewed [6]. The mecha-
nism for this dual inhibition was recently proposed by
Klein's group to be due to regulation of phosphatases act-
ing on GSK3 [42]. Therefore, although high lithium con-
centrations are necessary to cause substantial inhibition of
GSK3 in acute in vitro experiments, the effects of lower
lithium levels achieved in vivo after chronic administra-
tion are amplified by this mechanism. If this amplifica-
tion mechanism contributes to lithium's inhibition of
GSK3 in vivo, and inhibition of GSK3 occurs to a signifi-

GSK3 inhibitors facilitate Fas-induced apoptosisFigure 4
GSK3 inhibitors facilitate Fas-induced apoptosis. (A) Differentiated immortalized hippocampal neurons were pretreated for 30 
min with 20 mM lithium, with or without 20 mM myo-inositol, and active caspase-3 and proteolyzed PARP were measured 24 
hr with or without Fas stimulation. (B) In Jurkat cells and differentiated immortalized hippocampal neurons, activation of cas-
pase-3 and PARP cleavage induced by Fas stimulation were facilitated following 30 min pretreatment with 20 mM lithium, 5 µM 
rottlerin (Rott), 20 µM indirubin-3'-monoxime (Ind), or 5 µM kenpaullone (Ken).
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cant extent in vivo with a therapeutically relevant concen-
tration of lithium, then the same rationale suggests that
lithium also may facilitate extrinsic apoptosis in vivo
dependent on the magnitude of inhibition of GSK3 that is
necessary for this effect.

Conclusions
These experiments demonstrated that lithium facilitates
Fas-induced apoptotic signaling in Jurkat cells and in dif-
ferentiated hippocampal neurons. Along with previous
reports that lithium potentiates apoptosis induced by
TNFα or TRAIL, it may be possible to generalize that lith-
ium facilitates extrinsic apoptotic signaling by death
domain-containing receptors, as opposed to its protective
capacity in intrinsic apoptosis. This fundamental differ-
ence may be due to the roles of GSK3 in these signaling
pathways, specifically its inhibition of NFκB which is par-
ticularly important in counteracting the extrinsic
apoptotic signaling [40], and the promotion by GSK3 of
intrinsic apoptotic signaling. This action of lithium may
need to be taken into consideration when lithium is pro-
posed for use as a neuroprotectant. For example in Alzhe-
imer's disease, whereas lithium is protective against the
actions of Aβ [8-11], there is also much evidence of
inflammation [43] which may be exacerbated by lithium's
potentiation of signaling induced by stimulation of death
domain-containing receptors. Future investigations will
need to examine if this occurs in the central nervous sys-
tem and with therapeutic levels of lithium.

Methods
Jurkat cells were grown in RPMI 1640 medium (Cellgro,
Herndon, VA) supplemented with 10% fetal bovine
serum, 2 mM L-glutamine, 100 U/ml penicillin and 100
µg/ml streptomycin. Immortalized hippocampal neurons
[44] (generously provided by Dr. M. F. Mehler, Albert Ein-
stein College of Medicine) were differentiated by incuba-
tion for 6 days at 39°C in Neurobasal media containing
B-27 supplement [45] prior to experimental manipula-
tions. Where indicated, cells were treated with 20 mM
LiCl, 20 µM indirubin-3'-monoxime (Alexis Biochemi-
cals, San Diego, CA), 5 µM kenpaullone (Sigma), 5 µM
rottlerin (Calbiochem, La Jolla, CA), and the indicated
amounts of agonistic anti-Fas antibody (anti-human Fas
was from Upstate Biotech, Lake Placid, NY, and anti-
mouse Fas was from Pharmingen, San Diego, CA). Cells
were harvested and immunoblots were prepared as
described previously [13] using antibodies to proteolyzed
PARP 85 kDa fragment (PharMingen/Transduction Labo-
ratories, San Diego, CA), and anti-active casapse-3 (Cell
Signaling, Beverly, MA). Flow cytometry with propidium
iodide was carried out as described previously [46].
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