POSTER PRESENTATION

Open Access

Analytical results for integrate-and-fire neurons driven by dichotomous noise

Felix Droste^{1,2*}, Benjamin Lindner^{1,2}

From Twenty Second Annual Computational Neuroscience Meeting: CNS*2013 Paris, France. 13-18 July 2013

Models of the integrate-and-fire type have been widely used in the study of neural systems [1]. Usually, they consist of an evolution equation for the neuron's membrane voltage, complemented by a fire-and-reset rule that is applied once a voltage threshold is crossed. This minimalist description has allowed impressive analytical insights, for instance into neuronal information transmission properties [2], the effect of input correlations [3], or the dynamics of whole networks [4]. Further, it can be readily extended to include more complex behavior, such as spike-frequency-adaptation [5], which can then be studied in a well-understood setting.

The synaptic input to the neuron is usually modeled as a sequence of spikes with stochastic arrival times; mathematically speaking, it is a Poisson process where each event is a delta spike (shot noise). As such discrete

* Correspondence: felix.droste@bccn-berlin.de

¹Bernstein Center for Computational Neuroscience, Berlin, 10115, Germany

Full list of author information is available at the end of the article

© 2013 Droste and Lindner, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

input is notoriously difficult to treat analytically (but see [6]), many studies have employed the so called diffusion approximation, modeling the massive synaptic bombardment as Gaussian white noise.

Here, we consider a general integrate-and-fire neuron that is driven by dichotomous noise, i.e. input that switches stochastically between two levels (cf. Figure 1A, see [7] for a similar setup). Input of this kind is of interest because it is temporally correlated, in contrast to the white noise often used. Also, when switching rates are asymmetric, it converges to excitatory shot noise in the limit of small correlation time. Further, it can model the switching between up and down-states of presynaptic network activity, or bursting activity of a presynaptic neuron.

We derive analytical expressions for firing-rate, CV and the steady-state voltage distribution of this system and verify them by numerical simulation. Furthermore, we study the transmission of a weak signal through such a neuron.

Acknowledgements

This work was supported by Bundesministerium fuer Bildung und Forschung grant 01GQ1001A and the research training group GRK 1589 *"Sensory* Computation in Neural *Systems"*.

Author details

¹Bernstein Center for Computational Neuroscience, Berlin, 10115, Germany. ²Institute for Physics, Humboldt-Universität zu Berlin, Berlin, 12489, Germany.

Published: 8 July 2013

References

- Burkitt AN: A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 2006, 95(1):1-19.
- Lindner B, Schimansky-Geier L: Transmission of noise coded versus additive signals through a neuronal ensemble. *Phys Rev Lett* 2001, 86(14):2934-2937.
- 3. De La Rocha J, et al: Correlation between neural spike trains increases with firing rate. *Nature* 2007, **448(7155)**:802-806.
- Brunel N: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comp Neurosci 2000, 8(3):183-208.
- Liu, Ying-Hui, Xiao-Jing Wang: Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. J Comp Neurosci 2001, 10(1):25-45.
- Richardson MJE, Swarbrick R: Firing-rate response of a neuron receiving excitatory and inhibitory synaptic shot noise. *Phys Rev Lett* 2010, 105(17):178102.
- Salinas E, Sejnowski TJ: Integrate-and-fire neurons driven by correlated stochastic input. Neural Comput 2002, 14(9):2111-2155.

doi:10.1186/1471-2202-14-S1-P243

Cite this article as: Droste and Lindner: Analytical results for integrateand-fire neurons driven by dichotomous noise. *BMC Neuroscience* 2013 14(Suppl 1):P243.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit