

POSTER PRESENTATION

Open Access

A spatiotemporal model of spine calcium dynamics in the hippocampus

Thom Griffith^{1*}, Jack Mellor², Krasi Tsaneva-Atanasova³

From 24th Annual Computational Neuroscience Meeting: CNS*2015 Prague, Czech Republic. 18-23 July 2015

Ca²⁺-signalling in dendritic spines is required for NMDA receptor-dependent synaptic plasticity at glutamatergic synapses in the hippocampus [1]. However, it is not clear whether plasticity induction is dependent solely on the global signal, i.e., the spine volume-averaged Ca²⁺ signal; or whether plasticity induction is also sensitive to Ca²⁺-channel nanodomain signaling [2]. A working hypothesis of this work is that temporal and spatial variations in postsynaptic intracellular [Ca²⁺]-fields may be significant factors governing the signalling cascades that lead to either long-term synaptic potentiation or depression. Direct measurement of [Ca²⁺] distributions in dendritic spines is experimentally difficult but we can investigate this hypothesis using mathematical models of Ca²⁺ diffusion.

We have developed a spatio-temporal model of Ca²⁺ diffusion in three dimensions. We then study our model using finite element methods. The model allows predictions of intracellular [Ca²⁺]-field responses to combinations of pre- and post-synaptic spikes with nanometre and millisecond spatio-temporal resolution. Our results so far indicate that Ca²⁺ signalling is highly spatially non-uniform and that Ca²⁺ signal differences between induction protocols is dependent on location within the spine. This has implications for the ultimate biological role of the Ca²⁺ signal given that the relevant receptors in the spine are organised inhomogeneously [3].

Acknowledgements

Support for this work was provided by the EPSRC, UK (EP/I013717/1).

Authors' details

¹Department of Engineering Maths, University of Bristol, Bristol, UK. ²School of Physiology and Pharmacology, University of Bristol, Bristol, UK. ³Department of Mathematics, University of Exeter, Exeter, UK.

Published: 18 December 2015

References

- Malenka RC, Bear MF: LTP and LTD: an embarrassment of riches. Neuron 2004, 44(1):5-21.
- Chen Y, Sabatini BL: Signaling in dendritic spines and spine microdomains. Current Opinion in Neurobiology 2012, 22(3):389-396.
- Mori MX, Erickson MG, Yue DT: Functional stoichiometry and local enrichment of calmodulin interacting with Ca²⁺ channels. Science 2004, 304(5669):432-435.

doi:10.1186/1471-2202-16-S1-P268

Cite this article as: Griffith *et al.*: A spatiotemporal model of spine calcium dynamics in the hippocampus. *BMC Neuroscience* 2015 **16**(Suppl 1):P268.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

^{*} Correspondence: thom.griffith@bristol.ac.uk

¹Department of Engineering Maths, University of Bristol, Bristol, UK Full list of author information is available at the end of the article