POSTER PRESENTATION

Open Access

Local structure supports learning of deterministic behavior in recurrent neural networks

Jonathan Binas^{1,2*}, Giacomo Indiveri^{1,2}, Michael Pfeiffer^{1,2}

From 24th Annual Computational Neuroscience Meeting: CNS*2015 Prague, Czech Republic. 18-23 July 2015

Many aspects of behavior, such as language, navigation, or logical reasoning require strongly deterministic and sequential processing of sensory and internal signals. This type of computation can be modeled conveniently in the framework of finite automata.

In this study, we present a recurrent neural network based on biologically plausible circuit motifs, which is able to learn such deterministic behavior from sensory input and reinforcement signals. We find that simple, biologically plausible structural constraints lead to optimized solutions and significantly improve the training process.

Previous work [1,2] has shown how arbitrary finite automata can be hand-crafted in simple networks of

* Correspondence: jbinas@ini.ethz.ch

¹Institute of Neuroinformatics, University of Zurich, Zurich, Switzerland

Full list of author information is available at the end of the article

© 2015 Binas et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated. neural populations by interconnecting multiple Winner-Take-All units - small circuit motifs that match the properties of cortical canonical microcircuits [3,4]. Figure 1 illustrates this transformation from an automaton to neural network with populations of neurons encoding either the state or potential state transitions. We extend that work by introducing a reinforcement learning mechanism whose weight updates take the form of reward-modulated Hebbian rule. This mechanism leads to reconfiguration of the network connectivity in such a way that a desired behavior is learned from sequences of inputs and reward signals.

As a key result of our study, we find that simple constraints on the network topology, favoring local connectivity patterns, lead to dramatic improvements both in training time and in the optimality of the found solution, where the optimum is defined as the automaton with the minimum number of states used to implement a given behavior. These structural constraints correspond well to biological neural systems, where short-range connections far outnumber long-range ones.

Authors' details

¹Institute of Neuroinformatics, University of Zurich, Zurich, Switzerland. ²ETH Zurich, Zurich, Switzerland.

Published: 18 December 2015

References

- 1. Rutishauser U, Douglas RJ: State-dependent computation using coupled recurrent networks. *Neural Comput* 2009, 21(2):478-509.
- Neftci E, Binas J, Rutishauser U, Chicca E, Indiveri G, Douglas JR: Synthesizing cognition in neuromorphic electronic systems. Proc Natl Acad Sci U S A 2013, 110(37):3468-3476.
- Douglas RJ, Martin KAC: Neuronal circuits of the neocortex. Annu Rev Neurosci 2004, 27(1):419-451.
- Douglas RJ, Martin KAC: Recurrent neuronal circuits in the neocortex. Curr Biol 2007, 17(13):496-500.

doi:10.1186/1471-2202-16-S1-P195

Cite this article as: Binas *et al.*: Local structure supports learning of deterministic behavior in recurrent neural networks. *BMC Neuroscience* 2015 **16**(Suppl 1):P195.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) Bio Med Central

Submit your manuscript at www.biomedcentral.com/submit