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Correlated neural activity is a known feature of the brain
[2] and evidence increases that it is closely linked to infor-
mation processing [1]. In our recent work we have shown
how to map different network models, including binary
networks, onto linear dynamics [4]. For binary neurons
the mean-field approach takes random fluctuations into
account to accurately predict the average activity in such
networks [5]. Expressions for covariances follow from a
master equation [3]. Binary neurons with a Heaviside gain
function are inaccessible to the classical treatment [3].
Based on our earlier preliminary results [6] here we show
how random fluctuations generated by the network
effectively linearize the system of binary neurons, includ-
ing the case of the Heaviside gain function, and how they

implement a self-regulating mechanism which renders
population-averaged covariances independent of the
synaptic coupling strength. Figure 1A, B illustrate this
invariance.

The mechanism is based on the increase of fluctuations
in the input signal in proportion to the synaptic weight.
The fluctuations cause portions of the gain function with
smaller slope to be visited more frequently, effectively
reducing the transmission gain. This keeps the linearized
system away from instability, with the eigenvalues of its
effective connectivity matrix bounded by a constant less
than unity (see Figure 1C). Although of local origin the
mechanism controls global features of the network
dynamics.
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Figure 1 A Zero time-lag cross covariance averaged over pairs of excitatory (black) and inhibitory (light gray) cells and of one
excitatory and one inhibitory neuron (gray) in simulation (dots) and theory (lines). B Cross covariance functions averaged as in A (same
gray code) obtained from simulations at one coupling strength. Crosses show the analytical prediction. C Set of eigenvalues of a random
connectivity matrix after linearization (black dots) with the corresponding spectral radius (gray circle) and the maximum radius for any synaptic

strength (light gray circle).
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