BMC Neuroscience

POSTER PRESENTATION

Open Access

Linking neural mass signals and spike train statistics through point process and linear systems theory

Moritz Deger^{1*}, Arvind Kumar², Ad Aertsen², Stefan Rotter²

From Twenty Second Annual Computational Neuroscience Meeting: CNS*2013 Paris, France. 13-18 July 2013

The relation between neural mass signals, like local field potentials (LFP) or electro-encephalograms (EEG), and the spiking activity of neurons in a network is still poorly understood. Recently, linear temporal filters have been used to map multi-unit activity (MUA) to LFP signals recorded at the same electrode [1]. Similar kernels have been previously identified relating simulated network activity to the human EEG [2]. However, currently there are no theoretical/computational models to explain the form of these filters that map MUA to LFP or EEG.

Here we studied the relation between MUA and LFP in a minimal network model of the neocortex. Using simplified statistical models of neurons [3,4], the firing rate response of neuronal populations to time-dependent inputs can be characterized as that of a high pass filter. At the same time, the LFP recorded in the neocortex can be interpreted as a measure of the summated synaptic input to the population of nearby neurons [5], filtered by the neuronal membranes and the recurrent network [6]. Combining these various filter operations, we arrive at the forward model (LFP to MUA) of a band-pass filter, which can be inverted to predict the LFP from the MUA. Our results explain the form of the experimentally obtained kernels [1] and provide insight into the encoding of a stimulus by local neuronal populations. Furthermore, our theory explains characteristic properties of the neocortical LFP, solely based on effective neuronal refractoriness, membrane filtering and recurrent connectivity.

Acknowledgements

This work was partially funded by BMBF Grant No. 01GQ0420 to BCCN Freiburg.

Author details

¹School of Life Sciences, Brain Mind Institute and School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, 1015 EPFL, Switzerland. ²Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.

Published: 8 July 2013

References

- Rasch M, Logothetis NK, Kreiman G: From neurons to circuits: linear estimation of local field potentials. J Neurosci 2009, 29:13785-13796.
- Meier R, Kumar A, Schulze-Bonhage A, Aertsen A: Comparison of dynamical states of random networks with human EEG. Neurocomputing 2007, 70:1843-1847.
- Deger M, Helias M, Boucsein C, Rotter S: Statistical properties of superimposed stationary spike trains. J Comput Neurosci 2012, 32:443-463.
- Deger M, Helias M, Cardanobile S, Atay FM, Rotter S: Nonequilibrium dynamics of stochastic point processes with refractoriness. Phys Rev E 2010. 82:021129
- Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT: Modeling the spatial reach of the LFP. Neuron 2011, 72:859-872.
- Kriener B, Tetzlaff T, Aertsen A, Diesmann M, Rotter S: Correlations and population dynamics in cortical networks. *Neural Comput* 2008, 20:2185-2226.

doi:10.1186/1471-2202-14-S1-P330

Cite this article as: Deger et al.: Linking neural mass signals and spike train statistics through point process and linear systems theory. BMC Neuroscience 2013 14(Suppl 1):P330.

Full list of author information is available at the end of the article

^{*} Correspondence: moritz.deger@epfl.ch

¹School of Life Sciences, Brain Mind Institute and School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, 1015