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Introduction

Acoustic signals are mainly characterized by their tem-
poral dynamics. Electrophysiological studies have shown
that neurons in the primary auditory cortex (Al) can
detect fine temporal structure of acoustic stimuli [1].
The traditional view of auditory processing describes
how the temporal codes of sounds are distributed in the
frequency domain along the auditory pathway from the
basilar membrane to the cortex. Therefore, it is impor-
tant to consider a sound’s spectral and temporal features
together. The spectrotemporal receptive field (STRF) is a
description of the auditory system’s input-to-output
transformation encompassing both the spectral and tem-
poral features. The STRF of Al neurons exhibit complex
patterns that can undergo rapid task-related changes [2].
However, the mechanisms by which cortical neurons
change their STRF remains unclear.

Methods

A computational neural model was developed to investi-
gate mechanisms by which cortical neurons can change
their STRF. A sound signal is played into a model of the
cochlear and cochlear nucleus (CN) [3]. It comprises of
a bank constant-Q bandpass filters spread along the fre-
quency axis, a high-pass filter, a non-linear compression,
a low-pass filter, a first-order derivative with respect to
the tonotopic axis, a half-wave rectifier and integration
over a 8 ms window. The output of the CN tuned to a
particular frequency drives the input to integrate-and-
fire neuron models to represent cortical neurons. Action
potentials (AP) in the cortical neurons are then used to
calculate a reverse autocorrelation of the STRF.
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Results

When white Gaussian noise is used as the sound signal, a
region of STRF excitation is produced with a frequency
corresponding to the CN output. This STRF excitatory
region can be increased in the frequency domain by
increasing the number of CN outputs exciting the corti-
cal neuron. If there is a large separation along the fre-
quency axis, multiple STRF excitatory regions are
created. The excitatory region can be altered in the tem-
poral domain by adding delays to the CN output. Regions
of STRF inhibition can also be produced when a cortical
neuron fires APs tonically and the CN output hyperpo-
larizes the cortical neuron. Alternatively, a region of
STREF inhibition can be created without tonic firing, if
one CN output excites the cortical neuron and a different
CN output hyperpolarizes the cortical neuron. This cre-
ates a region of excitation and a region of inhibition in
the STREF, similar to complex STRFs observed experi-
mentally. STRF inhibitory regions can be altered in the
frequency and temporal domains in the same way as
excitatory regions. Changing the properties of the cortical
neuron to include an after-hyperpolarizing potential fol-
lowing an AP causes a region of excitation to be preceded
by a region of inhibition, and a region of inhibition to be
preceded by a region of excitation, hereby providing a
secondary means to producing complex STRFs.

Conclusions

This computational neural model of STRF in Al can
reproduce experimentally observed complex STRFs. It
can predict changes in synaptic connectivity and AP fir-
ing properties occurring in Al neurons corresponding
to rapid task-dependent changes in the STRFs.
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