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Brain function depends on populations of neurons that
perform computations on perceptually and behaviorally
relevant variables. One of the main goals of neu-
roscience is to understand how the responses of popula-
tions of neurons and the connectivity patterns between
groups of neurons allow brains to perform a wide range
of neural computations. The Neural Engineering Frame-
work (NEF) is a promising approach to designing neural
models that perform many neural computations [1,2].
The central thesis behind the NEF is that populations of
neurons represent, and perform computations on, low-
dimensional time-dependent variables. By characterizing
how neurons in a population encode a variable, and
how the variable can be decoded from the distributed
representation, functioning neural circuits are con-
structed that allow a comparison with experimental data
at a range of levels from single neuron responses to
connectivity patterns to perceptual and behavioral per-
formance. The particular models that result from this
approach depend on how the neural encoding and
decoding processes are characterized. This is where
emerging principles of neural computation constrain
models of neural encoding and decoding.
We describe how efficient codes are used to design

neural circuit models that perform a wide variety of com-
putations. The fundamental characteristic of the efficient
code is that the neural representation is adapted to the sta-
tistics of the environment. Here, we take an efficient code
to be one where the preferred stimuli are drawn from the
prior distribution and the neural tuning curves are propor-
tional to the likelihood function [3-6]. We show that in an
efficient code, a general center-of-mass decoder can
extract Bayesian estimates of encoded variables or func-
tions of encoded variables, which allows for the construc-
tion of networks that perform many computations [3,4].

Networks constructed using the method we describe have
several nice functional properties and match many experi-
mental observations. First, neural tuning properties match
the statistics of the variables they process. Second, in this
framework, normalization is an essential computation at
each stage of processing. This is consistent with normali-
zation being described as a canonical neural computation
[7]. Also, computation in networks of neurons using effi-
cient coding is robust to neuronal loss and uses local con-
nection rules. Finally, the networks we describe are flexible
and can incorporate changes to environmental statistics or
goals using gain modulation or changes in tuning curve
widths. The overall result is to show the importance of
several emerging principles of neural computation in an
already successful modeling framework.
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