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In decision making experiments, faster decisions are
accomplished at the expense of accuracy. Conversely,
more accurate decisions are accomplished at the expense
of time (see [1]). These data describe the speed-accuracy
trade-off (SAT) and can be explained by the principles of
bounded integration, where noisy evidence for the deci-
sion alternatives is integrated until one of the integrals
reaches a bound. Higher bounds therefore support slower,
more accurate decisions. These computations are widely
believed to be implemented by feedback inhibition
between neural populations selective for the alternatives.
With the onset of evidence, the state of such a network is
drawn toward a ‘saddle point’ (the intersection of the solid
and dashed curves in Figure 1A) along a stable manifold
(solid curves), from which it is repelled along an unstable

manifold (dashed curves) toward an attractor correspond-
ing to one of the alternatives (ends of the dashed curves).
In the attractor state, the ‘winning’ population fires at a
high rate and the other populations fire at low rates, con-
sistent with electrophysiological data from decision tasks
(see [2]). The dynamics in the vicinity of the saddle point
are slow, supporting temporal integration. The SAT can
therefore be controlled by mechanisms that modulate the
dynamics near the saddle. Spatially non-selective excita-
tion provides such a mechanism [3]. In simulations of a
two-choice random dot motion task, we use this mechan-
ism to control the SAT in a biophysically-based cortical
model. A stronger non-selective signal leads to faster, less
accurate decisions for two reasons: it shortens the time
constant of the unstable manifold (Figure 1B) lowering
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Figure 1 A. Stable (solid) and unstable (dashed) manifolds of the saddle point under speed (black) and accuracy (grey) conditions for one level of task
difficulty (4% coherence). B. Time constant of the unstable manifold of the saddle for different task difficulties under speed and accuracy conditions.
Coherence refers to the percentage of coherently moving random dots in a simulated decision task, where easier tasks have higher coherence.
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decision time; and it re-positions the stable manifold,
pushing it closer to the midline for rates below the saddle
point. Thus, it shrinks the basin of attraction of the popu-
lation receiving more evidence, so noise is more likely to
drive the network toward the other (incorrect) attractor,
lowering accuracy. The model accounts for recent electro-
physiological recordings from putative integrator neurons
showing a higher baseline rate, a higher rate of increase,
and a higher peak under speed conditions (vice versa for
accuracy) [4]. The model predicts that the firing rates of
neurons selective for the alternatives will separate at
higher rates under speed conditions, and that the differ-
ence between this rate and the baseline rate will be greater
under speed conditions. Since the rates at the time of
separation can be considered a ‘decision threshold’, the
model conflicts with the hypothesis that a flexible bound
is implemented by reducing the ‘threshold-baseline dis-
tance’ under speed conditions [1]. Our study suggests that
a flexible bound is implemented by the rate at which deci-
sion dynamics unfold, not firing rates per se.
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