

POSTER PRESENTATION

Open Access

Mutual information density of stochastic integrate-and-fire models

Davide Bernardi^{1,2*}, Benjamin Lindner^{1,3}

From Twenty Second Annual Computational Neuroscience Meeting: CNS*2013 Paris, France. 13-18 July 2013

The coherence function of integrate-and-fire neurons shows low-pass properties in the most diverse firing regimes [1]. While the coherence function provides a good approximation to the full information transfer properties in the case of a weak input, for a strong input non-linear encoding could play an important role. The complete information transfer is quantified by Shannon's mutual information rate [2] which has been estimated in certain biological model systems [3]. In general, the exact analytical calculation of the mutual information rate is unfeasible and even the numerical estimation is demanding [4].

Numerical calculation of the mutual information rate is now a commonly adopted practice, but it does not indicate what aspects of the stimulus are best represented by the neuronal response. We developed a numerical procedure to directly calculate a frequency-selective version of the mutual information rate. This can be used to study how different frequency components of a Gaussian stimulus are encoded in neural models without invoking a weak-signal paradigm.

- Shannon C: A Mathematical Theory of Communication. The Bell System Technical Journal 1948, 27:379-423, 623-656.
- Strong SP, Koberle R, de Ruyter van Steveninck R, Bialek W: Entropy and Information in Neural Spike Trains. Phys Rev Lett 1998, 80(1):197-200.
- Panzeri S, Senatore R, Montemurro MA, Petersen RS: Correcting for the sampling bias problem in spike train information measures. J Neurophysiol 2007, 98(3):1064-1072.

doi:10.1186/1471-2202-14-S1-P245

Cite this article as: Bernardi and Lindner: Mutual information density of stochastic integrate-and-fire models. *BMC Neuroscience* 2013 14(Suppl 1): P245.

Acknowledgements

This work was funded by the BMBF (FKZ: 01GQ1001A).

Author details

¹Bernstein Center for Computational Neuroscience, Berlin 10115, Germany. ²Department of Physics, Freie Universität Berlin, Berlin, Berlin 14195, Germany. ³Department of Physics, Humboldt-Universität zu Berlin, Berlin, Berlin 12489, Germany.

Published: 8 July 2013

References

 Vilela RD, Lindner B: A comparative study of different integrate fire neurons: spontaneous activity, dynamical response, and stimulusinduced correlation. Phys Rev E 2009, 80:031909.

¹Bernstein Center for Computational Neuroscience, Berlin 10115, Germany Full list of author information is available at the end of the article

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

^{*} Correspondence: dbernard@zedat.fu-berlin.de