O

BiolVled Central

Top-down and bottom-up modulation of language related areas -

An fMRI Study
Tomme Noesselt!:3, Nadim Jon Shah? and Lutz Jancke*3

BIVIC Neuroscience

Research article

Address: 'Department for Neurology II, Otto-von-Guericke-University, Magdeburg, Germany, 2Research Center Juelich, Germany and
3Department for Neuropsychology, University Zurich, Switzerland

Email: Tomme Noesselt - toemme@helios.uni-magdeburg.de; Nadim Jon Shah - n.j.shah@fz-juelich.de;
Lutz Jancke* - l.jaencke@psychologie.unizh.ch

* Corresponding author

Received: 27 March 2003
Accepted: 26 June 2003

Published: 26 June 2003
BMC Neuroscience 2003, 4:13
This article is available from: http://www.biomedcentral.com/1471-2202/4/13

© 2003 Noesselt et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all
media for any purpose, provided this notice is preserved along with the article's original URL.

Abstract

Background: One major problem for cognitive neuroscience is to describe the interaction
between stimulus and task driven neural modulation. We used fMRI to investigate this interaction
in the human brain. Ten male subjects performed a passive listening and a semantic categorization
task in a factorial design. In both tasks, words were presented auditorily at three different rates.

Results: We found: (i) as word presentation rate increased hemodynamic responses increased
bilaterally in the superior temporal gyrus including Heschl's gyrus (HG), the planum temporale (PT),
and the planum polare (PP); (ii) compared to passive listening, semantic categorization produced
increased bilateral activations in the ventral inferior frontal gyrus (IFG) and middle frontal gyrus
(MFG); (i) hemodynamic responses in the left dorsal IFG increased linearly with increasing word
presentation rate only during the semantic categorization task; (iv) in the semantic task
hemodynamic responses decreased bilaterally in the insula with increasing word presentation rates;
and (v) in parts of the HG the hemodynamic response increased with increasing word presentation
rates during passive listening more strongly.

Conclusion: The observed "rate effect" in primary and secondary auditory cortex is in accord
with previous findings and suggests that these areas are driven by low-level stimulus attributes. The
bilateral effect of semantic categorization is also in accord with previous studies and emphasizes
the role of these areas in semantic operations. The interaction between semantic categorization
and word presentation in the left IFG indicates that this area has linguistic functions not present in
the right IFG. Finally, we speculate that the interaction between semantic categorization and word
presentation rates in HG and the insula might reflect an inhibition of the transfer of unnecessary
information from the temporal to frontal regions of the brain.

regions of the brain [1-3]. However, it remains to be
resolved how specific language functions are segregated

Background
Substantial data has been collected on the neural sub-

strates of auditory speech perception and production.
Lesion data as well as imaging studies have demonstrated
that auditory information is processed in a bilateral neu-
ral network located in the perisylvian and inferior frontal

within this linguistic macro-network and how these func-
tions map onto specific anatomical areas. Recent func-
tional neuroimaging studies of speech perception have
begun to specify some of these functional subdivisions by
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demonstrating how specific anatomical regions are mod-
ulated by different types of the information (phonologi-
cal, prosodic, and semantic). In particular, these studies
have drawn attention to several distinct auditory process-
ing streams, which originate in primary auditory cortex.
Firstly, there is evidence for lateral neural projections
within the superior temporal sulcus (STS) which are
involved in the analysis of complex acoustic features
[1,4,5]. Secondly, there is evidence for an anterior-poste-
rior projection axis with two main neural nodes. One
node is located within the lateral superior temporal gyrus
(STG), mainly within the STS anterior to Heschl's gyrus
(HG). It responds to speech-specific stimuli [6]. The other
node has been found in the posterior STG and STS, prima-
rily in the left hemisphere, and responds to the presence
of auditory phonetic cues. Recent imaging studies of the
IFG have also provided evidence of subsystems for word-
frequency, naming vs. discrimination and syntactic diffi-
culty [7]. Finally, neuroimaging studies have shown
simultaneous activations in the inferior frontal gyrus
(IFG) and in the STG/STS during semantic, phonetic, ver-
bal-emotional categorizing and discrimination, and ver-
bal working memory tasks. Thus, there is a close link
between perisylvian and frontal brain areas during audi-
tory speech perception.

The present study was designed to further examine the
link between the perisylvian and frontal brain areas dur-
ing auditory speech perception. Specifically, we investi-
gated the responses of this temporal-frontal network to a
stimulus manipulation designed to modulate a bottom-
up process and a task manipulation designed to modulate
top-down processes. We use the term "bottom-up" to
denote the information output by the early automatic
mechanisms that encode the physical properties of sen-
sory inputs. One example of a bottom-up processing is the
"rate-effect": When auditory stimuli are presented at dif-
ferent rates, several auditory areas show activations, which
are positively correlated with the presentation rate (the
"rate-effect”, for the underlying neurophysiological mech-
anisms see [10]). The few studies, which have examined
this auditory rate-effect, have yielded some inconsistent
results. For example, three studies have reported rate-
effects bilaterally in primary and secondary auditory corti-
ces [11-13], while another study found no rate-effect
within the left posterior STG [14]. However, methodolog-
ical differences between these studies with respect to both
the tasks employed (e.g. active discrimination task vs. pas-
sive listening [14] and the use of different imaging tech-
niques (e.g. PET vs. fMRI) limit the value of cross study
comparisons (see [15] for a discussion on PET/fMRI dif-
ferences). The present study was designed to re-evaluate
the influence of the presentation rate of auditory stimuli
when a second top-down factor, the need to semantically
categorize stimuli, was varied. Whereas effects of presenta-
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tion rate have usually been found in superior temporal
areas, semantic categorisation has been repeatedly shown
to modulate activity in inferior frontal cortex (e.g. Fiez).
By varying both these factors, we hoped to distinguish
more generally how top-down and bottom-up factors
interact in the human linguistic system (see methods).

Results

Performance

Subjects reported that they could understand all of the
stimulus words and performed the semantic categoriza-
tion task well, with average accuracy (percentage of correct
detections) of 95.8%. False alarms occurred less than 1 %.
Accuracy did not differ significantly for the different pres-
entation rates (repeated measures ANOVA: F (2,8) =
0.327, p> 0.05).

Hemodynamic responses for the "Rate Effect"

Parametric analysis for the word presentation rate
revealed strong positive linear correlations between word
presentation rate and bilateral hemodynamic responses
bilaterally in the superior temporal gyrus (STG) (see Fig. 1
and Fig. 2). Within these clusters there were three activa-
tion peaks in each hemisphere (Table 1). One pair was
located at (x,y,z): -60, -4, 4 and 56, -8, -4, anterior to
Heschl's gyrus (HG) in the Planum Polare, a region iden-
tified by Penhune's [16] probabilistic map as probable
(25-50%) auditory cortex. A second pair of peaks was
found posterior to the first at x,y,z: -64, -16, 8 and 64, -20,
12, within the 75-100% contour of Penhune's probabil-
istic map for HG. The third pair of peaks was found at
X,y,z: -44,-28, 12 and 56, -28, 16, in a posterior part of the
STG within the 50-75% contour of Westbury's probabil-
ity map of the planum temporale (PT). In the right hemi-
sphere, only voxels within the STG were modulated by the
presentation rate (Fig. 1). In the left hemisphere, the
region of activated voxels was larger, encompassing the
entire STG and extending into the STS, anterior insula,
and posterior MTG.

Hemodynamic responses for the "Semantic
Categorization"

The main effect for semantic categorisation (categorisa-
tion > passive listening) was qualified by a strong bilateral
activation in the IFG. In the left IFG the peak activation
was located at (x,y,z): -44, 24, -4, ventrally and medially
adjacent to the anterior insula. An additional local maxi-
mum was found in the ventral part of the MFG at x,y,z: -
48, 52-8 (see Table 2 and Figure 3). The active cluster also
covered parts of the left dorsal IFG (dIFG). The IFG activa-
tion in the right hemisphere was comprised of two clus-
ters, one ventral with a peak at x,y,z: 40, 24, -8 and the
other dorsal with a peak at: x,y,z: 24,56, 20. The dorsal
cluster extended into the posterior MFG with a peak at
x,y,z: 36, 48, 16.
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Table I: Local maxima within activated clusters for the "Rate Effect"”.

Anatomical area Hemisphere # Voxel X,y,Z (mm) z
Linear "rate effect”
HG L 386 -64-168 >10
PP L -60 -4 4 7.7
PT L -44 -28 12 7.6
PP R 430 56 -8 -4 7.1
HG R 64-20 12 7.0
PT R 56-28 16 6.9

# Voxel = number of activated voxels within cluster; Z = z-value of local maxima; x,y,z(mm) = Coordinates of local maxima (MNI-coordinates);
abbreviations of anatomical areas: PT = Planum temporale; HG = Heschl's Gyrus; PP = Planum Polare.

Figure |

Effect of word presentation rate (PR) overlaid on horizontal
slices of the group's mean brain (neurological convention).

Numbers at the bottom left of each slice denotes z-coordi-
nate in MNI-coordinates.

0.8 0.8
LEFT HG RIGHT HG
0 0
06 04-168| 48 64 -20 12
0g 025 05 1 Hz 59 025 05 1 Hz
LEFT PP RIGHT PP
0 0
06 044 56 56 -8 4
0.6 025 0.5 1 Hz 0.6 025 05 1 Hz
" [LEFTPT | RIGHT PT
0 0
a 44-2812) 50 56 -28 16
-36 0.25 0.5 1 Hz 025 05 1 Hz
LEFT HG
(nonlinear)
0
-56 -16 4
04 0.25 0.5 1 Hz
Figure 2

Bar graphs indicating local maxima of hemodynamic
responses for brain regions significantly correlating with
word presentation rate (see also Table I). x-axis: word pres-
entation rate in Hz; y-axis: effect size (and standard error) in
arbitrary units. Abbreviations: HG = Heschl's gyrus (primary
auditory area), PP = planum polare, PT = Planum temporale.
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Table 2: Local maxima within activated clusters and cluster size for the "Semantic categorization effect".

Anatomical area Hemisphere # Voxel x,y,z (mm) z
Categorization > passive listening

vIFG R 224 4024 -8 6.5

ant. INS R 44-48 24

MFG R 210 3648 16 54

dIFG R 56 24 20 44

MFG R 3260 16 37

VIFG L 270 -44 24 -4 54

vIFG L -3232 -4 5.1

MFG L -48 52 -8 39

# Voxel = number of activated voxels within cluster; Z = z-value of local maxima; x,y,z(mm) = Coordinates of local maxima (MNI-coordinates);
abbreviations of anatomical areas: IFG = inferior frontal gyrus; MFG = middle frontal gyrus; INS = Insula; ant. = anterior;d dorsal; v = ventral.

ole
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Figure 3

Effects of semantic categorization (SC) overlaid on coronal
slices of the group's mean brain (neurological convention).
Numbers at the bottom left of each slice denotes y-coordi-
nate in MNI-coordinates. Encircled areas indicate location of
local maxima (see Table 2). Anatomical location of local
maxima: 1/2 = inferior frontal gyrus (IFG); 3 = inferior frontal
gyrus (IFG), 4 = inferior frontal gyrus (IFG), 5 = medial fron-
tal gyrus (MFG); 6 = medial frontal gyrus (MFG); 7 = medial
frontal gyrus (MFG).

Interactions between "Presentation Rate" and
"Categorization"

We found significant interactions between word presenta-
tion rate and semantic categorization within the right
medial HG, right anterior PT, left PP, and bilaterally in the
insula (Figure 4A). As can be seen in Figure 4B and 5, this
interaction is the result of a negative correlation between
the hemodynamic response strength and word presenta-
tion rate in the categorization condition, coupled with a
positive correlation in the passive listening condition in

the insular cortex (69% of modulated voxels, green areas
(Fig. 4B); post hoc test, p < 0.05, uncorrected). 23 % of the
voxels only showed a positive correlation between the
hemodynamic response strength and word presentation
rates in the passive listening condition (Fig 4B, red areas).
Those voxels were located in the right and left HG with
activation peaks at 60, -16, 8 and 52, -24, 16 (see Table 4
and Figure 5).

The inverse interaction pattern occurs in one cluster
within the left dorsal IFG (Fig. 6 and Fig. 7). This interac-
tion is mediated by a positive correlation between hemo-
dynamic responses and word presentation rates in the
categorization condition, but negatively correlated in the
passive listening condition in 65% of the modulated vox-
els (green areas, Fig 8). Remaining voxels only showed a
positive correlation with word presentation rate in the cat-
egorization condition (Table 5). A similar but non-signif-
icant cluster is present in left ventral IFG. Thus, we found
an inverse interaction pattern in temporal and frontal
structures (see Tables 3,4, and 5).

Discussion

This experiment was designed to evaluate the effect of
auditory word presentation rate on hemodynamic
responses within speech-related brain areas. Extending
previous research, we introduced a top-down variable
(semantic categorization vs. passive listening) to study
whether the bottom-up effects of presentation rate would
interact with the top-down control of semantic process-
ing. In accord with previous studies, we found strong rate-
effects bilaterally in HG, the PT, and the PP. Also in accord
with previous studies, relative to passive listening, seman-
tic categorization evoked increased hemodynamic
responses bilaterally in the ventral and dorsal IFG, extend-
ing into the ventral part of the MFG. In addition, we
observed activations in a right-sided cluster in the IFG and

Page 4 of 12

(page number not for citation purposes)



BMC Neuroscience 2003, 4

Figure 4

A) Effect | of interaction of presentation rate and semantic
categorization overlaid on horizontal slices of the group's
mean brain (neurological convention). Numbers at the bot-
tom left of each slice denotes z-coordinate in MNI-coordi-
nates. Statistical maps thresholded at p < 0.005, corrected
for cluster size. B) Post-hoc test for interaction effect within
significant clusters (see Fig. 3A). Areas of increased response
for passive listening with increased presentation rate (red),
areas showing an effect of decreased response with
increased presentation rate during semantic categoriza-
tion(blue) and overlap (green) (see Table 4).

MFG, located more dorsally than the left-sided IFG activa-
tion. Finally, we found a surprising pattern of interactions
between semantic categorization and presentation rate
bilaterally in the HG, the posterior insula, and the left dor-
sal IFG. We will discuss these effects separately.

Presentation rate and the auditory cortex

The current results are consistent with previous studies
demonstrating that hemodynamic responses in the pri-
mary and secondary auditory cortex increase with increas-
ing rates of word presentation [18]. In accordance with
Dhankhar et al. [12] we found rate-effects bilaterally
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Figure 5

Bar graphs show interaction effect for local maxima within
each activated cluster at increasing presentation rates (local
maxima > 8 mm apart, see Table 3). Blue line indicates pas-
sive listening, red line semantic discrimination condition. X-
axis: rate in Hz; y-axis: effect size (and standard error) in
arbitrary units. Abbreviations: INS = posterior insula, HG =
Heschl's Gyrus (primary auditory area), PP = planum polare,
PT = Planum temporale.

(equally strong on both hemispheres) in the whole audi-
tory cortex including HG, PT, and the dorsal bank of the
STS. These findings are in contrast to those presented by
Price et al[14]. Using PET these investigators reported a
linear increase in signal from 0 to 90 words per minute
(wpm) in all regions examined except for Wernicke's area
(-58 -34 12), leading them to speculate that the left PT
(Wernicke's area) is works in a time-invariant mode to
subserve comprehension. However, we did not replicate
this finding; in our study, the left posterior auditory cortex
behaved similarly to the other auditory areas (see Figure
8). In general, our observations indicate that with each
word presentation the auditory word processing nodes in
HG, PT, and the PP were automatically activated irrespec-
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Figure 6

A) Main effect of categorization > listening (red) and Effect 2
of interaction of presentation rate and word processing
(blue) overlaid on coronal slices of the group's mean brain
(neurological convention). Statistical maps thresholded at p <
0.05 (see Table 3). B) Post-hoc test for interactioneffect
within significant clusters (Blue cluster in Fig. 4A). Effect of
increased response for semantic categorization with
increased presentation rate (red) and overlap (green) with
areas also showing an effect of decreased response with
increased presentation rate during passive listening (see
Table 5).

tive of whether high level (categorization) processing was
required.

Semantic categorization and frontal brain areas

When semantic categorization was explicitly required
there were stronger bilateral hemodynamic responses in
the IFG extending into the MFG. However, the left-sided
activations were located more ventrally than those on the
right, and additional right-sided activations were found in
dorsal positions. Previous studies have shown that ventral
parts of the left IFG are preferentially active during the per-
formance of tasks requiring semantic as opposed to pho-
nological processing, the latter function being associated
with activations in a more posterior and dorsal part of the
IFG [2,3,19-24]. Additional studies have argued this area
is responsible for response selection in the context of
semantic operations [25]. Placing these findings in a more

http://www.biomedcentral.com/1471-2202/4/13
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Figure 7

Bar graphs show interaction effect for local maxima within
each activated cluster at increasing presentation rates (> 8
mm apart, see tab. |). Blue line indicates passive listening, red
line semantic categorization condition. x-axis: rate in Hz; y-
axis: effect size (and standard error) in arbitrary units.
Abbreviations: IFG = inferior frontal Gyrus.

global context, Gabrieli et al. [16] concluded that "activa-
tions in left inferior prefrontal cortex reflect a domain-spe-
cific semantic working memory capacity that is invoked
more for semantic than nonsemantic analyses regardless
of stimulus modality, more for initial than for repeated
semantic analysis of a word or picture, more when a
response must be selected from among many than few
legitimate alternatives, and that yields superior later
explicit memory for experiences".

The findings of the present study support this conclusion
by showing that the left ventral IFG is active during
semantic categorization. Interestingly, hemodynamic
responses in most parts of this area were independent of
word presentation rate, suggesting that the left ventral IFG
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Figure 8

Upper: Region of interest (ROI) centered in the left superior
posterior temporal gyrus (-60,-36,12) superimposed on a
SPM 'glass' brain. Within this spherical ROI (radius 12 mm)
84 voxels showed a word presentation rate effect at p >
0.005. Lower: Bar graph shows increasing effect correlated
with increasing presentation rate in the ROI (x-axis presenta-
tion rate y-axis, mean effect size averaged across all voxels
within the ROl in arbitrary units).

mainly operates in a task-dependent rather than stimulus-
independent fashion. Only a small ventral region of the
ventral IFG was influenced by the word presentation rate
during semantic categorization, and this only reached the
p = 0.07 level. In contrast, the dorsal part of the left IFG
was significantly influenced by varying word presentation

http://www.biomedcentral.com/1471-2202/4/13

rates, but we found increasing hemodynamic responses in
these areas with increasing presentation rates only during
semantic classification, while there was an opposite trend
during passive listening. Therefore, the dorsal part of the
left IFG is also involved in semantic classification, but in
a different way to the ventral IFG. Following the argument
made by Gabrieli et al. [19] and Fiez [2] that the left dorsal
IFG is involved in phonological processing, one might
suggest that the dorsal part is involved in the analysis of
phonological features of those words entering semantic
analysis later. Since each stimulus word comprises of sev-
eral phonological features, increasing word presentation
rates will increase the processing demands placed on this
neural processor.

Although most studies found bilateral activations in the
IFG during semantic tasks, right-sided activations in the
dorsal right IFG have also been reported for other tasks;
among them pattern encoding [26], processing of unusual
semantic relationships [27], identification of emotional
prosody [8], demanding working memory tasks [28], vis-
ually and auditory guided finger movements[29], and
learning to associate sensory cues with particular
movements according to arbitrary rules [30]. It is difficult
to infer from the present data if one of these processes
contribute to the right-sided IFG activation found in our
study. However, a study by Rypma et al. [28] might sup-
port our findings. These authors found activations within
the IFG during verbal working memory tasks had a left-
sided activation dominance during the easier tasks but a
right-sided dominance during difficult tasks, suggesting
that the right IFG becomes increasingly active with
increasing processing demands. Presumably, our seman-
tic categorization task was more demanding than passive
viewing, producing our observed right-sided activation in
the IFG.

Interaction between "Presentation Rate" and "Semantic
categorization" in temporal and frontal lobes

We found strong interactions between "Presentation
Rate" and "Semantic Categorization" with peak activa-
tions located bilaterally in the posterior insula (extending
into the right HG/PT and the left PP). These interactions
were qualified by a strong negative rate effect for the
semantic categorization condition (a decreasing hemody-
namic response with increasing word presentation rates),
and a positive rate effect (increasing hemodynamic
response with increasing word presentation rate) for the
passive listening condition. Since the insula is strongly
interconnected with temporal and frontal structures [31],
this brain region may play a role in linking together the
different neural networks involved in auditory processing.
However, although there is substantial data about the
anatomical connections between insular and other brain
regions in primates, relatively little is known about the
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Table 3: Local maxima within activated clusters and cluster size for the "Interaction effects” between word presentation rate and

semantic categorization.

Anatomical area Hemisphere # Voxel X, ¥, z (mm) z
il. Rate up / categorization down
INS R 126 36-16 20 4.02
INS R 40412 3.68
HG/PT R 48 -24 20 3.64
INS L 127 -28 -12 12 3.83
INS L -44-12 16 3.80
PP L -60-88 3.70
i2. Rate down / categorization up
dIFG L 63 -60 20 28 32
dIFG L -4828 16 2.9
dIFG L -56 3224 2.8
vIFG L 32% -44 24 -12 27

Abbreviations are the same as for Tables | and 2. Cluster within the IFG denoted with "*" : p = 0.07 (extent threshold).

Table 4: Local maxima and cluster size for post hoc tests of il (p(voxel) < 0.05 uncorr.).

POST-HOC Interactionl| Anatomical area Hemisphere # Voxel x,y,z,(mm) z
conjunction rate up/ categorization down
INS R 94 36 -20 20 4.11
INS R 3608 3.92
INS R 32-128 3.86
INS L 8l -40-12 12 3.55
INS L -36 -16 20 3.46
INS L -32128 3.44
rate up only
HG L 42 -60-16 8 7.72
PT L -44 -32 20 6.44
HG/PT 16 52-24 16
categorization down only
INS L 2 -28-12 16 4.21
INS R 4 32412 3.49
INS R 2 28-16 12 3.38
INS R | 32-820 3.27
INS R | 440 12 3.7

Abbreviations are the same as for Tables | and 2.

precise function of the human insula in auditory
processing.

Cytoarchitectonic studies of the human post-mortem
brain have revealed cytoarchitectonic profiles for parts of
the posterior insula (area PIA) that may correspond to
early auditory areas of an intermediate level between
primary auditory areas (Al) and the posterior
supratemporal plane (area STA) [32]. Thus, there is some
kind of cytoarchitectonic similarity between the auditory
cortex and the posterior insula. However, functional and
lesion studies in humans are rare.

A few lesion studies lend credence to the idea that the
insula is involved in aspects of language [33,34]. It has
also been noted that injury to the insula appears to cause
aphasia [35,36]. Some brain imaging studies also demon-
strate insular involvement during word generation [37],
verbal memory tasks [38], auditory-vocal integration
processes in the context of singing [39], the perception of
moving sound [40], speech perception [41], and
automatic word processing [42]. A recent study [43]
which compares word vs. non word repetition in literate
vs. illiterate subjects reports stronger connectivity between
temporal areas and the posterior insula for illiterate
subjects. This study concludes that the posterior insula
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Table 5: Local maxima and cluster size for post hoc tests of i2 (p(voxel) < 0.05 uncorr.).

POST-HOC Interaction 2 Anatomical area Hemisphere # Voxel X,y,Z,(mm) z
conjunction passive down/ categorization up
dIFG L 41 -56 28 20 2.98
dIFG L -60 24 8 2.55
VIFG L 19 -40 28 -12 2.6l
VIFG L -48 28 -4 233
VIFG L -40 24 -24 233
passive down only
no significant voxels
categorization up only
dIFG L 17 -56 20 28 333
dIFG L -56 36 24 3.08
dIFG L -44 32 16 271
dIFG L 5 -6020 16 3.1
VIFG L I -48 24 -12 3.01
VIFG L -44 24 -24 2.07

Abbreviations are the same as for Tables | and 2.

might serve phonological processing. However, other
studies report insular activations to non-auditory or non-
verbal stimuli [44-46].

Most of the aforementioned studies found insular activa-
tions in the context of different verbal or auditory-verbal
tasks. Thus, there seems to be a link between verbal-audi-
tory processing and insular functions. However, the exact
function of the insula in auditory and verbal processing
remains unknown. Our data leads us to speculate that the
posterior insula might be involved in specific modulation
processes. The negative correlation between word presen-
tation rates and hemodynamic response during semantic
categorization could be explained by a down-regulation
of early auditory areas (including HG and the insula) in
situations when specific targets have to be semantically
segregated out of a stream of auditory stimuli. This selec-
tion process might require specific tuning of the auditory
networks in HG and the insula, whereas this tuning might
not be necessary for the passive listening condition. Addi-
tionally, there might be a close functional connection
from the insula region to the dorsal IFG region. In situa-
tions where the dorsal IFG is involved in demanding
processing - as in the case during semantic categorization
complicated by high presentation rates - the inhibitory
influence from the insula might decrease.

Conclusions

The bottom-up-factor "word presentation rate" modu-
lated hemodynamic responses bilaterally in the primary
and secondary auditory cortices of the superior temporal
lobe. Thus, these areas operate in a stimulus-dependent
fashion. The top-down-factor "semantic categorization"
modulated hemodynamic responses in the left and right

ventral IFG and in the right dorsal IFG extending into the
MFG, supporting earlier studies also using semantic tasks.
Interactions between these factors were found bilaterally
in the medial HG, the posterior adjacent insula, and in the
left dorsal IFG. This interaction in the left dorsal IFG
might point to the fact that phonological processing is
controlled in these areas, whereas the interaction effects in
the insula and HG can be seen in the context of modulat-
ing functions. All in all, this study demonstrates that the
examination of interaction effects between top-down and
bottom-up factors helps to disentangle the function of
language-related neural networks.

Methods

Subjects

Ten healthy right-handed male subjects (age: 21-27
years) were run. Subjects gave their written informed
consent according to the guidelines of the Research Center
Juelich before participating in the study. Hand preference
was assessed with the 12-item questionnaire of Annett
[47], which allowed us to select subjects who were consist-
ently right-handed (CRH). CRH was defined as perform-
ance of all 12 tasks with the right hand with up to two
"either" preferences being acceptable. Female subjects
were not examined in this study because it has been
reported that they may have a more bilateral language rep-
resentation than males [48].

FMRI measurements

BOLD dependent functional magnetic resonance images
were obtained using a 1.5 T Siemens Magnetom Vision
system (Siemens, Erlangen), with echo planar imaging
capabilities and a radiofrequency (RF) head coil (gradient
echo EPI, TR = 6 s, TE = 66 ms, FOV = 200 x 200 mm?, flip
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angle = 90°, matrix size = 64 x 64, in-plane resolution
3.125 x 3.125 mm?, slice thickness = 3 mm, interslice gap
0.3 mm, 16 slices oriented parallel to the AC-PC-line,
specified with a midsaggital scout image). Additionally, a
high-resolution anatomical image was acquired (MP-
RAGE, T,-weighted, gradient-echo pulse sequence, TR =
11.4 ms, TE = 4.4 ms, flip angle = 15°, FOV = 250 mm,
matrix size = 256 x 256, 128 sagittal slices, in-plane reso-
lution 0.98 x 0.98 mm?, slice thickness = 1.25 mm).

Experimental set-up

After the structural scan was obtained, subjects performed
6 consecutive fMRI-runs lasting 8.4 min each. A 2 x 3
factorial block design was employed, with 2 levels of word
processing (passive and active) and 3 levels of word pres-
entation rate (0.25 Hz, 0.5 Hz, 1.0 Hz). Each experimental
block began with a 0.4 min. interval to allow the fMRI
acquisition signals to stabilize. Alternating cycles with a 1
minute rest period (off) and 1 minute activation (on)
period followed this. Each block contained 4 of these 2
minute off-on cycles. In the passive listening blocks,
subjects were asked to listen carefully to the presented
stimuli, but no response was required. In the semantic cat-
egorization blocks, subjects were asked to press a response
key when they heard animal words, which occurred in
20% of the presentations. For each of these words process-
ing conditions, the order of the presentation-rate blocks
was counterbalanced across subjects. However, all 3 levels
of passive listening condition were always run before the
3 levels of the semantic categorization condition. This
order was employed so that the prior occurrence of the
classification condition would not prompt subjects to
engage in semantic classifications during the passive lis-
tening task.

Stimulus material consisted of 840 German one- or two-
syllabic concrete nouns. Word frequency differences
between target and non-target words were not significant
(p=0.21). The words were spoken by a trained reader and
had a duration of <0.9 sec. and were presented binaurally
using an audio playback system ending in piezo-electric
headphones. These words were randomly presented dur-
ing periods of 1 minute duration. The presentation rate
was adjusted by varying the inter-word ISI. The intensity
of the stimuli was approximately 85 dB SPL. Scanner
noise was approximately 90-100 dB, but the tightly fitting
headphones suppressed at least 20 dB of this ambient
noise. With a TR of 6 seconds and an acquisition time of
less than 2 seconds per volume, subjects were able to lis-
ten to approximately 70% of the stimulus words without
any masking by the background noise. However, the noise
reduction produced by the headphones made it possible
for subjects to understand all stimuli. This was confirmed
in a post session interview.

http://www.biomedcentral.com/1471-2202/4/13

Image analysis

Image analysis was performed on a PC workstation using
MATLAB (Mathworks Inc., Natiek, MA, USA) and SPM99
software http://www. fil.ion.ucl.ac.uk/spm. For analysis,
all images were realigned to the fifth volume, corrected for
motion artefacts, co-registered with the subjects' corre-
sponding anatomical (T1-weighted) images, resliced and
normalised (4 mm3) into standard stereotaxic space using
the template provided by the Montreal Neurological Insti-
tute [49], and smoothed using an 8 mm full-width-at-
half-maximum Gaussian kernel. The data were analyzed
by statistical parametric mapping in the context of the
general linear model approach of SPM99. The effect of
global differences in scan intensity was removed by scal-
ing each scan in proportion to its global intensity.

The statistical analysis corresponds to a random effects
analysis that can be generalised for the population as a
whole. This was implemented in a two-stage procedure by
first estimating the subject specific contrasts of interest for
each condition (semantic classification and passive
listening at 3 different presentation rates resulting in 6
contrast images for each subject) and then entering these
contrast-images into a second level analysis to produce
parametric maps of the T statistic. The contrasts at the first
level contain parameter estimates pertaining to each of
the six conditions. These six conditions were modelled
with box-car stimulus functions convolved with a hemo-
dynamic response function [50].

Significant activations were analyzed in a repeated meas-
urement ANOVA with the main effects PR and SC. Voxels
showing significant interaction effects (p < 0.005,
uncorrected for the entire brain volume if not otherwise
mentioned) were excluded from the analysis of main
effects. The resulting sets of voxel values for both main
effects and the interaction constitute statistical parametric
maps of the T statistic (SPM(T)) which was then trans-
formed to the unit normal distribution SPM(Z). Signifi-
cant activations were thresholded ata t = 2.69 (p = 0.005)
and a spatial extent criterion of p < 0.05, corrected for
multiple comparisons. Because of the remarkably high
between-subject variability with respect to anatomy and
cytoarchitectonics in frontal brain regions [51,52] and
prespecified statistical hypotheses with respect to activa-
tions in the inferior frontal areas, we applied a lenient sta-
tistical threshold for these regions (height threshold of p
=0.05 and an extend criterion of p < 0.05, uncorrected for
multiple comparisons).
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