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Sleep deprivation leads to a loss of functional
connectivity in frontal brain regions
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Abstract

Background: The restorative effect of sleep on waking brain activity remains poorly understood. Previous studies
have compared overall neural network characteristics after normal sleep and sleep deprivation. To study whether
sleep and sleep deprivation might differentially affect subsequent connectivity characteristics in different brain
regions, we performed a within-subject study of resting state brain activity using the graph theory framework
adapted for the individual electrode level.
In balanced order, we obtained high-density resting state electroencephalography (EEG) in 8 healthy participants,
during a day following normal sleep and during a day following total sleep deprivation. We computed topographical
maps of graph theoretical parameters describing local clustering and path length characteristics from functional
connectivity matrices, based on synchronization likelihood, in five different frequency bands. A non-parametric
permutation analysis with cluster correction for multiple comparisons was applied to assess significance of topographical
changes in clustering coefficient and path length.

Results: Significant changes in graph theoretical parameters were only found on the scalp overlying the prefrontal
cortex, where the clustering coefficient (local integration) decreased in the alpha frequency band and the path length
(global integration) increased in the theta frequency band. These changes occurred regardless, and independent of,
changes in power due to the sleep deprivation procedure.

Conclusions: The findings indicate that sleep deprivation most strongly affects the functional connectivity of prefrontal
cortical areas. The findings extend those of previous studies, which showed sleep deprivation to predominantly affect
functions mediated by the prefrontal cortex, such as working memory. Together, these findings suggest that the
restorative effect of sleep is especially relevant for the maintenance of functional connectivity of prefrontal brain regions.
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Background
Functional connectivity between brain areas determines
the way the brain processes information. Several studies
[1-4] suggest that sleep is important for the activity and
recruitment of different brain areas to form networks for
optimal information processing during the wake state;
yet the differential sensitivity of brain areas to the effects
of sleep and conversely, sleep deprivation, have hardly
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been addressed. We here report findings of regionally spe-
cific and frequency-dependent effects of sleep deprivation
on brain functional networks.
Functional MRI (fMRI) studies have shown that corre-

lations between activity of frontal and posterior areas of
the Default Mode Network (DMN), a resting state net-
work that is suppressed during a task, are attenuated
during deep sleep [5,6]. Gujar et al. [1] showed that sleep
loss triggers an imbalance in the activation of midline
posterior and anterior brain regions of the DMN during
subsequent wake. The magnitude of this imbalance was
related to the amount of prior sleep of the subjects. Shao
et al. [7] showed that connectivity with subcortical areas
is also affected by sleep deprivation; functional connect-
ivity between the thalamus and frontal and temporal gyri
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was decreased after sleep deprivation. This implies that
sleep affects activity and (cortical and subcortical) func-
tional connectivity between brain areas during rest and
that specific brain areas show vulnerability to the effect
of sleep deprivation.
To capture network dynamics of brain functioning,

Graph Theory offers an insightful framework. Watts and
Strogatz [8] showed that complex (biological and non-
biological) networks could be described using only two
parameters. The first is a measure of local functional
interconnectedness, called the clustering coefficient C.
The second, termed path length (L), describes global
functional connectivity of the network (Figure 1). These
parameters are computed for all nodes in the network
and subsequently averaged to determine the functional
connectivity of the overall network. Networks can range
between highly ordered networks (high C and a high L)
and random networks (low C and a low L). It has been
suggested that a small world network, which is in between
an ordered and a random network, is optimal for syn-
chronizing neural activity between brain regions [9-11].
Especially electroencephalography (EEG) and magnetoen-
cephalography (MEG) are methods well-suited for Graph
Theory-based investigations of the human brain, owing to
their high time resolution that allows to capture ongoing
brain dynamics. Using Graph Theoretical analysis, Ferri
Figure 1 Clustering coefficient and path length. The circles
represent brain areas (nodes) and the lines between the circles
represent the connections between nodes (edges). It takes one step
to go from node X to node A, two steps to go from node X to
node D etc. The average path length of node X is therefore 1(A) + 1
(B) + 1(C) + 2(D) + 3(E) + 2(F) /6 = 1.67. Node X is directly connected
to node A, B and C (neighbors) the clustering coefficient (proportion
of neighbors of node X that are also connected to each other) is
therefore 2/3 = 0.67.
et al. [12] have shown that the functional connectivity of
the brain as measured using EEG during sleep becomes
more similar to the organization of a small-world network
for frequencies < 15 Hz. In addition, we have shown [4]
that after sleep deprivation, the overall brain network is
more random as compared to after sleep. Both studies
support the idea that sleep is required to optimize the
brain functional connectivity for processing information
the following day [1,13,14]. It remains incompletely under-
stood, however, whether sleep facilitates optimal func-
tional connectivity equally across different brain areas:
regional sensitivity of the functional brain network to
sleep deprivation may underlie specific consequences for
cognitive functioning. We acquired high-density EEG in a
within-subject study of the effects of sleep vs. sleep
deprivation on subsequent waking brain activity (Figure 2).
We adapted Graph theoretical analysis to compute C and
L for each node in the network individually and ap-
plied a cluster analysis to determine regional changes
in functional connectivity. To our knowledge, this is
the first study to assess topographical changes in func-
tional connectivity at the individual electrode level
after sleep deprivation using Graph Theory.

Results and discussion
Graph analysis
In the eyes-closed condition, the distribution of the sleep
deprivation-induced changes (t-values) in cluster coeffi-
cient C and path length L was robust across different
values of degree K (Figures 3 and 4). A significant de-
crease in C was exclusively found at a prefrontal location
in the alpha frequency band (P-value = 0.001 for all
values of degree K, Figure 3). L was significantly in-
creased frontally only in the theta frequency band (P-
value < 0.02 for all values of degree K, Figure 4). These
significant changes were found regardless of K (i.e. 5, 6,
7, or 8). C was significantly increased posteriorly in the
beta frequency range (P = 0.001), but only for K = 6. L was
decreased centrally in the beta range only for K = 8 (P =
0.003). No other significant changes were detected in the
delta, beta or gamma frequency bands (all P-values >0.05).
Sleep deprivation did not significantly affect connectivity
parameters in any of the frequency bands (i.e. delta, theta,
alpha beta and gamma) during in the eyes-open condition
(all P-values > 0.05).

Volume conduction effects
Mediation analysis was applied to evaluate whether the
regional changes in alpha and theta connectivity (cluster
coefficient I and path length (L), respectively) could be
secondary to regional changes in alpha and theta power.
The Sobel test of Mediation was done for all electrodes
within the significant clusters for K = 6 (representative
for the other values of K). Power spectral density was



Figure 2 Schematic depiction of the protocol. After a night of normal sleep or total sleep deprivation (verified with actigraphy and sleep
diary), subjects underwent a protocol of repeated resting-state (RS) measurements using high-density 61-channel EEG. Each RS block consisted of
4 alternating 1-minute eyes-open (EO) or eyes-closed (EC) measurements.
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Figure 3 Local integration. The difference in distribution of clustering coefficient (C) during resting wakefulness following sleep deprivation as
compared to wakefulness following a normal night of sleep. For all frequencies, the topographies show the uncorrected t-values plotted on the
scalp for different values of K (5, 6, 7, and 8). Thick black dots indicate electrodes belonging to significant clusters (Monte-Carlo P-value < 0.001) in
the eyes closed resting state. Note that there is a consistent frontal significant decrease in C in the alpha frequency band.
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Figure 4 Global integration. The difference in distribution of path length (L) during resting wakefulness following sleep deprivation as
compared to wakefulness following a normal night of sleep. For all frequencies, the topographies show the uncorrected t-values plotted on the
scalp for different values of K (5, 6, 7, and 8). Thick black dots indicate electrodes belonging to significant clusters (Monte-Carlo P-value < 0.02) in
the eyes closed resting state. Note that there is a consistent frontal significant increase in L in the theta frequency band.
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computed for these electrodes and entered as a medi-
ator variable in the mediation regression models, as
described in the method section. A sleep deprivation-
induced decrease in alpha power partially mediated
sleep deprivation-induced changes in alpha connectiv-
ity (β without PSD= −0.075 (t=−4.94, P < 0.001), β with
PSD −0.057 (t=−3.48, P < 0.001), Sobel test Z-score =−3.22
(P < 0.01)). This mediation effect was only partial since sleep
deprivation remained a significant predictor of the cluster
coefficient in the alpha frequency band in a multiple re-
gression model that included both power and sleep
deprivation as regressors to predict connectivity parame-
ters. A sleep deprivation-induced increase in theta power
did not mediate sleep deprivation-induced changes in
theta connectivity since adding PSD to the regression
model with sleep deprivation as a predictor of connectivity
parameter L did not diminish its effect on theta connectiv-
ity (β without PSD = 0.105 (t = 3.53, P < 0.001), β with PSD
0.125 (t = 4.09, P < 0.001)).
Main findings and implications
Our findings indicate that total sleep deprivation alters
brain functional connectivity in a topographically spe-
cific way. Sleep deprivation most prominently affected
functional connectivity involving electrodes overlying
prefrontal areas. In the alpha frequency band cluster co-
efficient C, a measure of local functional interconnected-
ness, and in the theta frequency band path length (L), a
measure of global functional connectivity, were signifi-
cantly decreased and increased, respectively, in a cluster
overlying the prefrontal cortex. This was consistent
across different degree levels (K = 5, 6, 7, or 8). The
changes in path length for the theta frequency band
were not secondary to changes in power, making it un-
likely that this result was caused by volume conduction.
The changes in the cluster coefficient in the alpha fre-
quency band are at least partially independent of changes
in power. Interestingly, our results indicate that the effects
of sleep deprivation on the contribution of frontal areas to
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the brain network differ depending on frequency band: for
interactions in the alpha frequency range, the network
showed regionally reduced clustering; in addition, interac-
tions in the theta frequency range showed that the net-
work was characterized by higher path length after sleep
deprivation. Our findings are in agreement with fMRI
studies showing an imbalance in the activation of poster-
ior versus anterior brain regions [1,15] of the default mode
network (DMN) after sleep deprivation. It should be noted
that these studies derived DMN activity from task related
deactivation, rather than examining it during a resting
state. Even though this is an important difference with our
study, together these results point out that prefrontal
brain regions are affected by sleep deprivation. An advan-
tage of our method, in comparison with fMRI based studies,
is the possibility of detecting more subtle and differential
changes depending on frequency band; indeed, we show dif-
ferent results in the alpha and theta frequency band, that
both indicate reductions in local and global efficacy, respect-
ively, of the frontal regions as part of the network.
Previous research [16] has shown that the medial pre-

frontal cortex is one of the hubs in the DMN to which
all other parts of the DMN are correlated. The finding
of the current study shows parallels with studies reveal-
ing that especially prefrontal functions such as working
memory [2], inhibition [17] and emotion regulation [18]
suffer from sleep deprivation. This raises the question
whether switching between the intrinsically driven ‘rest-
ing’ state and the extrinsically driven ‘active’ state is medi-
ated by the prefrontal cortex and whether this mediation
in part depends on the effects of sleep. Although we can-
not infer this based on our results, previous studies
[19,20] suggest that this is indeed the case, showing
that a network based on the anterior prefrontal cortex,
the so-called ‘fronto-parietal control network’, acts as a
mediator between two other brain networks, i.e. the
default mode brain network and competing networks
supporting externally driven cognition (e.g. the dorsal
attention network).
Significant differences in prefrontal functional con-

nectivity after sleep deprivation relative to NS were se-
lectively visible in the alpha and theta frequency band.
This is partly in agreement with the study by Koenis
et al. [4] who showed that global network properties, de-
fined by graph theory, in the alpha, theta and gamma
band moved to a more random network after sleep
deprivation compared to after sleep. Note that while
Koenis et al. [4] found an overall decrease in path length
in the theta frequency band, in this study we found an
increase in path length in electrodes covering prefrontal
locations. The difference between these results is due to
the fact that, in case of the study of Koenis et al. [4], a
local increase of a graph theoretical parameter will re-
main undetected when there is an overall decrease in
the same graph theoretical parameter. This implies that
studying topographical changes in connectivity in addition
to global connectivity offers a more refined view of
changes in network properties.
Previous research has shown that alpha and theta power

in the wake EEG are decreased and increased, respectively,
after sleep deprivation [21-23]. Moreover, power in these
frequency bands correlated with activity of the fMRI
DMN [24-26]. Instead of EEG power at electrode level,
which reflects locally synchronized neural activity, we
studied synchronization between EEG electrodes, repre-
senting interactions between underlying sources, com-
posed of groups of neurons. We found significant changes
in the eyes closed condition only, but do not want to
exclude the possibility of more subtle effects of sleep
deprivation on functional connectivity in the eyes open
condition that did not reach significance in our study.
We can only speculate which aspect of sleep plays a

role in maintenance of functional connectivity of the
prefrontal cortex since we did not record sleep EEG of
the subjects in our experiment. The most likely candi-
date is NREM sleep since it seems to have a restorative
effect on prefrontal areas [27]. For example, cerebral
blood flow is particularly low in this area during NREM
sleep [28]. Furthermore, a study by Mander et al. [29]
showed that an increase in delta band power during re-
covery sleep (after a night of sleep deprivation) improved
inhibitory performance during a Go/NoGo task through
an effect on the prefrontal cortex. The restorative func-
tion of slow wave sleep may not be limited to task-related
brain activity [29,30] but may also be of importance for
resting state activity; the occurrence of slow waves has
been related to brain regions comprising parts of the de-
fault mode network [30,31]. Further support for a benefi-
cial effect of especially NREM sleep on prefrontal
functioning is given by the findings that boosting of
prefrontal slow waves by means of transcranial direct
current stimulation (TDCs) improves declarative mem-
ory, while suppressing them interferes with brain activa-
tion necessary for proper memory formation [32].
Further studies are needed to evaluate the intriguing

possibility that NREM sleep is of importance in maintain-
ing proper connectivity of the prefrontal cortex within the
resting state network, and in maintaining the ability for
fast ‘switching’ between intrinsically and extrinsically
driven brain states.

Limitations
Regarding the small world network parameters, only an
unweighted C and L (i.e. based on a binary matrix in-
stead of the absolute SL values) was computed. Because
network parameters change depending on the threshold
used for calculating C and L, it is difficult to determine
which threshold K would lead to the ‘true’ representation
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of the network. In this study, however, different values of
K were used as an attempt to overcome this problem and
we only considered results robust when they appeared ir-
respective of K.
A further note of caution concerns the age range of

the study group: as the age of participants spanned from
20–24 years of age, the findings represent those of
healthy young brains and do not necessarily extrapolate
to those of younger or older age groups.

Conclusion
In summary, this study showed that total sleep deprivation
changes the structure of neural networks in prefrontal
brain regions during the eyes closed resting state, as
Figure 5 Location of the electrodes showing significant changes in gr
representative value of K (K = 6). Only for nodes overlying the prefrontal co
in the alpha band and increases path length in the theta band.
measured with EEG, possibly resulting in a network that is
driven towards a less optimal state for information pro-
cessing (Figure 5). Furthermore, we have shown that
graph theory can be adapted to study local changes in net-
work characteristics in addition to its usual application of
quantifying global network properties only. One function
of sleep may be to homeostatically regulate connectivity of
especially prefrontal brain networks, allowing for optimal
cognitive performance.

Methods
Participants
Eight healthy volunteers (5 males, age ± sd; 22 ± 1.77 yrs)
participated in the study. All participants met the criteria
aph parameters. Significant electrodes are plotted on the scalp for a
rtex, sleep deprivation significantly attenuates the clustering coefficient
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of no self-reported: (1) sleep complaints (2) smoking (3)
use of medication, including hormonal contraceptives
(4) neurological or psychiatric disorders. Participants
were asked to avoid consumption of beverages that con-
tain caffeine or alcohol 12 hours prior to the experiment
and during the experiment. All female subjects partici-
pated between day 4 and 12 of their menstrual cycle (fol-
licular phase). All participants were instructed to keep a
regular sleeping pattern the week prior to the experi-
ment. This was verified with a sleep diary and actigraphy
(Actiwatch, Cambridge Neuro-Technology Ltd., Cambridge,
UK). Participants had to refrain from eating at least
four hours before arrival at the sleep laboratory. The
study protocol was approved by the medical ethics
committee of the academic medical centre of the Uni-
versity of Amsterdam according to the declaration of
Helsinki. Participants gave their written informed con-
sent and received compensation for their participation
in the experiment.

Procedure
The experiment described in this article was part of a
larger experiment which involved EEG measurements
during a series of visuo-motor computer tasks following
resting-state EEG measurements that are reported else-
where [33]. Only relevant information about the proced-
ure leading to this article will be described (Figure 2).
The experiment consisted of two days with a minimum
interval of two nights of normal sleep (mean interval ±
std: 5.1 ± 4.7 nights). Prior to each day of the experi-
ment, the participants had either a night of normal sleep
(NS) or a night of total sleep deprivation (TSD) at their
own homes. Compliance with the protocol was verified
with actigraphy and a sleep diary. The order of the con-
ditions was randomized and counterbalanced across
subjects. On the day of the experiment, participants re-
ported to the sleep laboratory at 8.30 h where they
were prepared for EEG measurements. Resting state
EEG was recorded during five sessions at 10.30 h,
12.00 h, 13.30 h, 15.00 h, and 16.30 h. Between the ses-
sions participants had an isocaloric meal (230 kcal)
and a non-caffeinated drink. EEG resting-state mea-
surements were conducted during 4 minutes of alter-
nating 1-minute epochs of eyes open and eyes closed.
During these measurements subjects were sitting. They
opened and closed their eyes upon a beeping sound.
EEG was carefully monitored online for signs of sleep
(slow rolling eye movements, sleep spindles and/or K-
complexes). In case of such a sign subjects were woken
up immediately.

EEG acquisition
EEG data were collected using a 61 channel EEG cap
(M10 Equidistant 61-Channel-Arrangement, Easycap,
Herrsching, Germany) connected to a Micromed sys-
temPlus recorder (version 1.04.0, Micromed, Treviso,
Italy). An online high-pass filter of 0.015 Hz was applied.
EEG data were digitized at a sampling rate of 1024 Hz
with a digitizer sensitivity of 16 bits for ± 3.2 volts.

Offline EEG preprocessing
Off-line EEG analysis was done using EEGLAB (v2008b)
[34] and Fieldtrip [35] in MatLab 7.6 (The MathWorks,
Natick, MA). Data were down sampled from 1024 Hz to
512 Hz and bad channels were interpolated, using the
triangle-based linear interpolation method in MatLab.
Movement artifacts were removed and independent
component analysis (ICA) was applied to remove eye ar-
tifacts [36]. EEG recordings were re-referenced from
common reference at Cz to average reference.

Graph analysis
In this study the construction of connected graphs is
based on the Synchronization Likelihood (SL) measure
[37] as reported before [38,39]. For each subject eight
epochs (the data of all subjects contained at least eight
artifact free epochs) of eight seconds (4096 data points)
for each of the five sessions during each experimental
day (NS and TSD) were included for further analysis.
EEG data were band-pass filtered (EEGLAB default FIR
filter) in the following frequency bands: delta (1–4 Hz),
theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (30–45 Hz). Correlations between all channel
combinations were calculated using SL. SL is sensitive to
both linear and non-linear synchronization between two
time series. To calculate SL, time-delay embedding vec-
tors are constructed that represent the dynamical states
of neuronal signals. Then, the times of recurrence of
these states is assessed, followed by the calculation of
the likelihood that the recurrent state of one signal is ac-
companied by the recurrent state of another signal (for a
detailed description of SL see [37]). SL varies between a
reference value pref, the likelihood of a coincident pat-
tern recurrence in case of independent time series and 1
in case of totally dependent time series. For this study,
pref was set to 0.01. The other parameters for the com-
putation of the SL were specified in accordance with
Montez et al. [40]. From the (61 x 61) SL matrix a binary
matrix was calculated by applying a threshold θ such
that the average number of connections (degree K) per
electrode (node) was fixed. This was done for different
values of degree K (K =5, 6, 7 or 8) to investigate the ro-
bustness of the results. The rationale for keeping average
degree K low is to make sure only the strongest connec-
tions will remain. A very high K would lead to the inclu-
sion of weaker, possibly spurious, connections.
Next, the binary matrix was used for calculation of

graph characteristics clustering coefficient C and path
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length L. C can take a value between 0 and 1 and repre-
sents the proportion of neighbors (i.e. a node that is dir-
ectly connected to another node) of a node that are
connected to each other. L is computed as the average
number of steps that have to be taken from one node to
any other node in the network, taking the shortest route.
Because in this analysis unconnected nodes were un-
avoidable, we assigned ∞ to unconnected nodes as pro-
posed by Newman [41] before calculating the harmonic
mean over all eight epochs for every session and condi-
tion. In order to detect major changes after TSD, both C
and L were averaged over all 5 sessions for the NS and
TSD condition using the harmonic mean. SL and graph
parameters were computed using a program created by
one of the authors (DS).

Statistical analyses
Because we were interested in topographical changes in C
and L and did not want to make a priori assumptions
about the location of changes in these parameters, we ana-
lyzed the network measure for each electrode individually.
To correct for multiple comparisons, we used a non-
parametric cluster permutation analysis as described by
Maris and Oostenveld [42]. This analysis is suitable for
the analysis of high density EEG data as it deals with the
multiple comparisons problem by applying a cluster cor-
rection on the data. The following steps were taken to as-
sess local significant changes in C and L. A pair wise t-test
was done between NS and TSD for every node. Nodes
with a P-value < 0.05 and at least two significant neighbor-
ing nodes were considered part of a cluster. Test-statistics
for the cluster permutation test were based on the
cluster with the largest (absolute) summed t-values. A
number of 1000 permutations was used for calculation
of the Monte Carlo P-value. Local changes between
conditions were considered significant if the Monte
Carlo P-value was smaller than the critical alpha-level
of 0.025 (two sided test).

Volume conduction effects
Volume conduction is a serious confounder in EEG con-
nectivity studies [43]. High synchronization values be-
tween electrodes could be caused by picking up activity
from the same, i.e. common sources.
We applied a Sobel test of mediation [44] to address

this problem. A variable, in this case power spectral
density (PSD) within one of the previously found signifi-
cant clusters of C and L in one of the selected frequency
bands, is considered a mediator when (1) the independ-
ent factor (condition NS/TSD) significantly affects the
mediator (PSD within a significant cluster of C or L) (2)
the independent factor significantly affects the outcome
variable (C or L) (3) the mediator significantly affects
the outcome variable (4) the effect of the independent
factor disappears or is diminished when adding the me-
diator to the model with the independent factor predict-
ing the outcome variable. The mentioned criteria are
tested with mixed effect regression models with subjects
nested within day and electrode nested within subjects
as random factors. All regression models were done with
the package lme4 [45] in R [46]. Only electrodes within
the found significant clusters for C and L were used for
this analysis. If the above criteria are met, significance of
the mediator is determined by calculating the Sobel test
Z-score using the formula a*b/SQRT(b2*sa

2 + a2*sb
2) where

a = β of model 1, b = β of model 2; sa and sb are the stand-
ard errors of models 1 and 2, respectively. For this ana-
lysis, the power spectrum of the relevant clusters were
obtained using a fast Fourier transform after application
of Welch’s averaged method [47] with a (two seconds)
Hamming window using Fieldtrip [35].
Visualization
Figure 5 was created using Brainstorm (Tadel et al.
[48]) (which is documented and freely available for
download online under the GNU general public license:
http://neuroimage.usc.edu/brainstorm). EEG Electrode
positions were transformed to fit the default anatomy
in Brainstorm, Colin27, an MNI brain with a 1 mm
resolution.
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