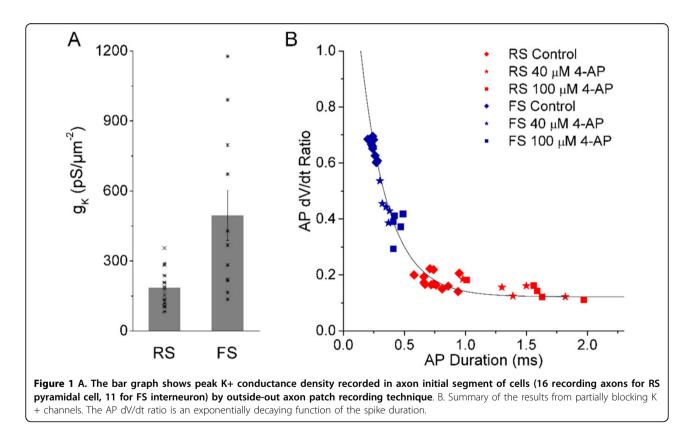
POSTER PRESENTATION

Open Access


Axon initial segment potassium channel density in cortical neurons

Wen Zhang, Boqiang Fan, Ping Zheng, Yuguo Yu*

From 24th Annual Computational Neuroscience Meeting: CNS*2015 Prague, Czech Republic. 18-23 July 2015

There is a growing interest in estimating actual density ranges of Na+ channels in the very thin axon, especially in the action potential (AP) initiation zone, i.e., the axon initial segment (AIS, 20-50 microns away from the cell body). Both immunostaining studies and patch-clamp recordings indicated a relatively high density of Na+ channels in AIS of either pyramidal regular-spiking (RS) cells [1] or fast-spiking (FS) GABAergic interneurons [2,3]. Here, we investigated potassium channel densities in AISs of both RS and FS cells in same recording conditions.

Our axonal recordings directly revealed that there is a very lower potassium density gK = 185.8 ± 19 pS/µm2 N = 16) for the RS AIS while a higher gK (495.7±108 pS/µm2, N = 11) for FS AIS, see Figure 1A. For both the

* Correspondence: yuyuguo@fudan.edu.cn

The State Key Laboratory of Medical Neurobiology and Institutes of Brain

Science, School of Life Sciences, Fudan University, Shanghai, 200433; China

© 2015 Zhang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated. RS pyramidal cells and FS PV cells, partially blocking K+ channels by applying 4-AP broadened the spike duration and decreased the dV/dt ratio significantly (P < 0.05) (For RS cells: N = 5; For RS cells: N = 4). Interestingly, we observed that the AP dV/dt ratio is an exponentially decaying function of the spike duration for both RS- and FS-spikings (see Figure 1B), such that y = 0.12+0.16EXP ((0.5-x)/0.2), where y represents the dV/dt ratio and × represents the AP duration. These observations suggest strongly that potassium channel density is one of the major intrinsic factors dominating the spike shape properties, especially half-height spike duration and dV/dt ratio.

In sum, the significant difference in potassium channel density in axonal initial segment where action potentials are initiated may play a critical role in controlling action potential properties of both RS- and FS-spiking cells in nervous system by the same general biophysical rule. These results may be important for constructing computational models of different types of cortical neurons.

Acknowledgements

This project is funded by NNSF of China (31271170) and Eastern Scholar SHH1140004) at Shanghai Institutions of Higher Learning.

Published: 18 December 2015

References

- Hu W, Tian C, Li T, Yang M, Hou H, Shu Y: Distinct contributions of Na(v) 1.6 and Na(v)1.2 in action potential initiation and backpropagation. *Nat Neurosci* 2009, 12(8):996-1002.
- Hu H, Jonas P: A supercritical density of Na(+) channels ensures fast signaling in GABAergic interneuron axons. *Nat Neurosci* 2014, 17(5):686-693.
- Li T, Tian C, Scalmani P, Frassoni C, Mantegazza M, Wang Y, Yang M, Wu S, Shu Y: Action potential initiation in neocortical inhibitory interneurons. *PLoS Biol* 2014, 12(9):e1001944.

doi:10.1186/1471-2202-16-S1-P295

Cite this article as: Zhang et al.: Axon initial segment potassium channel density in cortical neurons. BMC Neuroscience 2015 16(Suppl 1): P295.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit