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Abstract

Background: Human brain activity in the gamma frequency range has been shown to be a
correlate of numerous cognitive functions like attention, perception and memory access. More
specifically, gamma activity has been found to be enhanced when stimuli are stored in or match with
short-term memory (STM). We tested the hypothesis that gamma activity is also evoked when
stimuli match representations in long-term-memory (LTM). EEG was recorded from |3 subjects
performing a choice reaction task. Visual stimuli were either known real-world objects with a
memory representation or novel configurations never seen before.

Results: All stimuli evoked an early gamma response which was maximal over occipital electrodes.
This evoked gamma activity was significantly larger for items that matched memory templates.

Conclusions: Therefore, we argue that gamma activity results from the feedback from memory

into perception systems. This assumption seems to be true for STM as well as LTM.

Background

Human and animal brain activity frequently shows oscil-
lations in the gamma frequency range (approx. 30-80 Hz)
[1,2]. This activity is either phase-locked to the stimula-
tion (evoked activity) or not (induced activity) [3]. Irre-
spective of this phase-locking these oscillations have been
shown to be correlates of numerous cognitive functions.
Among the first functions to be associated with gamma
activity was visual feature binding, coherent visual objects
inducing more gamma oscillations than others [4,5]. Also
tones evoke such gamma responses [6] and attention was
associated with auditory gamma activity, attended tones
evoking larger auditory gamma peaks than unattended
ones [7]. In addition, it has been shown that object per-
ception seems to be a crucial factor for the presence of
gamma activity [8]. For example, faces induced more

gamma activity than rotated faces which were not recog-
nizable [9] leading to more synchronization among brain
areas within the gamma band [10]. In addition, gamma
activity can be found when subjects suddenly see a mean-
ingful picture in random-dot patterns (autostereoscopic
pictures) [11]. Also the human ability of language has
been associated with gamma activity: words evoke more
gamma oscillations in human cortex than do pseudo-
words [12] and language-related gamma activity is most
prominent over the language-specific left hemisphere
[13]. One mechanism which underlies many of these cog-
nitive functions is access to memory. It has been demon-
strated that access to working memory induces gamma
activity: when subjects have to actively maintain visual
stimuli in working memory the stimuli induced more
gamma oscilations as compared to not memorizing them
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[14]). Also other studies have positively correlated gamma
activity with learning and memory [15-18].

In addition, personal variables like the inter-individual
arousal levels of subjects are also reflected in evoked
gamma activity [19]. It has even been argued that human
gamma activity may be a correlate of consciousness, since
it was found to be higher during waking and REM sleep
than during deep sleep [20] and anaesthesia [21].
Recently, it has been demonstrated that also the 1Q scores
of subjects correlate with the amount of gamma activity
which is evoked by auditory stimuli [22].

In a series of previous experiments we tried to reveal
which of the mentioned cognitive functions are more
important for human gamma activity and which others
might be less important. We used four different stimuli to
directly contrast visual feature binding and attention. Two
of the stimuli were Kanizsa figures for which the constitu-
ing parts can be bound together while for the remaining
two stimuli this was not possible. One out of the four
stimuli was defined as a target and had to be detected. The
experiment revealed that the attended target evoked sig-
nificantly more gamma oscillations as compared to three
the standards [23]. Even when stimuli were used as targets
which consisted of features that could not be bound
together to coherent objects those targets evoked larger
gamma responses than non-target stimuli which could be
bound together [24]. This indicated that attention
towards a target stimulus is more important for the mod-
ulation of gamma activity than the feature binding
required to bind together coherent objects. Of course, tar-
get detection also requires access to working memory.
Every stimulus has to be compared to a template of the
target which was previously stored in short-term memory.
Therefore, in a subsequent experiment, we explicitely
tested whether comparing stimuli to memory templates
increased gamma activity. When subjects had to identify
targets by discriminating multiple stimulus features via
comparison with a template in short-term memory (STM)
all stimuli evoked significantly more gamma activity than
stimuli which could be discriminated by a single feature
(their color) [25]. We recently obtained similar results for
auditory stimuli depending on whether targets match a
template in working memory or whether novel stimuli do
not match [26]. Targets evoked significantly more gamma
oscillations than novel stimuli even though both types of
stimuli attract attention and evoke strong P3 components
in human EEG. This lead us to the hypothesis that mem-
ory access may be crucial for the generation of gamma
activity. It might be assumed that not only acces to STM
but also to long-term-memory (LTM) shows a similar
effect. Thus, we set out to test whether access to LTM mod-
ulates human gamma responses. We investigated whether
simple visual stimuli evoke more gamma activity when
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Examples of the stimuli used in the experiment. Two objects
with a representation in LTM (red) and the corresponding
non-objects which are composed of the same parts but have
no such representation in LTM (blue). Subjects were to dif-
ferentiate round (top row) from edgy figures (bottom row)
in order to keep the results free of confounds through their
responses.
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Figure 2

Average time-frequency representation of the EEG activity at
electrode O2 (averaged across all 13 subjects). A clear peak
of evoked gamma activity is visible shortly before 100 ms in
the frequency range of 30 to 40 Hz. This peak is significantly
stronger for objects (top) than non-objects (bottom).
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subjects already have a memory representation of the pre-
sented objects as compared to when they perceive novel
visual stimuli which do not match LTM. Indeed, stimuli
for which subjects already had a representation in their
LTM evoked significantly larger gamma responses.

Results

We recorded EEG from 13 healthy subjects while they per-
ceived figural stimuli on a computer monitor. The stimu-
lus material consisted of two different types of black and
white drawings (210 total). The first type of figures were
line drawings of objects for which subjects already had a
representation in LTM because they were well-known real-
world objects. The second type of stimuli were non-
objects. In order to keep the two stimulus types compara-
ble, the non-objects were composed of the same compo-
nents as the objects but were newly arranged. Thus, each
non-object simulus comprised the parts of one object
stimulus (cf. Fig 1). Subjects were instructed to judge
whether the stimuli appeared to be either edgy or curvy by
pressing one of two buttons (right index finger for edgy,
left for curvy objects). Thus, subjects were naive about the
purpose of the experiment. This was important, since we
did not want subjects to be influenced by the stimulus
type which we investigated.

An ANOVA comparing the reaction times in response to
edgy versus round objects yielded a significant main effect

http://www.biomedcentral.com/1471-2202/5/13

(F(1,12) = 10.7, p<0.05). Responses to edgy objects were
faster (557 ms) than to round objects (591 ms) due to the
fact that subjects responded with their dominant right
hand to edgy objects while they responded to curvy
objects with their left hand. No significant differences
were found comparing reaction times in response to
objects versus non-objects. This indicates that responses
to objects versus non-objects were not influenced by the
task or the response hand.

The EEG was convolved with Morlet wavelets in order to
compute the gamma activity evoked by each stimulation
condition. The grand-average of the time-frequency repre-
sentations of all subjects revealed a clear peak of evoked
gamma activity (cf. Fig. 2). As revealed in Fig. 3 frequency
and amplitude of this response vary across subjects. Fig. 4
shows the time course of the averaged gamma response. It
is maximal around 70 ms after stimulus onset.

An ANOVA comparing the gamma responses evoked by
objects versus non-objects yielded a significant main
effect (F;,15)=5.171, p<0.05). In order to exclude the pos-
sibility that the 4 subjects with no clear gamma peak
might have biased our results, we repeated the analysis
with the remaining 9 subjects. The effect remains almost
identical, objects evoking larger gamma responses than
non-objects (F(; 5= 5.59, p<0.05).
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Figure 3

Individual time-frequency representations of the EEG activity at electrode O2 for two subjects. The plots reveal different
amplitudes and frequencies of the evoked gamma response (subject |: 35 Hz, subject 2: 40 Hz). Both subjects show a stronger

activation for objects than non-objects.
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The evoked peak of gamma activity shows a clear difference between known objects (red) and non-objects (blue).

No significant main effect was found comparing edgy ver-
sus round objects (F(; ;,)=0.861, p = 0.372). Thus, objects
for which subjects already have a representation in LTM
evoke significantly more gamma activity than do non-
objects which are perceived for the first time and have no
such representation.

The topographic maps of the evoked gamma peak demon-
strate that the amplitude is largest over occipital cortex
indicating that the activity stems from visual brain areas
(cf. Fig. 5).

Discussion

Our data show that visual stimuli evoke enhanced gamma
reponses if they match with contents of LTM. We assume
that feedback loops from the memory system to percep-
tion mechanisms are responsible for this phenomenon. It
has been demonstrated that neurons in medial temporal
cortex fire in synchrony and at approx. 40 Hz when stim-
uli are subsequently remembered [18]. In our experiment
the topography of the gamma oscillations was over occip-
ital areas indicating that they were generated by neurons
of visual cortex. However, since stimuli for which subjects
had a memory representation evoked larger oscillatory
responses, we argue that the feedback from memory sys-
tems enhances gamma activity in visual areas. The mem-
ory processes which modulate the visual gamma response
seem to not elicit gamma activity themselves, since only
occipital responses were found. Such memory processes
would, however, be expected to reside in frontal or tem-
poral cortex where no gamma activity was found. A simi-
lar phenomenon has been observed for event-related
potentials (ERPs). Patients with frontal lobe damage show
altered early auditory and visual ERPs which indicates that
frontal cortex modulates temporal and occipital cortex in

the generation of electrophysiological responses [27,28].
However, no frontal ERP component has been identified
which represents this modulatory process.

The notion that memory access modulates human gamma
responses is supported by a great number of experimental
findings on evoked gamma activity in the human EEG.
For instance, words probably evoke more gamma activity
as compared to pseudo-words [12] because we have mem-
ory representations of words but not of pseudo-words.
Language-specific gamma activity could be lateralized to
the left hemisphere [13] since the mental lexikon where
words are stored resides in the left hemisphere. Attended
objects reach STM more easily than unattended ones and
thus lead to more gamma oscillations [7]. A target is
defined by matching a template stored in STM for all cri-
teria while a standard stimulus will represent a mismatch
for at least one criterion. Thus, auditory as well as visual
target stimuli receive more positive feedback from STM
than standards [23,24,29].

Due to the similar topographical distributions of our
evoked response and induced gamma responses [14,17],
it seems plausible to assume that evoked and induced
gamma activity are generated by the same neural systems
only varying in their degree of phase-locking. Under this
assumption our memory-explanation might even hold for
the induced gamma band responses. We would argue that
objects induce more gamma activity than non-objects
[30] because we have only objects stored in LTM but no
non-objects. This is not to claim that gamma activity is not
related to binding processes. Our main argumentation is
that a memory comparison must occur in order to initiate
a binding process in case of a match. The same would be
true for faces versus rotated faces [9] and meaningful pic-
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Figure 5
The difference between objects and non-objects is also clearly visible in the topographic maps. The bilateral occipital distribu-
tion indicates that the gamma activity results from extrastriate visual cortices.
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tures versus random-dot patterns [11]. However, it is
probably not the aspect of meaningfulness per se that
enhances early gamma band activity. In the experiment by
Debener et al target tones evoked more gamma activity
than novel stimuli. In this experiment targets were simple
sine waves while novels were real world (meaningful)
sounds. Thus, the effect should have been reversed if
meaningful stimuli should evoke more gamma activity.
Also, behavioral relevance is probably not a crucial factor
involved in the modulation of gamma activity. In the
present study the factor of interest (memory vs. non-
memory) was totally irrelevant for the subjects' task.

Even the notion that gamma activity might reflect aspects
of consciousness [20,21] is supported by our data: During
conscious states we always compare every perception to
the contents of LTM [31] which yields the observed
gamma activity. During unconscious states of sleep or
anaestesia this comparison is no longer carried out.

Conclusions

Taken together, we propose that gamma activity is modu-
lated by access to STM and LTM. When perceived stimuli
match with existing representations in STM or LTM they
evoke larger gamma responses as if there were no existing
representations. Of course also other cognitive processes
without explicit memory access may modulate human
gamma activity. It is known, for example, that task diffi-
culty [32] and the speed of manual reaction [33] covary
with gamma activity. Multiple modulatory mechanisms
of gamma responses are very probable, since multiple
oscillatory responses can be found in the human EEG at
different frequencies in the gamma range with different
topographies and time-courses.

Methods

Subjects

13 subjects (7 female) with a mean age of 25.4 (+4.6)
years paticipated in our experiment. All subjects had nor-
mal or corrected-to-normal vision and showed no signs of
any neurologic or psychiatric disorder. They gave their
written informed consent and were paid for their attend-
ance. The experiment was conducted in line with local
ethics guidelines.

Apparatus and stimuli

In order to avoid electrical interferences during our meas-
urement, the experiment was performed in a specially
shielded cabin, where no electric devices requiring AC
power supply were operated. Therefore, the visual stimu-
lation was provided by a Sony VPL X600E VGA projector
which projects the stimuli into the cabin via a system of
mirrors. The projection plane was placed 60 centimeters
in front of the subjects.

http://www.biomedcentral.com/1471-2202/5/13

Before the actual experiment, we performed a pre-experi-
ment with another 10 subjects to select the stimuli and to
ensure that each stimulus is consistently perceived as a
known object or an unknown non-object. Only those
stimulus-pairs were used, for which both figures were
judged correctly as objects and non-objects, respectively,
by more than 7 subjects. On average this yielded classifi-
cation rates of 95% and 94% for objects and non-objects,
respectively. Objects and non-objects were matched for
size and subtended visual angles of 5° to 10°. Sample
stimuli are presented in Fig. 1.

The experiment was divided into one short practice block
and 2 experimental blocks, each separated by a brief
pause. The practice block contained 18 figures with 9 fig-
ures of each stimulus type. The experimental blocks
included the remaining 192 figures (96 objects and 96
non-objects). The temporal sequence of stimuli was
pseudo-randomized and equal for each subject. Each fig-
ure was shown for 1000 ms, followed by a randomized
interstimulus interval of 1300 to 1700 ms in which a
black fixation cross was shown.

Procedure

Before the experiment, all subjects received a written
instruction on the projection screen explaining their task.
Subjects were instructed to judge whether the stimuli
appeared to be either edgy or curvy by pressing one of two
buttons (right index finger for edgy, left for curvy objects).
Thus, subjects were naive about the purpose of the exper-
iment. At the end of the experiment all subjects received a
questionaire to inquire some demographic data and infor-
mation about possible strategies used.

EEG recording

EEG was recorded with 52 Ag-AgCl electrodes mounted in
an elastic cap according to the international 10-10 sys-
tem. All electrodes were referenced to the left mastoid and
the ground electrode was placed at the right mastoid. The
vertical electrooculogram (VEOG) was recorded by elec-
trodes placed above and below the right eye, while the
horizontal EOG (HEOG) was recorded from positions at
the outer canthus of each eye. Electrode impedances were
kept below 5 kOhm. Both EEG and EOG data were
analog-filtered to accept signals in the range of DC to 100
Hz. EEG was sampled at 508.63 Hz.

Data analysis

An automatic artefact rejection was computed which
excluded trials from averaging if the standard deviation
within a moving 200 ms time interval exeeded 50 pV.
Event-related potentials were averaged from -250 to
+1000 ms relative to stimulus onset. Before averaging,
baseline-activity from -250 to -100 ms was substracted for
each electrode. In order to analyze gamma activity a wave-
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let transform was applied [23]. The frequency used for this
wavelet analysis was individually adapted via the time-fre-
quency plane of the O2 electrode: The individual gamma
frequency was defined as the highest peak in response to
objects in a frequency range of 30 to 80 Hz and in a time
range of 50 to 150 ms as has been done in previous stud-
ies [32]. Resulting individual frequencies ranged from 31
Hz to 40 Hz. If no clear peak was visible in the gamma-
range, 40 Hz was chosen for analysis. This had to be done
for four subjects. After computation of the wavelet trans-
form the baseline activity in the time interval from -250 to
-100 ms was subtracted for each frequency. In order to
avoid a loss of statistical power that is inherent when
repeated measures ANOVAs are used to quantify multi-
channel EEG data electrodes had to be pooled to regions
of interest [23]. Since visual stimulation usually evokes
gamma responses over parieto-occipital electrodes, we
defined a region of interest comprising the following eight
electrodes where strong gamma responses occurred: PO7,
PO3, O1, POZ, OZ, PO4, O2, and PO8. For statistical
analysis we performed a repeated measures ANOVA to
compare the evoked gamma band activity between objects
and non-objects in the time-interval between 50 and 80
ms. To verify whether subject's reactions had an influence,
we performed another ANOVA comparing curvy and edgy
stimuli.
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