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Differences in somatosensory processing due to
dominant hemispheric motor impairment in
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Abstract

Background: Although cerebral palsy (CP) is usually defined as a group of permanent motor disorders due to
non-progressive disturbances in the developing fetal or infant brain, recent research has shown that CP individuals
are also characterized by altered somatosensory perception, increased pain and abnormal activation of cortical
somatosensory areas. The present study was aimed to examine hemispheric differences on somatosensory brain
processing in individuals with bilateral CP and lateralized motor impairments compared with healthy controls.
Nine CP individuals with left-dominant motor impairments (LMI) (age range 5–28 yrs), nine CP individuals with
right-dominant motor impairments (RMI) (age range 7–29 yrs), and 12 healthy controls (age range 5–30 yrs)
participated in the study. Proprioception, touch and pain thresholds, as well as somatosensory evoked potentials
(SEP) elicited by tactile stimulation of right and left lips and thumbs were compared.

Results: Pain sensitivity was higher, and lip stimulation elicited greater beta power and more symmetrical SEP
amplitudes in individuals with CP than in healthy controls. In addition, although there was no significant differences
between individuals with RMI and LMI on pain or touch sensitivity, lip and thumb stimulation elicited smaller beta
power and more symmetrical SEP amplitudes in individuals with LMI than with RMI.

Conclusions: Our data revealed that brain processing of somatosensory stimulation was abnormal in CP
individuals. Moreover, this processing was different depending if they presented right- or left-dominant motor
impairments, suggesting that different mechanisms of sensorimotor reorganization should be involved in CP
depending on dominant side of motor impairment.
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Background
Cerebral palsy (CP) is defined as a group of permanent
motor disorders that are attributed to non-progressive
disturbances in the developing fetal or infant brain.
Nevertheless, it has been recently shown that CP could
be associated with somatosensory alterations, including
abnormal perception of touch and altered pain sensi-
tivity [1]. Indeed, research on somatosensory processing
has revealed that individuals with CP are characterized
by poor tactile discrimination, stereognosis and proprio-
ception [2-4], as well as increased pain [5] and abnormal
activation of cortical somatosensory areas [6]. Moreover,
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somatosensory parameters have been associated with
clinical measures of motor impairment in persons with
CP and other neurological pathologies such as multiple
sclerosis, spinal cord injuries and cerebrovascular acci-
dents [7-11]. Neuroimaging studies have also provided
evidence of significant alterations in white matter fibers
connecting to somatosensory cortex, suggesting that CP
injuries reflect a disruption of sensory as well as motor
pathways [12-14].
Although neurophysiological mechanisms involved in

altered processing of bodily information in CP are still
unknown, there is evidence of an abnormal sensori-
motor integration in hemiplegic CP [15], as it occurs in
other movement disorders such as Parkinson’ disease,
Huntington’s disease, dystonia, and tics [16-18]. Fur-
thermore, it is possible that motor reorganization in
ral Ltd. This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:pedro.montoya@uib.es
http://creativecommons.org/licenses/by/2.0


Riquelme et al. BMC Neuroscience 2014, 15:10 Page 2 of 9
http://www.biomedcentral.com/1471-2202/15/10
children with congenital hemiplegic CP occurs by preser-
ving motor representations of the affected arm in the in-
tact hemisphere. In this sense, studies with transcranial
magnetic stimulation (TMS) have provided evidence of
ipsilateral corticospinal projections from the undamaged
motor cortex to the affected hand [15,19-24]. Moreover, it
has been proposed that somatosensory deficits could be
due to secondary effects provoked by motor limitation
[25]. Thus, reduced and stereotypical pattern of sponta-
neous movements in patients with hemiplegic CP would
result in abnormal sensory feedback and altered cortical
reorganization, thus leading to asymmetric somatosensory
processing deficits [25,26]. A case study by Ragazzoni and
colleagues (2002) [27] has further showed that somatosen-
sory function of the affected (right) arm was preserved,
whereas motor function was poor despite fast-conducting
ipsilateral cortico-motoneuronal output from primary mo-
tor cortex of the intact hemisphere to the affected arm.
This finding seems to suggest that different forms of
motor and somatosensory reorganization are involved in
congenital brain injury, and that fast-conducting connec-
tions between primary cortex areas and ipsilateral spinal
cord are not sufficient for preservation or recovery of
function.
In the present study, we examined the effects of latera-

lized motor impairment on somatosensory brain pro-
cessing by using somatosensory evoked potentials (SEP)
in persons with bilateral CP. For this purpose, we
divided our sample into CP individuals with either right-
dominant dominant side of motor impairment (RMI) or
CP left-dominant side of motor impairment (LMI) to
test possible differences on propioception, touch and
pain sensitivity, as well as early SEP components elicited
by non-painful stimulation of lips and thumbs at each
dominant side of motor impairment. Furthermore, we
compared these CP individuals with a group of healthy
volunteers to quantify the impairments in somatosensory
processing due to cerebral palsy.

Methods
Participants
Thirty individuals with bilateral cerebral palsy (CP) were
recruited from educational and occupational centers
established in the island of Majorca (Spain), and invited to
participate in the study. Patients were classified according
with the criteria of the Surveillance of Cerebral Palsy in
Europe (SCPE, 2000) into the following categories: bila-
teral spastic (including diplegia and quadriplegia), dyski-
netic and ataxic. The diagnosis of spastic hemiplegia was
specifically excluded. The hand motor function of each
participant was assessed by using the House Functional
Classification [28]. Those CP individuals with no clear
asymmetric motor performance were also excluded from
the present study. Eighteen participants showing different
asymmetric motor performance were selected on the basis
of their scores for both hands in the House Functional
Classification (Table 1). The existence of an asymmetrical
brain damage in neuroimaging explorations was only con-
firmed in 33% of the cases by checking their health
records.
Individuals with CP were classified according to the

dominant side of motor impairments into two groups:
1) nine CP participants with dominant right-sided motor
impairment (RMI) (3 females; mean age: 18 y 3mo, range
5-28 y), and 2) nine CP with dominant left-sided motor
impairment (LMI) (3 females; mean age: 15 y 4mo, range
7-29 y). Table 1 displays clinical characteristics for each
group of participants. Subjects or their parents reported
their age and sex. Type of cerebral palsy, gestational age,
cognitive level, presence of epilepsy and medication were
obtained from participant’s health records. The level of
motor impairment was also determined by using the
Gross Motor Function Classification Scale (GMFCS) [29].
In addition, 12 right-handed healthy volunteers (3 fe-

males; mean age: 18 y 1 mo, range 5-30 y) were recruited
from educational centers and took part in the study.
All participants granted written informed consent

according with the Declaration of Helsinki. In the case
of children, parents were informed and their written
consent was obtained. The study was approved by the
Ethics Committee of the Regional Government of the
Balearic Islands (Spain).

Somatosensory assessment
Behavioral measures of somatosensory processing and
sensitivity were obtained by using following tasks:

Proprioception
Proprioceptive skills were assessed by asking parti-
cipants to perform unilateral movements of the upper
limb with eyes closed and to perform the same move-
ment with the contralateral limb. Each single movement
was repeated five times and the average number of
correct trials (defined as a movement with less than 10
degrees of difference with respect to the final position
of the target limb) was used as an index of propriocep-
tive skills. This procedure has been used successfully in
previous studies [2].

Touch
Touch sensitivity (expressed in g/mm2) was measured bi-
laterally at two body locations (lips and thumb finger) by
using von Frey monofilaments [30] with different diame-
ters (0.14-1.01 mm). The test was performed by touching
the skin in a perpendicular way with the monofilament,
pressing it slowly down until it buckles, holding it steady
during 1.5 seconds, and removing it in the same way
as it was applied. After several trials to assure the



Table 1 Clinical characteristics of individuals with cerebral palsy (R = right, L = left M = male, F = female, BS = bilateral
spastic, D = dyskinetic and A = ataxic)

Dominant
motor

impairment

HOUSE
right
hand

HOUSE
left
hand

CP
subgroup

Gestational
age (weeks)

GMFCS Mental
retardation

Epilepsy Medication Neuroimaging findings

R 2 6 BS 36 2 No Yes Antiepileptic Ventricular asymmetry in supratentorial
area, wide ventricular cavities

R 5 7 A 40 4 No No No Cortical atrophy with asymmetrical
subcortical damage in temporal lobes,
brainstem atrophy and hypoplasia

R 6 8 A 40 1 Moderate No No Collapsed lateral ventriculi,
periencephalic cavity in occipital and

posterior parietal areas

R 3 6 BS 28 2 No No No N/A

R 3 6 BS 40 1 No No No N/A

R 6 8 BS 40 1 Severe No Antidepressants N/A

R 1 4 A 40 2 Severe Yes No N/A

R 6 8 BS 40 1 Moderate No No N/A

R 3 6 BS 32 2 No No No N/A

L 4 1 BS 20 4 Mild Yes Antiepileptic N/A

L 7 5 BS 24 1 No No Musc. relaxant Asymmetry in Rolando cortex with
periventricular cyst in left hemisphere

L 7 5 BS 40 2 Moderate Yes Antiepileptic Corpus callosum and formix
hypoplasia, septum pellucidum cyst,
diffuse cortical atrophy, abnormal EEG

activity in left parietal lobe

L 7 5 BS 41 3 No No No N/A

L 8 6 BS 31 3 Mild No Antidepressants Leukomalacia with dilatation of
left temporal lobe

L 8 5 BS 40 3 No Yes Antiepileptic N/A

L 8 6 BS 40 1 Moderate No No N/A

L 4 0 BS 40 3 Moderate No No N/A

L 6 3 D 42 5 No Yes Antidepressants N/A
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understanding of the procedure, subjects were instructed
to notify the experimenter if they felt any sensation of
touch by saying “yes” or “no”. The procedure started with
a thick filament and depending on subjects’ answers,
thicker or thinner filaments were applied. The sensitivity
score for each body location was calculated as the mean of
the three thinnest filaments detected. Null stimuli were
also used to find false positive responses and responses
delayed more than 3 seconds were noted as abnormal.
Body locations were stimulated in a pseudo-randomized
order.

Pressure pain
Pressure pain thresholds (expressed in kgf/cm2) were
measured with a digital dynamometer and using a flat
rubber tip (1 cm2). Subjects were asked to say ‘pain’ or to
make a significant gesture when the pressure became
painful. Pressure was released when either pain detection
threshold or maximum pressure of the algometer
(13.0 kgf/cm2) was reached. Pressure stimuli were applied
bilaterally in pseudo-randomized order at two body loca-
tions (lips and thumb finger). Subjects were previously
familiarized with the procedure by using non-painful
ranges to relieve potential anxiety. The reliability of this
procedure for assessing pain sensitivity has been demon-
strated in previous studies [31].

EEG recording and data processing
Somatosensory evoked-potentials (SEP) elicited by tactile
stimulation of four body locations (right lip, left lip, right
hand and left hand) were recorded in a sound attenuated,
semi-darkened room. Subjects were seated in a reclining
chair and encouraged to relax and to keep their eyes
closed. In younger children, mother was allowed to re-
main in the room if the child was anxious. Non-painful
tactile computer-controlled impulses were delivered bila-
terally at the body locations by using a pneumatic stimula-
tor, consisting of a small membrane attached to the body
surface by a plastic clip and fixated with adhesive strips.
Each stimulation block consisted of 120 stimuli of 100 ms
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duration with an approximate pressure of 2 bars and a
variable inter-stimulus interval of 1000 ± 50 ms. The order
of the stimulation blocks was counterbalanced across sub-
jects. Similar tactile stimulation has been already used in
previous research of our lab to study somatosensory pro-
cessing in persons with CP [6]. Electrical brain activity
was recorded by using a 20-channels EEG amplifier with
electrodes located according with the international 10/20
system and referenced to Cz. Vertical electrooculograms
(EOG) were recorded bipolarly from the outer canthi of
both eyes. Electrode impedance was kept below 10 kOhm.
Sampling rate was set at 1000 Hz and filter bandpass at
0.1-40 Hz. A digital signal from the tactile stimulation
device was used as a trigger for SEP acquisition. SEPs were
averaged relative to a 100-ms prestimulus baseline. Eye
movement artifacts were corrected by using Gratton &
Coles algorithm [32]. An artifact rejection protocol was
applied with following criteria: 75 μV as maximal allowed
voltage step/sampling point, ±75 μV as minimum and
maximum allowed amplitudes, and 75 μV as maximum
allowed absolute difference. Individual averages were ob-
tained for each body location and electrode location. One
subject of the RMI group had to be eliminated from all
analyses because their EEG recordings did not meet spe-
cified criteria. In addition, three subjects from the RMI
group and one from the LMI were eliminated from those
analyses involving either stimulation of thumbs (two sub-
jects) or lips (two subjects) due to excessive artifacts in
those conditions.
Within the first 150-ms interval, SEPs elicited by non-

painful tactile stimuli are usually characterized by a
prominent positive peak around 50 ms (P50), followed
by a second positive peak around 100 ms after stimulus
onset (P100) [6,33,34]. Although both peaks were clearly
observable after thumb stimulation in our grand ave-
rages, peak detection was difficult in CP individual SEP
averages and, therefore, mean amplitudes were com-
puted in two time-windows: 20–70 ms and 70–120 ms
after stimulus onset. Moreover, event-related brain os-
cillations elicited by somatosensory stimuli were ana-
lyzed by computing the relative increases or decreases
of each frequency power with respect to the baseline
interval (100 ms before stimulus onset). Time-frequency
analyses of evoked power were computed by using a
Mortlet wavelet (width 7 cycles) by convolution in the
frequency domain on single trials in the time-windows
20–70 ms and 70–120 ms after stimulus onset. An aver-
age absolute power value was calculated separately for
each electrode and following frequency bands: theta
(4–8 Hz), alpha (8–12 Hz), and beta (12–20 Hz).

Statistical analyses
Differences on somatosensory processing were analyzed
by comparing CP individuals, as a whole, with healthy
controls, as well as by comparing CP individuals
grouped according to the dominant side of motor
impairments (LMI vs. RMI). Group differences on pro-
prioception measures were computed with non-parame-
trical mean comparisons. Differences on touch and pain
thresholds were tested by using analyses of variance
(ANOVAs) for repeated measures with a between-
subject factor GROUP and a within-subject factor
BODY SIDE (stimulation at left vs. right body side). SEP
amplitudes and frequency power spectra of somatosen-
sory-evoked oscillations over centro-parietal electrodes
(C3, C4, P3, P4) were analyzed by ANOVA with the
between-subject factor GROUP, as well as the within-
subject factors BODY SIDE and HEMISPHERE (con-
tralateral vs. ipsilateral to stimulation side). For all
analyses, interaction effects were assessed by using
post-hoc mean comparison tests provided by the
ANOVA procedure in SPSS.

Results
Comparison between individuals with cerebral palsy (CP)
and healthy controls
Somatosensory assessment
Figure 1 displays mean scores of touch and pain sen-
sitivity at the lip and thumb for healthy controls and
CP individuals grouped by dominant side of motor
impairment (right- [RMI] vs. left-sided motor impair-
ment [LMI]). Statistical analyses revealed that healthy
controls had higher pain thresholds than CP indivi-
duals in lips (F(1,26) = 21.7, p < .001) and in thumbs
(F(1,25) = 8.1, p < .01). No significant group differences
were found on touch sensitivity or proprioceptive
skills.

Amplitude analyses of somatosensory evoked potentials
Somatosensory evoked potentials (SEPs) elicited by
stimulation of lips and thumbs were characterized in
healthy controls by a positive peak between 20 and
70 ms after stimulus onset (P50), which was followed
by a second positive deflection between 70 and 120 ms
(P100). The scalp topography of both components in
healthy controls indicated that they were more prominent
over centro-parietal and parietal regions of the hemi-
sphere contralateral to the stimulation side than over the
ipsilateral hemisphere (Figure 2).
For lip stimulation, a significant GROUP x BODY

SIDE x HEMISPHERE effect (F(1,25) = 4.5, p < .05) was
yielded on mean SEP amplitudes in the time-window
20–70 ms. Post-hoc mean comparisons showed an
asymmetrical somatosensory processing in healthy con-
trols (higher amplitudes over the right than over the left
hemisphere when left lip was stimulated) (p < .05),
whereas no brain asymmetries were observed in CP
individuals. However, SEP amplitudes in the time-



Figure 1 Touch and pain sensitivity at lips and thumbs in healthy individuals and CP individuals with right- (RMI) and left-dominant
motor impairments (LMI).
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window 70–120 ms were overall higher over the
contralateral than over the ipsilateral hemisphere
(F(1,25) = 11.0, p < .01).
For thumb stimulation, no significant effects were ob-

served on SEP amplitudes in none of the two time-
windows (20–70 ms and 70–120 ms).
Figure 2 Somatosensory evoked potentials (SEPs) elicited by stimulat
hemispheres in healthy individuals, CP individuals with right- (RMI) a
Time-frequency analyses of somatosensory evoked
oscillations
Temporal changes in power spectra of the somatosen-
sory evoked oscillations elicited by stimulation of lips
and thumbs are shown in Figure 3 over the contralateral
and ipsilateral hemispheres.
ion of lips and thumbs over contralateral and ipsilateral
nd left-dominant motor impairments (LMI).



Figure 3 Time-frequency power of somatosensory evoked oscillations elicited by stimulation of lips and thumbs over contralateral and
ipsilateral hemispheres in healthy individuals and CP individuals with right- (RMI) and left-dominant motor impairments (LMI).
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For lip stimulation, no significant effects were found
on theta, alpha, and beta band power in the time-
window 20–70. Nevertheless, CP individuals exhibited
higher beta power than healthy controls in the time-
window 70–120 ms (F(1,27) = 8.7, p < .01). Moreover, a
significant GROUP x BODY SIDE interaction effect was
found (F(1,27) = 9.0, p < .01), indicating that right lip
stimulation elicited higher beta power in CP individuals
than in healthy controls (p < .01), and that healthy con-
trols displayed higher beta power when the left lip was
stimulated as compared with the right lip (p < 05).
For thumb stimulation, a significant HEMISPHERE ef-

fect (F(1,27) = 4.9, p < .05) showed overall higher beta
power over the contralateral than over the ipsilateral
hemisphere in the time-window 20–70 ms. No signifi-
cant effects were found on beta, alpha and theta band
power in the time-window 70–120 ms.

Comparisons between CP individuals with right- (RMI) vs.
left-dominant motor impairments (LMI)
Somatosensory assessment
No significant effects of GROUP (RMI vs. LMI), BODY
SIDE or GROUP x BODY SIDE were found on touch or
pain sensitivity measures. No significant group differ-
ences were found on proprioceptive skills.

Amplitude analyses of somatosensory evoked potentials
For lip stimulation, CP individuals with RMI displayed
higher SEP amplitudes than CP individuals with LMI in
the time-window 20–70 ms (F(1,15) = 9.9, p < .01).
Furthermore, a significant GROUP x HEMISPHERE
interaction effect (F(1,15) = 4.9, p < .05) indicated that
CP individuals with RMI yielded higher SEP amplitudes
over the contralateral than over the ipsilateral hemi-
sphere (p < .05), whereas no hemispheric differentiation
appeared in CP individuals with LMI. In addition, a
significant HEMISPHERE effect in the time-window
70–120 ms (F(1,15) = 4.7, p < .05) indicated higher SEP
amplitudes over the contralateral than over the ipsila-
teral hemisphere in all CP participants.
For thumb stimulation, a significant GROUP effect re-

vealed higher SEP amplitudes in RMI than in LMI indi-
viduals in the time-window 70–120 ms (F(1,14) = 7.8,
p < .05). Moreover, a significant GROUP x BODY SIDE
interaction effect was found (F(1,14) = 7.5, p < .05).
Post-hoc mean comparisons revealed that right thumb
stimulation elicited higher SEP amplitudes in RMI than
in LMI individuals (p < .01), and that RMI individuals
showed higher SEP amplitudes when right thumb was
stimulated compared with left thumb stimulation (p < .05).
No significant effects were observed on SEP amplitudes in
the time-window 20–70 ms.

Time-frequency analyses of somatosensory evoked
oscillations
For lip stimulation, no significant effects were found on
beta, alpha and theta band power in none of the time-
windows (20–70 ms and 70–120 ms).
For thumb stimulation, a significant GROUP x HEMI-

SPHERE interaction effect was observed on beta band
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power in the time-window 20–70 ms (F(1,15) = 5.6,
p < .05). Post-hoc comparisons indicated higher beta
power over the contralateral than over the ipsilateral
hemisphere in CP individuals with RMI (p < .05), whereas
no significant differences were observed in CP individuals
with LMI. No significant effects were found on beta, alpha
and theta band power in the time-window 70–120 ms.

Discussion
This study was aimed to evaluate the effects of lateralized
motor impairment on somatosensory perception and
brain processing of non-painful tactile stimulation in in-
dividuals with bilateral cerebral palsy (CP). Our findings
revealed that although individuals with CP exhibited lower
pain sensitivity than healthy controls, there were no sig-
nificant differences on touch sensitivity, pain sensitivity or
proprioception between CP individuals with right- (RMI)
and left-dominant motor impairments (LMI). Regarding
somatosensory brain processing, we found that lip sti-
mulation elicited higher beta power, but more similar SEP
amplitudes over the contra- and the ipsilateral hemi-
spheres in CP individuals than in healthy controls. More-
over, lip and thumb stimulations elicited smaller and more
symmetrical SEP amplitudes, as well as reduced beta
power (only for thumb stimulation) in CP individuals with
LMI than in CP individuals with RMI.
Thus, our results revealed an altered somatosensory

processing in individuals with CP, as measured by SEP
amplitudes and frequency power. The pattern of brain
activation displayed by our individuals with CP after
stimulation of thumbs and lips seems to be different from
that observed in healthy controls. Reduced beta power
and enhanced SEP amplitudes over somatosensory cor-
tices have been observed in healthy controls following
somatosensory stimulation, suggesting that these changes
might be interpreted as an activation of cortical networks
involved in somatosensory processing [35]. In the present
study, healthy individuals showed a desynchronization in
the beta frequency band in response to touch stimulation
of lips and thumbs. In contrast, our individuals with CP
appeared to display an increased beta power over the
contralateral hemisphere, particularly in CP individuals
with RMI. These findings are in agreement with previous
studies showing that, although CP is mainly characterized
by motor impairments, brain processing of incoming som-
atosensory information is also significantly altered in this
pathology. Thus, for instance, neuroimaging research has
found that children with periventricular leukomalacia
show more severe injury in posterior white matter fibers
connecting the thalamus to the sensory cortex than in de-
scending corticospinal tracts [14]. Moreover, it has been
demonstrated that deficits on somatosensory processing
(reduced touch sensitivity, proprioception and strength)
in CP could be related to injury severity of diffuse
thalamocortical projections to somatosensory and parietal
cortices [26]. In this sense, our results provide further
empirical evidence for an abnormal brain processing of
bodily information in CP individuals.
Motor function seems to be often asymmetric in CP,

even in individuals with bilateral lesions [36-38]. This
asymmetry has been reported by using physiological mea-
sures such as nerve conduction velocities or dichotic lis-
tening processing [39,40]. In the present study, we found
significant differences on the pattern of hemispheric brain
activation elicited by somatosensory stimulation depen-
ding on the dominant side of motor impairment. In this
sense, participants with RMI displayed enhanced res-
ponses to bodily stimulation over contralateral as com-
pared to ipsilateral hemispheres, whereas individuals with
LMI showed no hemispheric differences. Moreover, CP
subjects with RMI showed higher SEP amplitudes when
the affected side of the body was stimulated, while no dif-
ferences on brain activation were found in LMI when the
right or left body side was stimulated. In a previous study
of our lab [6], we have shown that CP children and adults
elicited higher SEP amplitudes in contralateral hemisphere
when left dominant side of motor impairment was stimu-
lated as compared to right dominant side of motor impair-
ment. Thus, it seems that CP individuals with left- and
right-dominant motor impairments differ on brain pro-
cessing of lateralized bodily information. An unusual pat-
tern of bilateral cortical activation and recruitment of
ipsilateral tracts have been usually linked to widespread
cortical reorganization after brain lesions [41-44]. More-
over, our findings are in agreement with previous studies
showing that motor impairments are different depending
on the paretic dominant side of motor impairment after
unilateral CP lesions. Thus, for instance, Van Kampen and
colleagues [45] reported that children with left hemipa-
resis had longer decision time when asked to intercept a
ball located 4 meters away and started their reach move-
ment earlier than healthy controls and children with right
hemiparesis. In addition, Craje and colleagues [46] ob-
served that participants with right hemiparesis had more
difficulties in switching between different grip types than
participants with left hemiparesis. Our findings are also in
agreement with previous data showing that bilaterally im-
paired CP children with spastic diplegia displayed higher
intrahemispheric coherence for delta, beta and theta EEG
bands in the left than in the right hemisphere [47]. In our
opinion, all these results support the view that brain da-
mage to right or to left hemisphere may have led to differ-
ent plasticity mechanisms in cerebral palsy. In the present
study, we observed that CP individuals with RMI dis-
played an asymmetrical pattern of brain activity more
similar to that exhibited by healthy controls [48] than that
of individuals with LMI. One possible explanation for
these differences could be that damage of the left
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hemisphere releases the right hemisphere from its non-
dominant role, while damage of the right hemisphere only
emphasizes the usual role of the left hemisphere. Thus, for
example, due to the dominant role of the left somatosen-
sory cortex in sensorimotor integration for complex finger
movements [49], damage of this hemisphere may have
lead to a contralateral directed plasticity phenomenon in
CP individuals with RMI. Nevertheless, further research
should be necessary to elucidate the role of hemispheric
dominance on somatosensory processing in CP individuals
and the potential mechanisms of this differentiation.
Our study has some limitations, which should be taken

into account for the interpretation of the results. Firstly,
although our sample of persons with CP seems to be re-
presentative of a large population in the community,
sample was small and heterogeneous. Thus, it could be
that our sample size was not sufficient to reach an appro-
priate statistical power and to show differences between
individuals with LMI and RMI on behavioral measures of
somatosensory processing. In addition, the wide range of
age, cognitive levels and underlying brain lesions as well
as the presence of different subtypes of CP, have also li-
mited the conclusions of the study. Moreover, it is possible
that CP individuals may have been developing a left hemi-
spheric dominance before their lesion. Nevertheless, the
early onset of this pathology (in most cases, with a pre-
natal beginning) minimizes the influence of a possible left-
hemispheric dominance development in comparison with
several years of brain reorganization in the childhood and
adolescence. On the other hand, the study should be repli-
cated in hemiparetic CP individuals with clear and limited
brain lesions. Finally, somatosensory-evoked potentials
provide information from brain functioning arising from
sensory cortices and, therefore, the influence of subcor-
tical brain structures in somatosensory processing remains
unexplored. Nevertheless, our study lays the scientific
basis for implementation of further research on a scarcely
investigated topic.

Conclusion
Our findings suggest a different somatosensory cortical
organization in participants with CP associated with asym-
metrical motor impairments. Given that activity-dependent
plasticity plays a key role in the evolution of clinical signs
linked to motor dysfunctions in CP [42] and that training
and rehabilitation interventions that target these maladap-
tive brain changes have already shown beneficial effects in
several sensory and motor disorders [50], further research
must elucidate the mechanisms of plastic changes asso-
ciated to motor impairments in CP and relate them to spe-
cific rehabilitation interventions for these individuals.
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