

POSTER PRESENTATION

Open Access

Decision-making out of neural events: from discrimination information to psychometric power laws

Javier A Caballero*, Nathan Lepora, Kevin N Gurney

From Twenty Second Annual Computational Neuroscience Meeting: CNS*2013 Paris, France. 13-18 July 2013

The strength/intensity of the stimulus in the random dot motion task (RDMT) [1] is determined by the percentage of dots in the kinematogram moving towards a saccadic target, a. Due to the uncertainty in the stimuli, neurons in sensory systems have evolved to transform environmental information, comprising evidence upon which a decision can be made (e.g. saccading to a). The neurons in the middle-temporal area (MT) appear to produce such evidence during the RDMT, given their tuning to a 'preferred' direction of visual motion. If the dots move predominantly in the preferred direction of an MT neuron, it generates inter-spike intervals (ISI) supporting a saccade to a. These ISIs seem randomly sampled from a distribution, f_a , with mean, μ_a . Otherwise, the ISIs follow another distribution, f_b , with mean, μ_b , where μ_b is larger than μ_a and this difference increases with stimulus strength. The accuracy vs motion-strength function of an ideal observer provided with empirical distributions like f_a and f_b , from a single MT neuron, approximates the subject's psychometric function (at the behavioral level) [1]. The distributions f_a and f_b are nonnegative, positively skewed and have a mode larger than 0 (figure 1A), as is typical for neural events recorded in many brain areas. Here we investigate why this is advantageous for decision-making. As theoretical decisionmaking units, we produced 5 new instantiations of the multi-hypothesis sequential probability ratio test (MSPRT) [2]. Each unit assumes its stream of input evidence to follow 1 of 5 probability density functions (PDF) whose compatibility with the empirical distribution of ISIs varies (figure 1A). These include the Inverse Gaussian, Lognormal, Gamma, Inverse-Gamma and Exponential

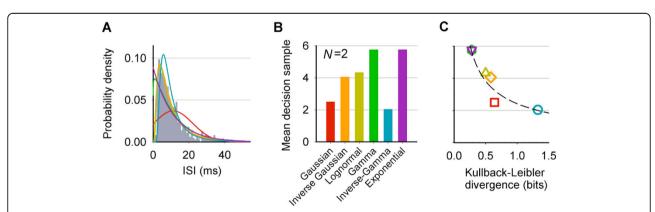


Figure 1 (A) PDFs of interest fitted to ISIs (grey bars) recorded in [1] from the MT during the RDMT. (B) mean decision sample for each MSPRT realisation (accuracy 95% over 1000 trials). (C) the values in (B) vs the fa to fb KLD. The dashed line is a fitted power law. All colour coding as in panel (B).

^{*} Correspondence: j.caballero@shef.ac.uk Department of Psychology, The University of Sheffield, Sheffield, S10 2TN, UK

PDFs (the latter is the distribution of the inter-event times in the oft-used Poisson process). Under equal and appropriate conditions, we then compared their mean decision sample with that of an MSPRT instantiation that assumes Gaussian inputs proposed in [3] and discussed in general in [4], as exemplified in figure 1B. The mean decision sample is the mean number of observations required by a unit to identify which of N parallel information sources supports saccading to a, with a given accuracy. This decision sample is a model of the 'neural decision time'; the psychophysical reaction time also includes sensory and motor delays. The pattern of our results is explicable using a measure of the discrimination information between f_a and f_b , i.e. the Kullback-Leibler divergence (KLD). We found that, the mean decision sample decreases with increasing f_a to f_b KLD and, crucially, this follows a power law (figure 1C). At the behavioral level, Piéron [5] reported the mean reaction time to the presentation of a stimulus (go/no-go decision-making) being shorter for more intense stimuli, and that a power law relates these measures. The universality of Piéron's law indicates that it can inform us of something fundamental about sensorimotor decision-making. Our results suggest that its explanation could lie in the power law relationship between the mean neural decision time and the discrimination information (KLD) among the distributions of sensory evidence.

Acknowledgements

This work was sponsored by the Mexican National Science and Technology Council (CONACyT).

Published: 8 July 2013

References

- Britten KH, Shadlen MN, Newsome WT, Movshon JA: The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 1992, 12:4745-4765.
- Baum C, Veeravalli V: A sequential procedure for multihypothesis testing. IEEE Trans Inf Theory 1994, 40:1994-2007.
- Bogacz R, Gurney K: The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput 2007, 19:442-477.
- Lepora NF, Gurney KN: The basal ganglia optimize decision making over general perceptual hypotheses. Neural Comput 2012, 24:2924-2945.
- Piéron H: II. recherches sur les lois de variation des temps de latence sensorielle en fonction des intensités excitatrices. L'année psychologique 1913, 20:17-96.

doi:10.1186/1471-2202-14-S1-P153

Cite this article as: Caballero *et al.*: Decision-making out of neural events: from discrimination information to psychometric power laws. *BMC Neuroscience* 2013 **14**(Suppl 1):P153.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

