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Lesion studies suggest that episodic memories are initially
stored in the hippocampus, but are then transferred to
cortex where a long-term memory trace is stored. This
suggests that in the hippocampus, memories have to be
acquired in one shot, while in cortex, they are acquired
slowly over multiple repetitions. In the present work, we
study the memory capacity of networks that have to
acquire memories either in one shot, or through multiple
presentations.

To allow for analytical tractability we used networks of N
binary neurons connected with binary synapses. Stochastic
Hebbian-type synaptic plasticity occurs upon pattern pre-
sentation, and two parameters q+ and q- control the
amounts of potentiation and depression, as in [1,2]. Stored
patterns are random, sparse and uncorrelated, and are
characterized by a coding level f that scales as In N/N. In
the hippocampal-like condition (H), the network is pre-
sented a flow of patterns that appear only once. In the cor-
tical-like condition (C), a set of P patterns is repeatedly
presented. The storage capacity was defined as the maxi-
mal number of patterns that can be stabilized as fixed-
point attractors of the network. We computed this storage
capacity of networks under (H) or (C) conditions, allowing
us to find parameters (f, g+, q-, and the threshold of neu-
rons) that optimize storage. In both cases, the maximal
number of stored patterns scales as N*2/(In N)*2, with a
prefactor that we compute explicitly. The capacity can also
be expressed in terms of information stored per synapse
(in bits) Imax, which is finite in the large N limit. Under
condition (H), the model is the one studied in [1], we find
Imax = 0.053 bits/synapse in the large N limit. This num-
ber is lower than the capacity for the Willshaw model
(0.264)[3,4] and the Gardner bound (0.29)[5,6]. This loss in
capacity is the price to pay for the palimpsest property. In
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the cortical-like condition, the capacity was computed in
the slow learning regime (q+, q- small, cf [2]) and we
found that information capacity is optimized if the effects
of depression are minimal. In this condition, the informa-
tion capacity is shown to be equal to the one of the
Willshaw model, and is therefore very close to the Gardner
bound. We then proceed to study finite-size effects, and
show that these effects are of order (In(ln N)/In N)*1/2,
and are therefore very large even in networks of realistic
sizes (e.g. 10"5). We find that the capacity for networks of
sizes of order 1074-1076 are only 50-60% the capacity in
the large N limit. Analytical results are shown to be in very
good agreement with simulations up to sizes N = 40,000.

Overall, we find that the capacity of networks of bin-
ary neurons and binary synapses with the simplest sto-
chastic learning rule is surprisingly close to the
theoretical capacity limits.
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