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Abstract

Background: Exposures to environmental toxins are now thought to contribute to the development of autism
spectrum disorder. Propionic acid (PA) found as a metabolic product of gut bacteria has been reported to mimic/
mediate the neurotoxic effects of autism. Results from animal studies may guide investigations on human
populations toward identifying environmental contaminants that produce or drugs that protect from neurotoxicity.
Forty-eight young male Western Albino rats were used in the present study. They were grouped into six equal
groups 8 rats each. The first group received a neurotoxic dose of buffered PA (250 mg/Kg body weight/day for 3
consecutive days). The second group received only phosphate buffered saline (control group). The third and fourth
groups were intoxicated with PA as described above followed by treatment with either coenzyme Q (4.5 mg/kg
body weight) or melatonin (10 mg/kg body weight) for one week (therapeutically treated groups). The fifth and
sixth groups were administered both compounds for one week prior to PA (protected groups). Heat shock
protein70 (Hsp70), Gamma amino-butyric acid (GABA), serotonin, dopamine, oxytocin and interferon y-inducible
protein 16 together with Comet DNA assay were measured in brain tissues of the six studied groups.

Results: The obtained data showed that PA caused multiple signs of brain toxicity revealed in depletion of GABA,
serotonin, and dopamine, are which important neurotransmitters that reflect brain function, interferon y-inducible
protein 16 and oxytocin. A high significant increase in tail length, tail DNA% damage and tail moment was reported
indicating the genotoxic effect of PA. Administration of melatonin or coenzyme Q showed both protective and
therapeutic effects on PA-treated rats demonstrated in a remarkable amelioration of most of the measured
parameters.

Conclusion: In conclusion, melatonin and coenzyme Q have potential protective and restorative effects against
PA-induced brain injury, confirmed by improvement in biochemical markers and DNA double strand breaks.
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Background

Autism is a neurodevelopmental disorder showing impair-
ment in language, social interaction, repetitive and disor-
dered movements [1]. Hyperactivity, sensory disturbances,
and sometimes self injury are also observed signs [2,3].
Propionic acid (PA) occurs naturally in a few food prod-
ucts as milk although relatively higher concentrations are
present in dairy products such as yogurt and cheese obvi-
ously due to bacterial fermentation [1,2]. The dietary
sources however have a minor contribution in the PA
levels in the body [3]. In the colon, PA is produced by fer-
mentation of polysaccharides, oligosaccharides, long-chain
fatty acids, protein, peptides and glycoprotein precursors
by the anaerobic colonic microbiota, Undigested carbohy-
drates, such as dietary fibers and resistant starch, represent
the major source for PA production [3]. PA is a short
chain fatty acid formed endogenously in the human
body as an intermediate of fatty acid metabolism and a
metabolic end product of enteric gut microbiota such as
clostridia and propionibacteria [3].

Interestingly, MacFabe et al. [4], through intraventricular
infusions of PA, were able to induce behavioural and brain
abnormalities in rats similar to those seen in humans
suffering from autism via probably altering brain fatty
acid metabolism [5-7]. Because large amounts of PA
have been used by MacFabe et al. [4] to induce the
symptoms (e.g. 4 ul of 0.26 M solution), it therefore re-
mains to be answered, if PA produced by the microbiota
could lead to similar effects. In a trial to answer this
question, and to highlight the importance of gut-brain
axis in the etiology of autistic features in rat pups, El-
Ansary et al. [8] compared the neurotoxic effects of orally
administered PA (250 mg/kg/day for 3 days) to those pro-
duced through induction of PA producers using clindamy-
cin antibiotic. They declared that the neurotoxic effect of
imbalanced gut microbiota in clindamycin-treated rats
was much less than that of direct orally administered PA.
There is also some evidence that high levels of PA can in-
duce oxidative stress and glutathione depletion in various
brain regions such as cortex, hippocampus, thalamus, and
striatum of rats infused with PA (intraventricular infusions
of 4 pl 0.26 M PA per animal. Catalase activity decreased
in most brain regions suggesting a reduced antioxidant en-
zymatic activity [9]. High levels of subcutaneously added
PA in rats (around 1.5-2 pumol/kg (body weight) caused
slight but significant delays in the day of appearance of
hair coat and eye opening, indicating an effect of PA on
the development of physical parameters [10], which sug-
gests that early postnatal PA administration to rats alters
normal development and induces long-term behavioural
deficits.

Brain tissue is very vulnerable to free radical damage
because of its high oxygen utilization, high concentra-
tions of polyunsaturated fatty acids [11] and transition
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metals such as iron, which is involved in the generation
of the hydroxyl radical [12], and low concentrations of
cytosolic antioxidants [13]. Glutathione (GSH) is the
predominant antioxidant in the brain that is present at
millimolar concentrations [14,15].

Recently, PA mechanism of action was clarified. It pos-
sesses many neuropharmacological oxidative properties
which could be related to behavioral abnormalities seen ei-
ther clinically in patients with autism or in rodent model
of autism [13]. PA through oxidative mechanisms inhibits
Na'/K* ATPase [16] and increases glutamate receptor
sensitivity which can enhance neural depolarization lead-
ing to neural hyperexcitability in brain regions linked to
locomotor activity. It also promotes intracellular calcium
release which is known to play a key role in synaptic trans-
mission [17,18].

Melatonin possesses an electron-rich aromatic indole
ring and functions as an electron-donor, thereby reducing
and repairing electrophilic radicals [19]. Of additional
interest regarding melatonin, is its reported to bind to
quinone reductase 2 [20]. This enzyme, which is consid-
ered a melatonin receptor, is important in the detoxifica-
tion of pro-oxidant quinones. Experimental evidence
supports its actions as an indirect antioxidant when stimu-
lating antioxidant enzymes [19], its ability to enhance the
activities of other antioxidants and its protection of anti-
oxidant enzymes from oxidative damage [20]. Several
groups have shown that melatonin reverses chronic and
acute inflammation [21,22]. Melatonin treatment also
causes an important reduction of nitric oxide (NO) and
malondialdehyde (MDA) levels, two compounds that
are closely related to inflammation [23].

Mitochondrial dysfunction has been well established
to occur and play an important role in the pathogenesis
of autism [24]. A key component of the mitochondrial
electron transport chain (ETC.) is coenzyme Q, which
not only serves as the electron acceptor for complexes I
and II of the ETC. but is also an antioxidant [25-27]. In
addition to being crucial to the bioenergetics of the cell,
mitochondria play a central role in apoptotic cell death
through a number of mechanisms, and coenzyme Q can
affect certain of these processes. Reduced coenzyme Q
levels with subsequent increased free radical generation,
reduced free radical scavenging and defective apoptosis
leading to abnormal synaptogenesis were reported in
autism [28].

This information motivates our interest to test the
protective and therapeutic effects against PA-induced bio-
chemical persistent autistic features in rat pups. Among
the measured parameters, gamma amino butyric acid
(GABA), serotonin and dopamine represent markers of
brain chemistry, while heat shock protein 70 (Hsp70)
and interferon y inducible protein 16 were selected as
inflammatory related parameters.
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Methods

Animals

This is an interventional experimental animal study per-
formed on forty eight inbred male western albino rats
(45 to 60 g, approximately 21 days old). Rats were ob-
tained from the Pharmacy College animal house at King
Saud University. They were kept under standard condi-
tions of temperature, 12-h dark/light cycle and were
given free access to tap water and standard laboratory
chow. After one week of acclimation, the rats were divided
into six groups (eight rats in each group), namely the con-
trol group in which animals were fed normal diet during
the experimental period; the PA treated rats that received
250 mg/kg body weight/day for 3 days, in order to induce
autistic features; The third and fourth groups were treated
with low dose of either coenzyme Q (4.5 mg/kg body
weight) [29] or melatonin (10 mg/kg body weight) [30] for
one week after being intoxicated with the PA as described
above (therapeutically treated groups). Fifth and sixth
groups were treated with either coenzyme Q or melatonin
for one week followed by PA intoxication (protected
groups). All groups of rats were housed under controlled
temperature (21 + 1°C) with ad libitum access to food and
water. PA, melatonin or coenzyme Q were orally dosed to
rat pups using gastric tube.

Tissue preparation

At the end of the feeding trials, the rats were anesthetized
with carbon dioxide and decapitated. The whole brain was
removed from the skull and dissected into small pieces
and homogenized in 10 times w/v bi-distilled water and
kept at—80°C until further use for different biochemical
analyses. A small piece of brain was kept separately for
Comet DNA assay.

Ethics approval and consent

This work was approved by the Ethical committee of
Science College at King Saud University (Approval no 8/
25/220358).

Assay of heat shock protein 70 (Hsp70)

HSP70 was measured in brain cortex and medulla hom-
ogenate using an ELISA kit, product of Uscn Life Science
Inc. Wuhan, China according to the manufacturer’s in-
structions. The minimum detectable level of rat HSP70
detected is less than 0.045 ng/ml.

Assay of gamma amino-butyric acid (GABA)

GABA was quantitatively determined using the ELISA
immunoassay kit from ALPCO Diagnostics (Salem, NH,
USA). Least detectable amount is 7.5 ng/ml.
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Assay of serotonin

Serotonin was measured using an ELISA kit from
Immuno-Biological Laboratories (IBL, Hamburg, Germany).
Brain homogenate preparation (derivatization of serotonin
to N-acyl-serotonin) was part of the sample dilution which
was achieved by the incubation of the respective sample
with the acylating reagent. The assay procedure followed
the competitive ELISA protocols whereby competition
takes place between biotinylated and non-biotinylated an-
tigens for a fixed number of antibody binding sites. The
amount of biotinylated antigens bound to the antibodies
was inversely proportional to the N-acyl-serotonin con-
centration of the sample. Analytical sensitivity of this
product is 0.014 ng/ml.

Dopamine assay

Dopamine was extracted by using a cis-diol-specific af-
finity gel, acylated and then derivatized enzymatically.
Quantitavive assay was performed using an ELISA kit, a
product of Immuno Biological Laboratories (IBL) with
detectable range of 12-2250 ng/ml.

Assay of interferon u inducible protein 16

[FI16 was measured using ELISA kit a product of My
Biosource applying the competitive enzyme immunoassay
technique utilizing a monoclonal anti-IFI16 antibody and
IFI16-HRP conjugate. The detectable range of this product
is 23.5-1500 pg/ml with minimum detectable level of
5.9 pg/ml

Comet DNA assay

Single cell gel electrophoresis or Comet assay is one of
the simple, sensitive and rapid methods for the detection
and quantification of DNA damage [31]. Slides were pre-
pared in duplicate per group and the test was performed
for at least 3 different brain samples from each group.
Cell suspension, about 4 x 10° cells were mixed with
80 uL of 0.7% low-melting agarose in phosphate-buffered
saline (PBS) at 37°C in a microtube, and then spread over
a window microscopic slide. The slides were pre-coated
with 150 puL of 0.5% normal-melting agarose in PBS, and
were specially designed for this assay. Then, slides were
placed immediately in cold lysis buffer, 2.5 M sodium
chloride NaCl, 100 mM EDTA sodium salt Na,EDTA,
10 mM Tris (pH 10), and 1% Triton X-100, at 4°C for a
minimal of 1 hr. After lysis, the slides were drained and
placed in a horizontal gel electrophoresis tank surrounded
by ice, and filled with fresh cold electrophoresis buffer
(300 mM sodium hydroxide NaOH, 1 mM NaEDTA,
pH 13). To allow DNA unwinding, the slides were kept in
the high pH buffer for 20 min. After that, electrophoresis
was carried out for 20 min at 25 V and 300 mA. The slides
were then drained and flooded slowly with 3 changes of
neutralization buffer (0.4 M Tris, pH 7.5) for 5 min each,
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and then stained with 30 mL of ethidium bromide
(20 mg/L), and covered with cover slips. All those steps
were performed under dimmed light in order to prevent
additional DNA damage caused by visible light. A total of
50 randomly selected cells per slide were analysed. Im-
aging was done using a fluorescence microscope (Zeiss
Axiovert L410 Inc., Jena, Germany), attached to a digital
camera (Olympus Inc., Tokyo, Japan), and equipped with
549 nm excitation filter, 590 nm barrier filter, and a 100-
W mercury lamp. The percentage of DNA in the comet
tail “DNA damage” was automatically calculated.

Comets were randomly captured at a constant depth
of the gel, avoiding the edges of the gel, occasional dead
cells, and superimposed comets. DNA damage was mea-
sured as tail length (TL =distance of DNA migration
from the centre of the body of the nuclear core), and tail
intensity DNA (TI=% of genomic DNA that migrated
during the electrophoresis from the nuclear core to the
tail). By presenting all three parameters together, more
information could be obtained on the extent of DNA
damage [29].
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Statistical analysis

The data were analysed using the statistical package for
the social sciences (SPSS, Chicago, IL, USA). The results
were expressed as mean * standard error of the mean
(SEM). All statistical comparisons between the control
and PA-treated rat groups were performed using the one-
way analysis of variance (ANOVA) test complemented
with the Dunnett’s test for multiple comparisons. Signifi-
cance was assigned at the level of P <0.05. Receiver operat-
ing characteristics (ROC) curve analysis was performed.
Area under the curve (AUC), cut-off values, and degree of
specificity and sensitivity were calculated.

Results

Tables 1 and 2 demonstrate data obtained as of the six
measured parameters in the PA-treated, coenzyme Q or
melatonin treated groups pre or post PA intoxication re-
spectively compared to control. It was noticed that PA in-
duced remarkable decrease in all parameters. GABA and
serotonin were the most affected parameters, recording
3842 and 22.48 percentage decrease respectively while

Table 1 Mean + S.D and independent t-test for HSP-70, GABA, serotonin, dopamine, oxytocin, and Interferon p
inducible protein 16 (IFI16) in neurointoxicated, Co Q protected and treated rat pups compared to healthy control

Parameters Group N Mean +S.D. P value

Control 8 10.563 £0.370

PA 8 9.400 £+ 0490 0.001°
HSP70 (ng/ml)

CoQ-Protected group 6 10.050 + 0.404 0.030°

CoQ-treated group 8 10.033 +0427 0.029°

Control 8 109.100 + 4.666

PA 8 67.183+3.125 0.001°
GABA (ng/10 mg)

CoQ-Protected group 6 95417 +4.529 0.01°

CoQ-treated group 8 85079 + 4.832 0.01°

Control 8 0.073+0.017

PA 8 0.047 £0011 0.004°
Serotonin (ng/ml)

CoQ-Protected group 6 0.095+0.018 0.043°

CoQ-treated group 8 0.097 +0.018 0.033°

Control 8 136.250 + 18.468

PA 8 106.875 £12.229 0.002°
Dopamine (ng/ml)

CoQ-Protected group 6 169.167 + 24.580 0.014°

CoQ-treated group 8 160.000 + 22.583 0.051°

Control 8 89.750 + 4464

PA 8 84.500 £ 4.751 0.039°
Oxytocin (Pg/ml)

CoQ-Protected group 6 95.667 +4.967 0.037¢

CoQ-treated group 8 95.000 + 3.742 0.038°

Control 8 833.750 + 63.906

PA 8 768.750 + 53.033 0.044°
Interferon p inducible protein 16 (Pg/ml)

CoQ-Protected group 6 931.667 +77.567 0.024°

CoQ-treated group 8 983.333 +60.222 0.001°

?Significant level between the studied groups compared to control when P < 0.05.
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Table 2 Mean + S.D and independent t-test for HSP-70, GABA, serotonin, dopamine, oxytocin, and Interferon p inducible
protein 16 (IFI-16) in neurointoxicated, melatonin protected and treated rat pups compared to healthy control

Parameters Group N Mean +S.D. P value

Control 8 10.563 £0.370

PA 8 9.400 £+ 0490 0.001°
HSP70 (ng/ml)

Melatonin-protected group 8 10.043 + 0454 0.030°

Melatonin-treated group 8 10.083 + 0445 0.048°

Control 8 109.100 £ 4.666

PA 8 67.183+3.125 0.001°
GABA (ng/10 mg)

Melatonin-protected group 8 83.160 + 4.668 0.01°

Melatonin-treated group 8 75.144 + 2,694 0.001°

Control 8 0.073+£0017

PA 8 0.047 £0.011 0.004°
Serotonin (ng/ml)

Melatonin-protected group 8 0.101+£0.019 0.011°

Melatonin-treated group 8 0.099+0.019 0016°

Control 8 136.250 + 18468

PA 8 106.875 +12.229 0.002°
Dopamine (ng/ml)

Melatonin-protected group 8 173.125+29.873 0.010°

Melatonin-treated group 8 164.375+23.213 0.018°

Control 8 89.750 + 4.464

PA 8 84.500 +4.751 0.039°
Oxytocin (Pg/ml)

Melatonin-protected group 8 97.750+ 8714 0.037°

Melatonin-treated group 8 100.750 + 6.409 0.001°

Control 8 833.750 + 63.906

PA 8 768.750 £ 53.033 0.044°
Interferon p inducible protein 16 (Pg/ml)

Melatonin-protected group 8 921.250+71.801 0.022°

Melatonin-treated group 8 922500 + 79.057 0.027°

Significant level between the studied groups compared to control when P < 0.05.

Dopamine and oxytocin showed relatively less impaired
levels (15.59 and 13.82% respectively). Hsp70 and IPI16
were the least affected parameters recording less than
10% reduced concentrations. PA treatment along with
coenzyme Q or melatonin resulted in significant increase
in the different parameters revealing a potent protective
and therapeutic effect of both treatments when compared
to PA-treated group. Figure 1 represents the percentage
change of the measured parameters in treated groups
compared to control.

Table 3 and Figure 2 demonstrate PA- induced DNA
damage in the brain of treated rats as evident from the
significant increase in the comet parameters, namely
tail length (um), tail DNA (%) and tail moment (arbi-
trary units). The table also demonstrates the potency
of coenzyme Q or melatonin in protecting against and
treating PA neurotoxicity. Both ameliorate the DNA
damaging effects of PA observed as a significant de-
crease of PA-induced DNA damage. ROC analysis
showed satisfactory values of area under the curve,
sensitivity and specificity.

Discussion

Animal models are helpful in understanding the mechan-
ism and environmental factors which trigger the disease
process. Studies of MacFabe et al., [9] have demonstrated
that PA intraventricularly infused to rats provides a suit-
able animal model to study ASD. Moreover, there are a
number of inherited and acquired conditions which lead
to elevations of PA and these are related to developmental
delay, seizures and gastrointestinal symptoms, resembling
some aspects of autism. Thus, PA may be a putative link
between dietary or enterobacterially derived metabolites
along with genetic predisposition and subsequent features
of autism [9,32-35]. As oxidative stress has been suggested
as the primary mechanism of PA neurotoxicity, it was of
great interest to test the protective and therapeutic effects
of CoQ and melatonin as two supplements displaying
antioxidant and free radical scavenger properties.

Hsp is generally much more sensitive to stress than
other health indices, making its use as biomarker very
common in toxicology [36]. Table 1 demonstrates that
PA—treated rats show lower level of Hsp70 which is not
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in good agreement with our previous study in which the
same PA dose induced remarkable elevation of this
stress-induced protein. This could be attributed to the
fact that potential mechanisms of stress tolerance differ
among individuals, populations, and species [37]. This
intra-specific variation might be due to genetic variation
among individuals, nutritional status, reproductive sta-
tus, antioxidant status of the individuals, Hsp mRNA
stability and pre-existing pool of HSF (heat shock tran-
scription factor) [38]. In the present study, inbred rats
were used and led to the absence of intra-subject vari-
ability seen as low standard deviation (SD), (Table 1).
The protective and therapeutic effects of melatonin
shown in Table 1 could be supported by the work of
Rodella et al. [39] in which they reported that melatonin
was effective in increasing the reduced level of Hsp70
induced by nicotine in heavy smokers.

Undoubtedly, the magnitude and potential severity of
many neurotoxic agents could be measured through the
consequent changes in neurotransmitters as biomarkers

of brain damage [13]. Table 1 demonstrates the remark-
able lower levels of GABA, serotonin and dopamine in
PA-treated rat brain homogenates compared to controls.
This could be supported by the fact that, PA being capable
to access to the brain could induce neurochemical effects
on CNS function [8] including neurotransmitter synthesis
and release. Of interest, PA is capable of altering dopa-
mine, serotonin, GABA and glutamate systems in a man-
ner similar to that observed in ASDs [40,13], partly via
changing intracellular calcium release rate [41]. It could
be easily observed that PA pre or post-treatment with Co
Q (Table 1) or melatonin (Table 2) induced satisfactory
amelioration of GABA levels, with Co Q being more po-
tent compared to melatonin. Significant increased levels of
serotonin and dopamine, even higher than control sub-
jects was recorded by both supplements. This is consistent
with the previous finding of Binukumar et al. [42] that
pretreatment with Co Q caused a significant attenuation
of the loss of striatal dopamine and dopaminergic neurons
caused by the pesticide, dichlorvos through the activation
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Table 3 Tail Length (um), Tail DNA% and Tail Moments in PA-intoxicated, Co Q or melatonin supplemented compared

to control- healthy rat pups

Parameters Groups Min. Max. Mean +S.D. P value
Control 1.06 142 125+0.16
PA 4.67 534 496 +0.28°
Melatonin-protected 3.17 433 3.56 +0.55°
Tail Length (um) 0.001
Melatonin-treated 395 4.26 411+0.13°
CoQ,¢-protected 287 3.05 294 +0,08°
CoQ;_treated 359 395 3.82+0.16°
Control 1.22 1.62 140+£0.17
PA 451 5.15 485+027°
Melatonin-protected 312 333 3.20+0.09°
Tail DNA% 0.001
Melatonin-treated 352 426 3.95+033°
CoQ;g-protected 2.80 341 3.10+0.25°%
CoQo-treated 3.16 375 3.55+0.28%
Control 142 2.15 176 £037
PA 21.96 25.78 24.07 +187°
Melatonin-protected 10.18 13.67 1139+157°
Tail Moments (Units) 0.001
Melatonin-treated 15.00 17.79 16.20 +1.21°
CoQ;g-protected 8.09 981 9.11+0.76°
CoQ;q-treated 11.33 14.83 1358 +£1.59°

Table 3 describes the One-way ANOVA test between the Control, PPA, Melatonine + PA, PA + Melatonine, CO Q + PA and PA + CO Q groups in Tail Length (um),
Tail DNA% and Tail Moments (Units) groups and Dunnett test as multiple comparisons.

2Significant level between the studied groups compared to control when P < 0.05.

of the mitochondrial respiratory chain reactions and mito-
chondrial antioxidant enzyme function. The protective po-
tency of Co Q against brain neurotransmitters depletion
as biochemical autistic features in PA-treated rat pups,
could be related to the recent work of Katuzna-Czaplinska
[43] in which he reported elevated succinic acid excretion
as a marker of Co Q deficiency in children with autism.

Cardinali et al. [44] proved that preincubation of
synaptosome-rich homogenates of rat hypothalamus with
melatonin induced significant increases of norepinephrine,
serotonin, dopamine and glutamate concentrations. They
suggest that exogenously-administered melatonin may
affect neurotransmitter accumulation and release in the
hypothalamus by modification of the transmitter uptake

Q (III-VI) in rat brains compared to control (l).

Figure 2 Photograph showing comet tailing in PA treated (ll) together with the protective and therapeutic effects of melatonin and Co
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mechanism rather than by competition with the trans-
mitter for its uptake pump. This can help to understand
the protective and therapeutic effects of melatonin re-
ported in the present study and shown as remarkable
elevation of serotonin and dopamine concentration.

It is worth noting that OT has been involved in the
etiology of autism, with a sex-related pattern and hence
it could be used as biomarker of PA-induced autistic fea-
tures in rodent model [45]. Tables 1 and 2 demonstrate
oxytocin levels in brain of control, PA, Co Q or melatonin-
treated rat pups. It could be easily noticed that PA induce
oxytocin depletion while both Co Q and melatonin were
potent in ameliorating the neurotoxic effect of PA to a
great extent. Depleted oxytocin could be easily correlated
to the recorded depletion in GABA level shown in the
same table. Endogenous oxytocin additionally functions as
an anxiolytic, acting to increase release of the inhibitory
neurotransmitter GABA in the central amygdale [46]. Cu-
mulative evidence from rodent models suggests that both
acute and chronic administration of oxytocin reduces
physiological and behavioral stress responsively [47,48].

Inflammation in the nervous system is widely recog-
nized as contributing to a number of neurological condi-
tions. However, the central nervous system (CNS) has
also been classically recognized as occupying a privileged
site with respect to immune-related phenomena. This
dichotomy is widely understood to be a functional mani-
festation of known CNS. The most prominent element
involved in these mechanisms is the blood—brain barrier
(BBB), a physical and metabolic barrier separating the
CNS from the systemic circulation, creating a unique
and stable environment for neuronal activity. Table 1
demonstrates that PA induced lower level of IFI 16 com-
pared to control untreated rat pups. This is unexpected
because Gariano et al. [49] pointed out that there is a
signaling pathway linking oxidative stress as an aspect of
PA neurotoxicity to upregulation of interferon (IFN)-
inducible gene IFI16. The recorded low level could be
related to the early finding of Dawson et al. 1998) [50]
that IFI 16 is expressed in CD34+ and monocytoid daugh-
ter cells, but is rapidly and markedly down-regulated at
the corresponding stages of polymorphonuclear and eryth-
roid development. Moreover, glucose restriction in cells
usually accompanied by high AMP/ATP ratio (energetic
stress), which activates the AMPK/p53 pathway. Depend-
ing upon the energetic stress levels, cells undergo either
autophagy or cell death. Given that the activated p53
induces the expression of I[FI16 protein, Duan et al. [51]
investigated the potential role of the IFI16 protein in
glucose restriction-induced responses. Lower, IFI 16
protein reported in the present study could be related
to the neurotoxic effect of PA making brain cells of
treated rat pups less adapted to the energetic stress as a well
known phenomenon of PA neurotoxicity. Additionally, the
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recorded low IFI 16 could be easily related to the pro-
apoptotic effect of PA. It is well known that Interferons
(IFNs) are multifunctional cytokines with antiviral, anti-
proliferative and immunomodulatory effects. Activation
of type-I IFN-signaling in immune cells inhibits the pro-
duction of proinflammatory cytokines and activates
inflammasomes. Given that the IFI16 and AIM2 pro-
teins are IFN-inducible and can heterodimerize with
each other, Veeranki et al., [52] investigated the regula-
tion of IFI16, AIM2, and inflammasome proteins by
type-I and type-1I IFNs and explored that expression of
IF116 protein in THP-1 cells suppresses the activation
of caspase-1. This explanation could be supported through
considering the work of El-Ansary et al. [13] in which they
recorded activation of caspase 3 as pro-apoptotic bio-
marker in brain tissue homogenates of PA-treated rat
pups. The ameliorating effects of CoQ;o may be attributed
to its role in activating the electron transport chain and
hence make brain cells more adapted to energy depletion
induced by PA. In addition, both CoQ;¢ and melatonin
could be easily related to their antioxidant effects.

The results provide evidence that early PA treatment
induces long-lasting behavioral deficits, which are possibly
caused by oxygen reactive species generation, and suggest
that oxidative stress may be involved in the neuropath-
ology of propionic acidemia.

Table 3 and Figure 1 show that the comet assay is able
to demonstrate the aetiology of DNA damage, induced
by PA. This could be supported by certain previous studies
which have shown that PA can increase ROS generation
and oxidative damage to cells [13]. This hypothesis is rein-
forced by the work of McLaughlin et al. [53] demonstrat-
ing that exposure of striatal and cortical cultures from
embryonic rat brain to PA for 24 h provoked DNA ladder-
ing and dose-dependent cell death, which was attenuated
by antioxidants. PA stimulates lipid peroxidation in rat
brain and in the plasma of patients with PAemia [54,55].
The recorded protective effect of Co Q shown in Table 1
could be supported by Papucci et al. [56] who reported
that Co Q is able to counteract mitochondrial membrane
potential depolarization, ATP depletion, cytochrome c re-
lease, caspase-9 activation and DNA fragmentation in ker-
atinocytes upon apoptotic stimuli. This could also explain
the neuroprotective effect of Co Q through the increase of
IFI 16.

In general, the similarity in the magnitude of the pro-
tective and therapeutic effects of CoQ and melatonin
against PA neurotoxicity can be explained on the basis
that both stimulate the expression of antioxidant and
detoxification genes, acting in turn as a glutathione sys-
tem enhancer. A further mechanism of protecting or
enhancing cell survival by these two antioxidants lie in
the control of damage and signaling function of mito-
chondria that involves decreased production of ROS.
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This could inturn; confirm the previously reported mech-
anism of PPA-induced neurotoxicity through oxidative
stress-associated pathways [9,24,57].

High values of specificity, sensitivity and area under
the curve (AUC) measured by ROC analysis suggested
that the studied biomarkers could be used as predictive
tools in testing the neurotoxic effects of PA and the
potency of CoQ and melatonin in protecting or treating
intoxicated rat pups. Among the measured parameters
GABA and DNA damage markers were the most pre-
dictive recording high specificity and sensitivity and
AUC of almost 1.

Conclusion

Evidences suggest that nutritional deficiencies exacerbate
pathological processes especially in developing children.
However there have been very few intervention studies
assessing the effects of specific nutrients on the prevention
of cognitive decline. Based on the present study CoQ and
melatonin can be suggested as nutritional supplements
that might be helpful in the early intervention of neurode-
velopmental disorders.
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