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neurotransmitter receptors in the human brain
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Abstract

Background: The activity of neurons is controlled by groups of neurotransmitter receptors rather than by individual
receptors. Experimental studies have investigated some receptor interactions, but currently little information is
available about transcriptional associations among receptors at the whole-brain level.

Results: A total of 4950 correlations between 100 G protein-coupled neurotransmitter receptors were examined
across 169 brain regions in the human brain using expression data published in the Allen Human Brain Atlas. A
large number of highly significant correlations were found, many of which have not been investigated in
hypothesis-driven studies. The highest positive and negative correlations of each receptor are reported, which can
facilitate the construction of receptor sets likely to be affected by altered transcription of one receptor (such sets
always exist, but their members are difficult to predict). A graph analysis isolated two large receptor communities,
within each of which receptor mRNA levels were strongly cross-correlated.

Conclusions: The presented systematic analysis shows that the mRNA levels of many G protein-coupled receptors
are interdependent. This finding is not unexpected, since the brain is a highly integrated complex system. However,
the analysis also revealed two novel properties of global brain structure. First, receptor correlations are described by
a simple statistical distribution, which suggests that receptor interactions may be guided by qualitatively similar
processes. Second, receptors appear to form two large functional communities, which might be differentially
affected in brain disorders.
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Background
A typical neuron receives thousands of synaptic contacts
[1], and each postsynaptic site can express a number of
neurotransmitter receptors. Since neurons integrate
signals from all receptors on their surface, their activity
is determined by receptor sets and not by individual
receptors.
Functional receptor groups explain why a constitutive

null-mutation of a neurotransmitter receptor often pro-
duces a mild phenotype, even when the receptor is known
to be important in specific brain functions [2-10]. Such
minor functional effects can be explained by compensa-
tory mechanisms in the developing brain, which at least
partially depend on receptors that detect other neuro-
transmitters [4,11].
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Similarly, the absence of an entire neurotransmitter may
not have a major effect on brain development and
function. Serotonin (5-hydroxytryptamine, 5-HT) is an ex-
tremely abundant neurotransmitter in the brain: by some
estimates, the density of serotonergic varicosities in the
rat cerebral cortex is around 6·106/mm3, with each cortical
neuron receiving some 200 varicosities [12]. The density
of serotonergic projections may exceed that of the brain
capillary system [13,14] and must carry a significant ener-
getic cost. However, genetic mutations and pharmaco-
logical manipulations that eliminate virtually all 5-HT in
the brain produce only subtle behavioral alterations, with
no gross morphological or cellular changes [15-18]. Ab-
normally low dopamine levels in the brain can be nearly
asymptomatic until around 50-80% of the substantia nigra
neurons are lost [19], and ablation of dopaminergic neu-
rons in neonatal rats does not result in any significant
motor dysfunctions [20,21]. A lack of norepinephrine due
to a genetic mutation in the dopamine-β-hydroxylase gene
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produces an unremarkable neurological phenotype in
humans [22,23]. Mammalian thalamic nuclei can function
normally in the virtual absence of GABAergic inter-
neurons, as has been shown in mice and rats [24,25].
Experimental evidence shows that the lack of one neuro-
transmitter can be compensated for by changes in other
neurotransmitters: for example, serotonergic processes
have been shown to permanently extend into brain areas
previously occupied by dopaminergic terminals [26], and
serotonin and/or dopamine may compensate for the lack
of norepinephrine [27,28]. It should be noted that at least
some adult neurons have the flexibility to switch from one
neurotransmitter to another in response to the environ-
ment [29].
These findings suggest that biological information in

the brain is coded not by individual neurotransmitters or
their receptors, but by finely-tuned neurotransmitter-
receptor sets. While this hypothesis does not require
that the receptors be physically linked, it is supported
by the unexpected abundance of heteromeric receptor
complexes [30,31]. For example, the serotonin 5-HT2A

receptor can form complexes with the metabotropic
glutamate mGluR2 receptor [32] and the dopamine D2

receptor [33], which may play a major role in the action
of antipsychotic drugs and hallucinogens. A heterocom-
plex is more than the sum of its individual receptors,
since heteromerization can alter receptor mobility at the
neuron surface, downstream signaling, and intracellular
trafficking [32,34].
Understanding neurotransmitter receptor sets will re-

quire new analytical and theoretical approaches. Functio-
nally complete receptor sets have to be isolated and their
dynamic properties investigated in specific brain regions
and in individual cells [35]. While these studies pose tech-
nical challenges, they are likely to lead to major theoretical
simplifications. Some researchers have already used this
approach with considerable success [36-38]. As a further
step toward this goal, the present study used the Allen
Human Brain Atlas [39,40] to examine mRNA expression
associations among nearly all known G protein-coupled
neurotransmitter receptors in the human brain.

Results
The analysis used the mRNA expression data of 100 G
protein-coupled receptors (Table 1) in 169 regions of six
normal human brains presently available in the Allen
Brain Atlas database (Figure 1). The mRNA amounts
of many receptor pairs were very strongly correlated
(Figure 2). The five strongest positive and negative cor-
relations of each receptor are given in Table 2. The distri-
bution of all 4950 correlations had a nearly symmetric
shape, with a single mode shifted toward the positive
values (Figure 3A, B). This distribution failed normality
tests (Figure 3A; the Kolmogorov-Smirnov test: D = 0.024,
p < 0.01; the Shapiro-Wilk test: W = 0.995, p < 0.01), but
was well described by the beta distribution with the same
range, mean and variance (the shape parameters α = 3.51
and β = 3.32) (Figure 3B; D = 0.015, p = 0.209). The distri-
butions of several functionally meaningful subsets were
not significantly different from the complete set (in each
pair, both receptors represent the same neurotransmitter
(Figure 3C): D = 0.076, p = 0.169); (in each pair, the re-
ceptors represent different neurotransmitters (Figure 3D):
D = 0.004, p = 1); (in each pair, both receptors have
the same G protein-coupling (Figure 3E): D = 0.015,
p = 0.950); (in each pair, the receptors have different G
protein-couplings (Figure 3F): D = 0.007, p = 1)).
All statistically significant correlations among the recep-

tors were plotted as a graph (Figure 4A). The nociceptin
receptor (ORL-1) had the highest vertex degree (connec-
tivity), due to its significant correlations with 58 receptors
(Figure 4B). The largest clique consisted of 18 completely
interconnected vertices: the glutamate receptors mGluR2,
mGluR4, mGluR7, the adrenergic receptors α1B, α1D, β1,
the serotonin receptors 5-HT1A, 5-HT1F, 5-HT2A, the cho-
linergic receptors M1, M3, the histamine receptors H1, H2,
the melanin-concentrating hormone MCH1, the neuropep-
tide Y receptors Y1, Y5, the nociceptin receptor (ORL-1),
and the somatostatin receptor SST1. The distribution of
the vertex degrees (the number of links originating in each
receptor) appeared to be bimodal and did not follow the
power law that is often observed in natural networks with
high functional connectivity (Figure 4A, inset). However, a
recent study has shown that a bimodal degree distribution
can emerge in robust networks [41].
Next, the obtained correlation information was used to

examine whether some receptors groups are more tightly
interlinked than other receptors or, more presicely, whe-
ther the graph (Figure 4A) can be broken down into dis-
tinct receptor communities. Two community detection
methods were used: the modularity algorithm and the
clique percolation algorithm [42]. The modularity method
revealed two major receptor communities (Figure 5). As
recommended by Palla et al. [42], the clique percolation
method was optimized using several correlation thresh-
olds (T = 0.5, 0.6, 0.7, 0.8, and 0.9) and k-cliques of several
sizes. The best separation was achieved with T = 0.6 and
k = 4, which again revealed two distinct receptor commu-
nities (Figure 6). With the exception of one receptor
(BDKRB2), the separation among the receptors was iden-
tical to the one obtained with the modularity method.
Since the clique percolation method used more stringent
criteria, it excluded some more weakly correlated recep-
tors (importantly, they were not placed in the opposite
community). These analyses suggest that the human brain
has two functional receptor communities, within each of
which the mRNA levels are strongly correlated and can
potentially affect each other. The first community contains



Table 1 The analyzed G protein-coupled receptors

Number Neurotransmitter Receptor Gene Coupling Median inter-subject correlation

1 Glutamate mGluR1 GRM1 Gq 0.91

2 Glutamate mGluR2 GRM2 Gi 0.37

3 Glutamate mGluR3 GRM3 Gi 0.82

4 Glutamate mGluR4 GRM4 Gi 0.94

5 Glutamate mGluR5 GRM5 Gq 0.92

6 Glutamate mGluR6 GRM6 Gi 0.12

7 Glutamate mGluR7 GRM7 Gi 0.89

8 Glutamate mGluR8 GRM8 Gi 0.45

9 GABA GABABR1 GABBR1 Gi 0.78

10 GABA GABABR2 GABBR2 Gi 0.89

11 Dopamine D1 DRD1 Gs 0.91

12 Dopamine D2 DRD2 Gi 0.89

13 Dopamine D3 DRD3 Gi 0.69

14 Dopamine D4 DRD4 Gi 0.03

15 Dopamine D5 DRD5 Gs 0.83

16 Adrenergic α1A ADRA1A Gq 0.76

17 Adrenergic α1B ADRA1B Gq 0.87

18 Adrenergic α1D ADRA1D Gq 0.79

19 Adrenergic α2A ADRA2A Gi 0.62

20 Adrenergic α2B ADRA2B Gi 0.31

21 Adrenergic α2C ADRA2C Gi 0.64

22 Adrenergic β1 ADRB1 Gs 0.59

23 Adrenergic β2 ADRB2 Gs 0.67

24 Adrenergic β3 ADRB3 Gs/Gi 0.15

25 Serotonin 5-HT1A HTR1A Gi 0.86

26 Serotonin 5-HT1B HTR1B Gi 0.38

27 Serotonin 5-HT1D HTR1D Gi 0.79

28 Serotonin 5-HT1E HTR1E Gi 0.82

29 Serotonin 5-HT1F HTR1F Gi 0.90

30 Serotonin 5-HT2A HTR2A Gq 0.95

31 Serotonin 5-HT2B HTR2B Gq 0.12

32 Serotonin 5-HT2C HTR2C Gq 0.92

33 Serotonin 5-HT4 HTR4 Gs 0.89

34 Serotonin 5-HT5A HTR5A Gs 0.89

35 Serotonin 5-HT6 HTR6 Gs 0.21

36 Serotonin 5-HT7 HTR7 Gs 0.89

37 Cholinergic M1 CHRM1 Gq 0.53

38 Cholinergic M2 CHRM2 Gi 0.91

39 Cholinergic M3 CHRM3 Gq 0.96

40 Cholinergic M4 CHRM4 Gi 0.53

41 Cholinergic M5 CHRM5 Gq 0.63

42 Histamine H1 HRH1 Gq 0.82

43 Histamine H2 HRH2 Gs 0.69

44 Histamine H3 HRH3 Gi 0.66
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Table 1 The analyzed G protein-coupled receptors (Continued)

45 Histamine H4 HRH4 Gi 0.09

46 Bradykinin B1 BDKRB1 Gq 0.69

47 Bradykinin B2 BDKRB2 Gq 0.61

48 Cholecystokinin CCK1 CCKAR Gq 0.46

49 Cholecystokinin CCK2 CCKBR Gq 0.94

50 CRH CRF1 CRHR1 Gs 0.65

51 CRH CRF2 CRHR2 Gs 0.35

52 Galanin Gal1 GALR1 Gi 0.74

53 Galanin Gal2 GALR2 Gi/Gq 0.54

54 Galanin Gal3 GALR3 Gi 0.08

55 MCH MCH1 MCHR1 Gi 0.70

56 MCH MCH2 MCHR2 Gq 0.93

57 MSH MC1 MC1R Gs 0.73

58 MSH MC2 MC2R Gs 0.10

59 MSH MC3 MC3R Gs 0.40

60 MSH MC4 MC4R Gs 0.49

61 MSH MC5 MC5R Gs 0.04

62 NPY Y1 NPY1R Gi 0.91

63 NPY Y2 NPY2R Gi 0.74

64 NPY Y4 PPYR1 Gi 0.18

65 NPY Y5 NPY5R Gi 0.86

66 NPY Y6 NPY6R Gi 0.36

67 Neurotensin NT1 NTSR1 Gq 0.48

68 Neurotensin NT2 NTSR2 Gq 0.81

69 Opioid μ OPRM1 Gi 0.84

70 Opioid δ OPRD1 Gi 0.25

71 Opioid κ OPRK1 Gi 0.67

72 Nociceptin ORL-1 OPRL1 Gi 0.81

73 Orexin OX1 HCRTR1 Gq 0.82

74 Orexin OX2 HCRTR1 Gi 0.64

75 Oxytocin OT OXTR Gq 0.75

76 Somatostatin SST1 SSTR1 Gi 0.81

77 Somatostatin SST2 SSTR2 Gi 0.91

78 Somatostatin SST3 SSTR3 Gi 0.28

79 Somatostatin SST4 SSTR4 Gi 0.07

80 Somatostatin SST5 SSTR5 Gi 0.16

81 Tachykinin NK1 TACR1 Gq 0.55

82 Tachykinin NK2 TACR2 Gq 0.34

83 Tachykinin NK3 TACR3 Gq 0.81

84 TRH TRHR TRHR Gq 0.79

85 VIP VPAC1 VIPR1 Gs 0.86

86 VIP VPAC2 VIPR2 Gs 0.77

87 Vasopressin V1a AVPR1A Gq 0.34

88 Vasopressin V1b AVPR1B Gq 0.04

89 Vasopressin V2 AVPR2 Gs 0.16
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Table 1 The analyzed G protein-coupled receptors (Continued)

90 Adenosine A1 ADORA1 Gi 0.66

91 Adenosine A2A ADORA2A Gs 0.87

92 Adenosine A2B ADORA2B Gs 0.57

93 Adenosine A3 ADORA3 Gi 0.37

94 Purine P2Y1 P2RY1 Gq 0.72

95 Purine P2Y2 P2RY2 Gi/Gq 0.37

96 Purine P2Y4 P2RY4 Gi/Gq 0.00

97 Purine P2Y6 P2RY6 Gq 0.32

98 Purine P2Y11 P2RY11 Gq 0.34

99 Cannabinoid CB1 CNR1 Gi 0.90

100 Cannabinoid CB2 CNR2 Gi 0.46

The inter-subject correlations were obtained from 6 subjects (15 cross-correlations).
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the glutamate receptor mGluR1, the dopamine receptor
D2, the adrenergic receptor β3, the serotonin receptors
5-HT1B, 5-HT2C, 5-HT6, the cholinergic receptors M4 and
M5, the bradykinin receptors B1 and B2, the cholecysto-
kinin receptor CCK2, the CRH receptor CRF1, the galanin
receptor Gal2, the NPY receptor Y6, the neurotensin
receptor NT2, the oxytocin receptor, the somatostatin
receptors SST3 and SST4, the tachykinin receptor NK2,
the VIP receptor VPAC1, the purine receptor P2Y11, and
the cannabinoid receptor CB2. The second commu-
nity contains the glutamate receptors mGluR2, mGluR5,
mGluR7, the dopamine receptor D1, the adrenergic recep-
tors α1B, α1D, β1, the serotonin receptors 5-HT1A, 5-HT1F,
5-HT2A, 5-HT4, the cholinergic receptors M1 and M3, the
histamine receptors H1 and H2, the MCH receptors
MCH1 and MCH2, the NPY receptors Y1 and Y5, the noci-
ceptin receptor (ORL-1), the somatostatin receptor SST1,
and the VIP receptor VPAC2.

Discussion
The Allen Human Brain Atlas is a relatively new database
[39,40] that continues to be updated and refined. In the
absence of generally accepted standards for how gene ex-
pression data should be normalized and presented, the
published expression values should be treated with cau-
tion. The expression of many receptors is highly consis-
tent across individuals, but some receptors show a high
degree of variability (Table 1). Among them is the dopa-
mine receptor 4 (coded by the DRD4 gene), which has
been extensively studied because of a functionally impor-
tant polymorphism in its exon 3 [43-47]. The origin of its
inconsistent distribution across individuals is not clear
and may be due to either unreliable detection or true
expression differences in the population. Notably, no rela-
tionship has been established between the DRD4 alleles
and their mRNA levels [48].
Caution should also be exercised in the interpretation

of mRNA levels that show a consistent pattern across
the subjects. For many receptors, the relationship bet-
ween the mRNA and protein quantities is often poorly
understood, and a change in one of these measures may
not indicate a change in the other. A recent large-scale
study has shown that, on average, mRNA levels explain
around 40% of the variability in protein levels, and that
the abundance of a protein is predominantly controlled
by translation [49]. In addition, many neurotransmitter
receptors operate in two different signaling modes: at
the membrane surface through G-proteins and, when in-
ternalized, in an arrestin-dependent fashion [50]. Neuro-
transmitter receptor genes can produce several mRNA
splice variants, some of which may be constitutively ac-
tive (ligand-independent) [51], or have different internal-
ization properties [52]. Also, protein molecules can be
phosphorylated, glycosylated, and undergo other modi-
fications [50,53-55]. These post-translational processes
place severe limitations on functional inferences from
mRNA data. On the other hand, mRNA quantification
allows a high degree of specificity, which remains diffi-
cult to achieve in protein analyses. Post-translational
modifications of protein molecules and the absence of
specific antibodies for a number of neurotransmitter
receptors (contrary to the claims of manufacturers) cur-
rently do not allow large scale quantifications of proteins
in the entire brain. Even though the protein data remain
limited, Table 1 provides information about the possible
inter-individual variability of the mRNA levels of nearly
all neurotransmitter receptors and will facilitate the in-
terpretation of completed and future studies.
The analyzed mRNA levels in brain structures reflect

the cumulative gene expression in several types of neu-
ronal and glial cells, with a possible contribution from
endothelial and ependymal cells. This lack of spatial pre-
cision makes the obtained results too “coarse” for the
modeling of local neural circuits. However, an association
between the abundance of two receptors over many brain
regions is functionally meaningful, just as biologically



mGluR1
(GRM1)

D1
(DRD1)

5-HT2A
(HTR2A)
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Figure 1 The mRNA expression profiles of six neurotransmitter
receptors. The horizontal axis represents the 169 brain regions and
the vertical axis represents the mRNA amounts (averaged across the
probes and subjects). Since the numerical mRNA values are normalized
and relative, they are not indicated on the vertical axis (for all six genes,
it ranges from −2 to 2). Note high similarity between some of the
profiles (e.g., mGluR1 and CRF1, 5-HT2A and H1).
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meaningful information can be obtained from the cor-
relation between the population numbers of two species
across geographic areas (even if the species do not directly
interact). Hypofunction or hyperfunction of a receptor in
a class of cells is likely to affect the activity of their local
neuroecosystems, which may induce changes in the ex-
pression of receptors in other cells [56]. Therefore, esti-
mates of the most likely associations among receptors are
important for the interpretation of receptor knockout
models, as well as for the prediction of changes in other
receptors associated with pharmacological targeting of a
specific neurotransmitter receptor [57,58]. At present, no
comprehensive quantitative analysis exists to facilitate
these theoretical considerations, and published data are
likely to be biased by hypothesis-driven approaches, fun-
ding agency priorities, and attracting nodes in researcher
networks. While the current analysis is a step forward,
major theoretical breakthroughs can be expected when
technical capabilities become sufficiently advanced to dy-
namically monitor entire receptor sets in single neurons
and glial cells [35].
Currently little information is available about the cor-

relation between the mRNA levels of receptors that form
heteromeric complexes. Among them, the complex bet-
ween the metabotropic glutamate receptor mGluR2 and
the serotonin receptor 5-HT2A has been particularly well
studied, partly because of its potential importance in
schizophrenia and other related brain disorders [32,59,60].
It has been recently reported that the disruption of 5-HT2A

receptor-dependent signaling can suppress mGluR2 tran-
scription through epigenetic modifications in the mGluR2

gene promoter [61]. The present analysis found a highly
significant positive correlation between the mRNA levels
of these two receptors (0.49). However, mGluR2 had the
highest positive correlations with the nociceptin receptor
(ORL-1), the adrenergic α1D and β2 receptors, the hista-
mine H2 receptor, and the purine P2Y6 receptor; and the
5-HT2A receptor had the highest positive correlations with
the histamine H1 receptor (Figure 1), the serotonin 5-HT1F

receptor, the muscarinic cholinergic M3 receptor, and
the melanin-concentrating hormone receptors MCH1 and
MCH2 (Table 2).
Two receptor communities were extracted from the data

(Figures 5 and 6). There are many neural circuits where
these receptors interact, but it remains unclear whether
the entire communities can be assigned a biologically
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Figure 2 The scatter plots of the six most strongly correlated receptor pairs (out of the 4950 pairs). Each point represents the mRNA
amounts (averaged across the probes and subjects) of the two receptors in one of the 169 brain regions. Considerable clustering is apparent,
which indicates that in most brain regions the mRNA levels of the two receptors are either low or high simultaneously, with few regions in
between. All correlations are significant at p < 10-15.
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meaningful role. It should be noted that many of the re-
ceptors in the two “minimal” communities (Figure 6) con-
trol global brain functions, such as wakefulness and sleep
[62]. The two communities can be differentially affected in
some brain disorders. For example, the 5-HT1A, 5-HT2A
and 5-HT4 receptors belong to the same community
(Figure 6) and are expressed by neurons in the medial pre-
frontal cortex (mPFC) that project to the dorsal raphe
nucleus and control serotonin release [63,64]. Altered
activity of these neurons has been implicated in mood



Table 2 The five strongest positive and negative correlations of each receptor with other receptors, calculated using
169 brain regions

1) mGluR1 2) mGluR2 3) mGluR3 4) mGluR4 5) mGluR5 6) mGluR6

50 0.80 72 0.65 90 0.72 57 0.93 72 0.82 88 0.63

4 0.74 18 0.64 43 0.62 50 0.76 39 0.81 4 0.63

57 0.71 43 0.63 23 0.51 1 0.74 65 0.80 57 0.60

46 0.65 97 0.60 22 0.50 46 0.68 7 0.79 50 0.54

98 0.63 23 0.58 93 0.49 47 0.66 43 0.76 47 0.53

68 −0.51 69 −0.33 6 −0.22 62 −0.64 50 −0.32 42 −0.34

52 −0.53 80 −0.34 59 −0.26 39 −0.64 46 −0.39 39 −0.35

75 −0.54 46 −0.35 69 −0.27 76 −0.68 47 −0.49 32 −0.39

40 −0.55 57 −0.55 57 −0.31 30 −0.72 57 −0.57 22 −0.42

32 −0.63 4 −0.56 4 −0.32 42 −0.76 4 −0.58 23 −0.50

7) mGluR7 8) mGluR8 9) GABA1 10) GABA2 11) D1 12) D2

5 0.79 15 0.57 10 0.63 9 0.63 65 0.74 40 0.71

72 0.76 74 0.52 92 0.57 49 0.58 21 0.74 35 0.69

62 0.65 53 0.47 1 0.49 17 0.58 22 0.71 68 0.67

65 0.65 40 0.47 98 0.49 39 0.56 43 0.70 75 0.66

42 0.64 38 0.46 50 0.47 34 0.56 33 0.69 100 0.66

50 −0.40 50 −0.34 8 −0.25 54 −0.27 4 −0.31 50 −0.49

57 −0.50 4 −0.35 32 −0.25 27 −0.28 47 −0.32 77 −0.50

46 −0.50 98 −0.39 41 −0.28 12 −0.31 69 −0.32 46 −0.60

4 −0.52 1 −0.39 14 −0.31 83 −0.32 57 −0.34 85 −0.67

47 −0.59 57 −0.43 53 −0.31 32 −0.41 54 −0.35 49 −0.70

13) D3 14) D4 15) D5 16) α1A 17) α1B 18) α1D

91 0.68 51 0.40 72 0.66 84 0.52 56 0.63 72 0.76

27 0.65 70 0.22 75 0.63 63 0.38 39 0.63 36 0.72

33 0.64 98 0.18 68 0.62 7 0.31 30 0.63 5 0.71

21 0.63 97 0.17 52 0.61 94 0.26 42 0.59 2 0.64

12 0.62 46 0.17 82 0.60 79 0.26 55 0.59 39 0.64

34 −0.19 7 −0.29 1 −0.47 39 −0.14 35 −0.29 47 −0.39

10 −0.22 9 −0.31 46 −0.49 74 −0.16 57 −0.30 80 −0.43

49 −0.24 94 −0.31 50 −0.50 90 −0.18 54 −0.30 46 −0.45

46 −0.27 68 −0.34 57 −0.60 20 −0.22 64 −0.30 4 −0.53

50 −0.30 60 −0.35 4 −0.60 44 −0.31 4 −0.35 57 −0.54

19) α2A 20) α2B 21) α2C 22) β1 23) β2 24) β3

73 0.63 91 0.50 11 0.74 29 0.74 93 0.68 78 0.69

81 0.50 13 0.43 33 0.67 11 0.71 100 0.62 79 0.67

83 0.49 12 0.42 91 0.65 39 0.71 68 0.60 100 0.63

7 0.48 35 0.40 27 0.65 37 0.69 97 0.59 82 0.61

52 0.47 43 0.33 13 0.63 56 0.69 40 0.58 89 0.57

91 −0.27 80 −0.24 57 −0.25 47 −0.44 6 −0.50 77 −0.19

4 −0.27 49 −0.27 47 −0.26 54 −0.44 85 −0.53 98 −0.20

47 −0.29 25 −0.31 1 −0.29 69 −0.45 34 −0.56 56 −0.22

50 −0.30 34 −0.32 46 −0.32 57 −0.50 4 −0.57 85 −0.30

46 −0.33 77 −0.33 50 −0.34 4 −0.53 57 −0.59 49 −0.31
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Table 2 The five strongest positive and negative correlations of each receptor with other receptors, calculated using
169 brain regions (Continued)

25) 5-HT1A 26) 5-HT1B 27) 5-HT1D 28) 5-HT1E 29) 5-HT1F 30) 5-HT2A

39 0.66 40 0.67 21 0.65 65 0.62 56 0.87 42 0.84

62 0.64 100 0.61 13 0.65 5 0.58 30 0.83 29 0.83

42 0.64 82 0.61 94 0.63 62 0.56 86 0.80 39 0.80

30 0.64 78 0.61 40 0.60 39 0.55 55 0.78 55 0.80

7 0.62 35 0.60 33 0.59 43 0.53 39 0.78 56 0.76

20 −0.31 1 −0.30 49 −0.30 14 −0.17 66 −0.35 54 −0.40

47 −0.35 98 −0.32 98 −0.32 95 −0.19 69 −0.39 1 −0.43

54 −0.35 49 −0.38 1 −0.32 57 −0.24 57 −0.46 47 −0.54

57 −0.49 85 −0.39 46 −0.44 4 −0.25 54 −0.48 57 −0.71

4 −0.51 46 −0.46 50 −0.46 54 −0.30 4 −0.49 4 −0.72

31) 5-HT2B 32) 5-HT2C 33) 5-HT4 34) 5-HT5A 35) 5-HT6 36) 5-HT7

61 0.54 75 0.70 65 0.79 85 0.63 12 0.69 18 0.72

35 0.54 68 0.64 5 0.71 49 0.63 40 0.65 72 0.72

45 0.53 94 0.63 11 0.69 77 0.59 100 0.63 38 0.65

58 0.51 12 0.61 21 0.67 1 0.56 26 0.60 7 0.60

88 0.48 40 0.60 62 0.67 10 0.56 27 0.56 68 0.59

62 −0.16 85 −0.61 46 −0.45 40 −0.44 46 −0.33 57 −0.46

17 −0.18 1 −0.63 57 −0.48 78 −0.47 77 −0.35 80 −0.47

49 −0.21 98 −0.64 50 −0.49 95 −0.47 56 −0.39 49 −0.49

85 −0.21 46 −0.70 4 −0.50 100 −0.54 85 −0.50 85 −0.61

56 −0.24 50 −0.76 47 −0.50 23 −0.56 49 −0.54 46 −0.62

37) M1 38) M2 39) M3 40) M4 41) M5 42) H1

43 0.73 36 0.65 5 0.81 12 0.71 75 0.80 30 0.84

39 0.70 72 0.63 30 0.80 100 0.70 53 0.65 39 0.80

22 0.69 15 0.59 42 0.80 68 0.69 68 0.63 62 0.77

29 0.67 26 0.57 43 0.78 75 0.68 82 0.61 55 0.74

56 0.65 53 0.53 29 0.78 26 0.67 83 0.59 5 0.73

59 −0.36 46 −0.45 69 −0.40 49 −0.53 1 −0.47 50 −0.43

44 −0.37 99 −0.45 54 −0.44 1 −0.55 46 −0.52 1 −0.45

57 −0.45 80 −0.46 47 −0.44 85 −0.58 50 −0.53 47 −0.54

4 −0.45 77 −0.50 57 −0.62 50 −0.58 49 −0.60 57 −0.72

69 −0.55 85 −0.53 4 −0.64 46 −0.64 85 −0.69 4 −0.76

43) H2 44) H3 45) H4 46) B1 47) B2 48) CCK1

39 0.78 69 0.42 58 0.56 50 0.78 46 0.76 67 0.67

5 0.76 12 0.39 89 0.54 47 0.76 4 0.66 75 0.53

72 0.73 9 0.39 35 0.53 85 0.70 57 0.63 41 0.52

37 0.73 4 0.36 31 0.53 4 0.68 50 0.61 53 0.49

11 0.70 20 0.29 61 0.52 57 0.66 6 0.53 58 0.46

80 −0.30 16 −0.31 86 −0.19 36 −0.62 62 −0.50 46 −0.26

47 −0.35 29 −0.32 98 −0.24 40 −0.64 52 −0.52 50 −0.33

69 −0.42 55 −0.33 56 −0.24 75 −0.69 30 −0.54 85 −0.34

4 −0.50 37 −0.37 85 −0.30 68 −0.69 42 −0.54 49 −0.35

57 −0.50 97 −0.38 49 −0.31 32 −0.70 7 −0.59 98 −0.38
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Table 2 The five strongest positive and negative correlations of each receptor with other receptors, calculated using
169 brain regions (Continued)

49) CCK2 50) CRF1 51) CRF2 52) Gal1 53) Gal2 54) Gal3

85 0.93 1 0.80 14 0.40 15 0.61 75 0.75 64 0.62

56 0.78 46 0.78 85 0.39 68 0.61 73 0.67 78 0.56

77 0.71 4 0.76 86 0.34 60 0.59 41 0.65 100 0.56

98 0.67 57 0.74 49 0.31 73 0.57 83 0.64 24 0.55

46 0.63 98 0.71 22 0.30 32 0.57 82 0.63 89 0.55

41 −0.60 40 −0.58 94 −0.29 57 −0.52 50 −0.48 39 −0.44

75 −0.67 94 −0.61 36 −0.29 1 −0.53 46 −0.49 85 −0.44

100 −0.69 68 −0.66 75 −0.33 50 −0.56 49 −0.58 29 −0.48

12 −0.70 75 −0.68 41 −0.34 46 −0.56 98 −0.59 49 −0.54

66 −0.71 32 −0.76 68 −0.41 4 −0.58 85 −0.63 56 −0.63

55) MCH1 56) MCH2 57) MC1 58) MC2 59) MC3 60) MC4

30 0.80 29 0.87 4 0.93 45 0.56 60 0.34 52 0.59

29 0.78 49 0.78 50 0.74 35 0.54 69 0.29 32 0.56

42 0.74 30 0.76 1 0.71 61 0.53 44 0.27 68 0.56

39 0.72 39 0.75 46 0.66 31 0.51 41 0.26 75 0.55

56 0.71 86 0.74 47 0.63 100 0.47 84 0.24 15 0.47

47 −0.29 12 −0.43 15 −0.60 86 −0.18 2 −0.24 98 −0.38

44 −0.33 100 −0.44 39 −0.62 56 −0.21 23 −0.24 1 −0.40

69 −0.36 64 −0.46 76 −0.65 85 −0.25 90 −0.25 47 −0.44

57 −0.50 66 −0.55 30 −0.71 98 −0.25 3 −0.26 50 −0.45

4 −0.52 54 −0.63 42 −0.72 49 −0.25 37 −0.36 46 −0.54

61) MC5 62) Y1 63) Y2 64) Y4 65) Y5 66) Y6

88 0.55 65 0.93 7 0.59 54 0.62 62 0.93 100 0.66

31 0.54 42 0.77 42 0.53 100 0.59 5 0.80 75 0.63

58 0.53 5 0.73 62 0.51 96 0.57 33 0.79 12 0.61

45 0.52 39 0.70 65 0.50 89 0.57 11 0.74 82 0.58

6 0.51 33 0.67 30 0.45 24 0.55 39 0.73 36 0.57

11 −0.12 46 −0.39 46 −0.34 85 −0.33 46 −0.38 46 −0.45

90 −0.14 50 −0.43 57 −0.40 30 −0.36 50 −0.44 77 −0.51

98 −0.14 47 −0.50 50 −0.41 49 −0.39 47 −0.49 56 −0.55

91 −0.14 57 −0.57 47 −0.47 86 −0.40 57 −0.54 85 −0.70

22 −0.16 4 −0.64 4 −0.51 56 −0.46 4 −0.59 49 −0.71

67) NT1 68) NT2 69) μ 70) δ 71) κ 72) ORL-1

48 0.67 75 0.81 4 0.49 43 0.61 72 0.52 5 0.82

75 0.65 94 0.77 57 0.44 22 0.60 62 0.51 7 0.76

68 0.64 40 0.69 44 0.42 37 0.59 65 0.48 18 0.76

82 0.57 12 0.67 1 0.39 56 0.58 5 0.46 39 0.74

41 0.56 32 0.64 9 0.39 90 0.57 17 0.45 43 0.73

85 −0.40 57 −0.56 42 −0.40 66 −0.25 50 −0.13 80 −0.40

50 −0.46 4 −0.57 39 −0.40 83 −0.27 46 −0.18 47 −0.47

46 −0.48 85 −0.61 43 −0.42 53 −0.28 4 −0.18 46 −0.53

57 −0.48 50 −0.66 22 −0.45 4 −0.28 57 −0.19 57 −0.58

4 −0.49 46 −0.69 37 −0.55 69 −0.39 14 −0.19 4 −0.60
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Table 2 The five strongest positive and negative correlations of each receptor with other receptors, calculated using
169 brain regions (Continued)

73) OX1 74) OX2 75) OT 76) SST1 77) SST2 78) SST3

83 0.69 53 0.54 68 0.81 42 0.72 99 0.77 100 0.78

53 0.67 41 0.53 41 0.80 62 0.66 49 0.71 82 0.73

75 0.64 8 0.52 53 0.75 39 0.64 85 0.70 24 0.69

19 0.63 73 0.50 82 0.72 30 0.62 34 0.59 79 0.66

41 0.57 38 0.48 32 0.70 65 0.61 80 0.57 40 0.66

1 −0.39 92 −0.35 98 −0.59 1 −0.41 12 −0.50 34 −0.47

85 −0.45 50 −0.36 49 −0.67 46 −0.43 93 −0.50 77 −0.49

46 −0.48 77 −0.39 50 −0.68 50 −0.46 66 −0.51 46 −0.49

50 −0.51 98 −0.41 46 −0.69 57 −0.65 95 −0.53 49 −0.53

98 −0.53 85 −0.43 85 −0.73 4 −0.68 100 −0.54 85 −0.59

79) SST4 80) SST5 81) NK1 82) NK2 83) NK3 84) TRHR

24 0.67 50 0.61 40 0.66 100 0.77 73 0.69 16 0.52

78 0.66 85 0.59 27 0.59 78 0.73 53 0.64 67 0.51

100 0.60 46 0.58 94 0.57 75 0.72 75 0.64 32 0.51

82 0.58 77 0.57 12 0.57 40 0.65 82 0.64 75 0.51

2 0.54 4 0.56 82 0.57 83 0.64 41 0.59 83 0.50

77 −0.17 18 −0.43 4 −0.36 4 −0.42 49 −0.54 49 −0.38

57 −0.18 23 −0.44 57 −0.36 50 −0.44 46 −0.54 50 −0.38

4 −0.20 38 −0.46 1 −0.40 49 −0.54 50 −0.55 85 −0.38

49 −0.25 75 −0.46 50 −0.46 46 −0.59 85 −0.57 98 −0.40

85 −0.29 36 −0.47 46 −0.49 85 −0.63 98 −0.58 46 −0.43

85) VPAC1 86) VPAC2 87) V1a 88) V1b 89) V2 90) A1

49 0.93 29 0.80 76 0.46 6 0.63 100 0.65 3 0.72

77 0.70 56 0.74 19 0.44 61 0.55 78 0.63 98 0.59

46 0.70 30 0.67 7 0.40 31 0.48 24 0.57 70 0.57

98 0.68 55 0.62 32 0.40 58 0.43 64 0.57 43 0.53

50 0.65 22 0.62 52 0.39 96 0.38 54 0.55 39 0.53

12 −0.67 66 −0.35 50 −0.32 30 −0.22 98 −0.34 84 −0.34

41 −0.69 4 −0.36 46 −0.33 39 −0.23 77 −0.37 53 −0.34

66 −0.70 69 −0.38 57 −0.36 62 −0.25 56 −0.39 73 −0.34

75 −0.73 64 −0.40 4 −0.36 22 −0.26 85 −0.47 32 −0.36

100 −0.74 54 −0.42 47 −0.39 23 −0.26 49 −0.50 83 −0.39

91) A2A 92) A2B 93) A3 94) P2Y1 95) P2Y2 96) P2Y4

13 0.68 9 0.57 23 0.68 68 0.77 100 0.58 64 0.57

21 0.65 99 0.51 100 0.59 32 0.63 23 0.55 24 0.52

11 0.55 22 0.46 41 0.57 27 0.63 40 0.54 79 0.47

27 0.53 56 0.45 97 0.56 21 0.58 12 0.49 89 0.44

12 0.53 49 0.44 78 0.55 81 0.57 38 0.49 54 0.43

10 −0.25 53 −0.28 99 −0.37 57 −0.45 99 −0.46 86 −0.17

55 −0.25 100 −0.31 34 −0.43 4 −0.46 34 −0.47 62 −0.18

87 −0.25 66 −0.34 49 −0.48 1 −0.48 77 −0.53 42 −0.18

19 −0.27 54 −0.34 77 −0.50 46 −0.55 49 −0.54 30 −0.19

76 −0.29 74 −0.35 85 −0.53 50 −0.61 85 −0.54 87 −0.23
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Table 2 The five strongest positive and negative correlations of each receptor with other receptors, calculated using
169 brain regions (Continued)

97) P2Y6 98) P2Y11 99) CB1 100) CB2

2 0.60 50 0.71 77 0.77 78 0.78

23 0.59 85 0.68 49 0.54 82 0.77

93 0.56 49 0.67 85 0.53 40 0.70

15 0.49 46 0.64 92 0.51 12 0.66

3 0.48 1 0.63 80 0.46 66 0.66

1 −0.31 73 −0.53 93 −0.37 46 −0.49

80 −0.36 83 −0.58 23 −0.38 34 −0.54

44 −0.38 75 −0.59 100 −0.38 77 −0.54

57 −0.45 53 −0.59 38 −0.45 49 −0.69

4 −0.50 32 −0.64 95 −0.46 85 −0.74

The receptor numbers (Table 1) are given in the left column and the correlations in the right column (e.g., mGluR1 has the strongest positive correlation with
CRF1 (0.80)). Correlations with an absolute value of less than 0.34 are not significant after the Bonferroni correction (at α = 0.05) and should be interpreted with
caution. The actual correlations may be somewhat stronger due the imperfect reliability of the expression data (the statistical “attenuation” phenomenon).
For compactness, the following abbreviations were used: GABA1 = GABABR1, GABA2 = GABABR2.
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disorders [63,65,66]. The exact structure of the communi-
ties is likely to become more refined as more data become
available in the Allen Brain Atlas. In general, receptor net-
work analyses hold great promise for understanding the
brain in health and disease, as has been demonstrated by
recent research [36,67-69].
The relatively simple distribution of correlations (Figure 3)

raises interesting questions. Theoretically, such a distribu-
tion can be obtained from a single dynamical interaction.
Depending on the numerical values of its coefficients, the
same process can produce uncorrelated or highly cor-
related equilibrium values, even if the two receptors are
strongly dynamically coupled [70]. Since theoretically all
receptors can be expressed by all brain cells and they
can only differ in their equilibrium levels (some mRNA
amounts may be undetectably small), such qualitative uni-
formity remains an intriguing possibility.

Conclusions
Progress in neuroscience requires both accurate factual
observations and complexity reduction. Since informa-
tion processing in the brain depends on thousands of
unique neurotransmitter-receptor interactions, under-
standing how these neurotransmitter-receptor pairs op-
erate in functional groups is not only a theoretical
imperative, but also a practical necessity. The obtained
results suggest that the apparent complexity of neuro-
transmitter signaling has an underlying global structure,
which is not readily detectable if receptor interactions
are studied in isolation.

Methods
The human brain expression data of one hundred G
protein-coupled neurotransmitter receptors (Table 1) were
downloaded from the Allen Brain Atlas data portal (http://
human.brain-map.org; the data release of March 7, 2013).
Technical details about the brain donors, tissue pre-
paration, specificity controls, and data normalization
(including normalization across brains) are described in
the Allen Human Brain Atlas Technical White Papers
(Case Qualification and Donor Profiles, Microarray Sur-
vey, Microarray Data Normalization).
The normalized mRNA amounts in 169 brain regions

were obtained from six available subjects (three Caucasian
males (31, 55, and 57 years of age), two African-American
males (24 and 39 years of age), and one Hispanic female
(49 years of age)).
Of the analyzed regions, the 14 regions from the mye-

lencephalon were the central glial substance, the arcuate
nucleus of the medulla, the inferior olivary complex, the
gracile nucleus, the cuneate nucleus, the raphe nuclei of
the medulla, the central medullary reticular group, the
lateral medullary reticular group, the gigantocellular
group, the hypoglossal nucleus, the dorsal motor nucleus
of the vagus, the spinal trigeminal nucleus, the vestibular
nuclei, and the cochlear nuclei. The 12 regions from the
pontine tegmentum were the pontine nuclei, the super-
ior olivary complex, the central gray of the pons, the
paramedian pontine reticular formation, the locus ceru-
leus, the nucleus subceruleus, the pontine raphe nucleus,
the medial parabrachial nucleus, the lateral parabrachial
nucleus, the facial motor nucleus, the abducens nucleus,
and the trigeminal nuclei. The 27 regions from the cere-
bellum were 12 vermal areas (I-II, III, IV, V, VI, VIIAf,
VIIAt, VIIB, VIIIA, VIIIB, IX, X), 11 lobules (III, IV, V, VI,
Crus I, Crus II, VIIB, VIIIA, VIIIB, IX, X), and the
four deep cerebellar nuclei (the fastigial nucleus, the glo-
bose nucleus, the emboliform nucleus, and the dentate

http://human.brain-map.org
http://human.brain-map.org
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Figure 3 The statistical distributions of all correlations and their subsets. A, B, The distribution of all correlations and their approximations
with the normal distribution (A) and the beta distribution (B). Both theoretical distributions have the sample mean and variance. C, The distribution of
the correlations between receptors that represent the same neurotransmitter (in different pairs, the neurotransmitters may be different). D, The
distribution of the correlations between receptors that represent different neurotransmitters. E, The distribution of the correlations between receptors
that have the same G protein-coupling (in different pairs, the couplings may be different). F, The distribution of the correlations between receptors that
have different G protein-couplings. G, The distribution of the correlations of a simulated sample of 100 sets, each of which contains 169 independent,
normally distributed numbers (with mean = 0 and standard deviation = 1). The simulation shows that the distribution of the correlations between G
protein-coupled receptors is different from what would be expected from a matching sample of uncorrelated sets.
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Figure 4 Graph representations of receptor correlations. A, A graph representation of all significant correlations between receptors (after the
Bonferroni correction; all Cook’s distances do not exceed 1.0). The inset shows the distribution of the vertex degrees. B, The neighborhood
subgraph of the nociceptin receptor (OPRL1); marked in the center.
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Figure 5 The two communities of G protein-coupled neurotransmitter receptors detected with the modularity method.
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nucleus). The 14 regions from the mesencephalon were
the ventral tegmental area, the substantia nigra, the red
nucleus, the central gray of the midbrain, the midbrain
raphe nuclei, the midbrain reticular formation, the troch-
lear nucleus, the oculomotor nuclear complex, the
Edinger-Westphal nucleus, the inferior colliculus, the su-
perior colliculus, the pretectal region, the interstitial nu-
cleus of Cajal, and the nucleus of Darkschewitsch. The 11
regions from the thalamic area were the subthalamus, the
ventral thalamus, the posterior group of nuclei, the medial
geniculate complex, the dorsal lateral geniculate nucleus,
the dorsal division of the lateral group of nuclei, the ven-
tral division of the lateral group of nuclei, the anterior
group of nuclei, the medial group of nuclei, the caudal
group of intralaminar nuclei, and the rostral group of
intralaminar nuclei. The 19 regions from the epithalamus
and the hypothalamus were the pineal, the habenular
nuclei, the paraventricular thalamic nuclei, the posterior
hypothalamic area, the lateral hypothalamic area, the
mammillary region of the lateral hypothalamic area, the
mammillary body, the supramammillary nucleus, the
tuberomammillary nucleus, the tuberal region of the lat-
eral hypothalamic area, the lateral tuberal nucleus, the
perifornical nucleus, the ventromedial hypothalamic nu-
cleus, the dorsomedial hypothalamic nucleus, the anterior
hypothalamic area, the arcuate nucleus of the hypothal-
amus, the preoptic region, the paraventricular nucleus
of the hypothalamus, and the supraoptic nucleus. The 9
regions from the striatum, pallidum, and septum were the
head of the caudate nucleus, the body of the caudate
nucleus, the tail of the caudate nucleus, the nucleus
accumbens, the putamen, the external segment of the glo-
bus pallidus, the internal segment of the globus pallidus,
the substantia innominata, and the septal nuclei. The 6



Figure 6 The two communities of G protein-coupled neurotransmitter receptors detected with the clique percolation method. The
absolute values of correlations were thresholded at 0.6 (with the corresponding p < 10-15) and the clique number was set at k = 4.
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regions from the amygdala were the central nucleus, the
basomedial nucleus, the cortico-medial area, the basolat-
eral nucleus, the lateral nucleus, and the amygdaloid tran-
sition zone. Two other regions from the lateral pallium
were the claustrum and the piriform cortex. The 7 regions
from the hippocampal formation were the parahippocam-
pal gyrus, the dentate gyrus, the CA1 field, the CA2 field,
the CA3 field, the CA4 field, and the subiculum. The cin-
gulate gyrus was subdivided into the frontal, parietal, and
retrosplenial parts, and the insula was subdivided into the
short and long gyri. The 9 regions from the temporal lobe
were the temporal pole, planum polare, the transverse
gyri, Heschl’s gyrus, the planum temporale, the superior
temporal gyrus, the middle temporal gyrus, the inferior
temporal gyrus, and the fusiform gyrus. The 6 regions
from the occipital lobe were the occipital pole, the cuneus,
the lingual gyrus, the superior occipital gyrus, the inferior
occipital gyrus, and the occipito-temporal gyrus. The 6
regions from the parietal lobe were the precuneus,
the posterior paracentral lobule, superior parietal lobule,
the angular gyrus, the supramarginal gyrus, and the
postcentral gyrus. The 19 regions from the frontal lobe
were the paraterminal gyrus, the subcallosal gyrus, the
parolfactory gyri, the anterior paracentral lobule, the pre-
central gyrus, the superior frontal gyrus, the middle
frontal gyrus, the frontal operculum, the opercular part of
the inferior frontal gyrus, the triangular part of the inferior
frontal gyrus, the orbital part of the inferior frontal gyrus,
the lateral orbital gyrus, the medial orbital gyrus, the pos-
terior orbital gyrus, the anterior orbital gyrus, the gyrus
rectus, the superior rostral gyrus, the inferior rostral gyrus,
and the frontal pole. In addition, the expression data from
the cingulum, the corpus callosum, and the choroid
plexus of the lateral ventricle were used.
Expression data were available from four or more sub-

jects in 86% of the 169 brain regions, and 53% of the
169 brain regions were represented by all six subjects.
Only four brain regions (2%) were represented by a sin-
gle subject. The median number of mRNA probes per
gene was 3. One gene was analyzed with only one probe
(ADORA2B) and one gene was analyzed with 89 probes
(CNR1). Probes were located on different exons as much
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as possible when multiple probes were used for a gene
(Allen Human Brain Atlas Technical White Paper: Micro-
array Survey).
The data were analyzed in Mathematica 9 (Wolfram

Research, Inc.). The mean expression values of each brain
region of each subject were obtained by averaging all
probes, and the inter-subject variability was assessed by
calculating the cross-correlations between all subject pairs
(15 correlations; the median values are given in Table 1).
Next, the overall mean values of each brain region were
obtained by averaging all available subjects, and the cor-
relations between all unique receptor pairs (4950) were
calculated. In all correlation calculations, all 169 brain re-
gions were used as the data points. For this sample size, a
correlation of ±0.16 is significant with p < 0.05 and a cor-
relation of ±0.34 is significant with p < 0.05/4950 (i.e., it is
significant after the Bonferroni correction for the multiple
tests).
In graph analyses, two receptors were considered to be

connected by an edge only if their correlation was signifi-
cant after the Bonferroni correction (i.e., if p < 0.05/4950)
and, additionally, if all Cook’s distances in the linear re-
gression model did not exceed 1.0 (to avoid the effect of
influential outliers).
Functional receptor communities were analyzed using

the modularity algorithm implemented in Mathematica
9 and the clique percolation method implemented in
CFinder (http://www.cfinder.org) and based on a pub-
lished algorithm [42].
The Mathematica notebooks are available in Additional

file 1 and Additional file 2.

Additional files

Additional file 1: The analysis of a single receptor. The code to
process the mRNA expression data of a single neurotransmitter receptor.

Additional file 2: The analysis of all receptors. The code to analyze
the mRNA expression associations among all neurotransmitter receptors.
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