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P-Rex2, a Rac-guanine nucleotide exchange
factor, is expressed selectively in ribbon synaptic
terminals of the mouse retina

David M Sherry'**" and Bradley A Blackburn®

Abstract

plasticity of these terminals.

Background: Phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac Exchanger 2 (P-Rex2) is a guanine
nucleotide exchange factor (GEF) that specifically activates Rac GTPases, important regulators of actin cytoskeleton
remodeling. P-Rex2 is known to modulate cerebellar Purkinje cell architecture and function, but P-Rex2 expression
and function elsewhere in the central nervous system is unclear. To better understand potential roles for P-Rex2 in
neuronal cytoskeletal remodeling and function, we performed widefield and confocal microscopy of specimens
double immunolabeled for P-Rex2 and cell- and synapse-specific markers in the mouse retina.

Results: P-Rex2 was restricted to the plexiform layers of the retina and colocalized extensively with Vesicular
Glutamate Transporter 1 (VGIUT1), a specific marker for photoreceptor and bipolar cell terminals. Double labeling for
P-Rex2 and peanut agglutinin, a cone terminal marker, confirmed that P-Rex2 was present in both rod and cone
terminals. Double labeling with markers for specific bipolar cell types showed that P-Rex2 was present in the
terminals of rod bipolar cells and multiple ON- and OFF-cone bipolar cell types. In contrast, P-Rex2 was not
expressed in the processes or conventional synapses of amacrine or horizontal cells.

Conclusions: P-Rex2 is associated specifically with the glutamatergic ribbon synaptic terminals of photoreceptors
and bipolar cells that transmit visual signals vertically through the retina. The Rac-GEF function of P-Rex2 implies a
specific role for P-Rex2 and Rac-GTPases in regulating the actin cytoskeleton in glutamatergic ribbon synaptic
terminals of retinal photoreceptors and bipolar cells and appears to be ideally positioned to modulate the adaptive
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Background

The dynamic remodeling of the actin cytoskeleton is cri-
tical to the establishment of neuronal architecture and for-
mation of synaptic connections, as well as structural and
functional plasticity in response to normal or pathological
stimuli. The Rho family of small GTPases, RhoA, Rac, and
Cdc42, are key regulators of remodeling of the neuronal
actin cytoskeleton and have distinct functions [reviewed in
[1-3]]. Rho-family GTPases cycle between an inactive
GDP-bound state and an active GTP-bound state, which is
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regulated by their interactions with a variety of guanine
nucleotide exchange factors (GEFs) that promote activa-
tion by catalyzing the exchange of GDP for GTP, and
GTPase activating proteins (GAPs) that promote inactiva-
tion by stimulating the GTPase to hydrolyze GTP to GDP.
Therefore, the specific GEFs and GAPs expressed by a
neuron and their localization within the cell determine the
spatial and temporal activation of Rho-family GTPases
and remodeling of the actin cytoskeleton.

Racl and Rac3 (also known as RaclB) are Rho-family
GTPases that are expressed in the central nervous system
(CNS). Racl is important for outgrowth, guidance, and
branching of neurites [2,3]. In contrast, activation of Rac3
appears to inhibit neurite outgrowth and may have a func-
tion antagonistic to that of Racl [4]. Several GEFs that spe-
cifically activate Rac GTPases have been identified and are
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known to affect development and structure of neuronal pro-
cesses, consistent with the importance of actin cytoskeleton
remodeling to neuronal structure and function (e.g,, Tiam 1
and 2, Trio, Kalirin, P-Rex1 and 2) [5-14].

The Phosphatidylinositol (3,4,5)-trisphosphate-dependent
Rac Exchanger family of proteins (P-Rex1 and P-Rex2) are
GEFs that selectively activate Rac GTPases [15-17]. The
P-Rexes are functionally unique in that they require sim-
ultaneous signals from Phospholnositide-3-Kinase (PI3K)
and G-protein coupled-receptor (GPCR) pathways for their
activation. Thus, they integrate and communicate the coordi-
nated signals in PI3K and GPCR pathways to the actin cyto-
skeleton through the activation of Rac GTPases [15,18,19].

Recent studies specifically implicate the P-Rex family of
Rac-GEFs in the regulation of neurite growth and guidance,
neuronal architecture, and functional plasticity. P-Rex1 is
widely expressed by neurons in the developing central ner-
vous system including neurons in the cerebral cortex and
dorsal root ganglion [11]. P-Rex1 localizes to the leading
edge of migrating cortical neurons and to neuritic growth
cones [11,13]. Expression of a dominant negative form of
P-Rex1 perturbs radial migration of cortical neurons
[11], and knockdown of P-Rex1 in neuronally differenti-
ated PC12 cells inhibits new neurite outgrowth while
promoting the differentiation of existing neurites as in-
dicated by enrichment of  tubulin [13]. Expression of
P-Rex2 in the brain is much more limited and is most
prominent in cerebellar Purkinje cells [12]. Knockout of
P-Rex2 leads to aberrant dendritic architecture in cere-
bellar Purkinje cells and impaired cerebellum-mediated
motor function [12]. Impaired P-Rex2 function also dis-
rupts functional synaptic plasticity, interfering with late
phase consolidation of long-term potentiation at the
parallel fiber-Purkinje cell synapse [20].

Although it is clear that P-Rex function is important to
cell migration, neurite differentiation and architecture du-
ring neural development, and to synaptic function in the
adult brain, little is known about the distribution and func-
tion of P-Rex Rac-GEFs in specific synapses and circuits.
To better understand the potential roles that P-Rex2 might
play in regulation of the neuronal actin cytoskeleton in
adult CNS neurons and circuits, we investigated the distri-
bution of P-Rex2 in the mouse retina, a major model sys-
tem for studies of neuronal and synaptic development and
plasticity. To characterize the expression and localization
of P-Rex2 in retinal neurons we analyzed immunolabeling
for P-Rex2 in conjunction with well-known markers for
specific retinal cell types and synapses at the light and con-
focal microscopic levels.

Methods

Animals and tissue preparation

Studies were performed using retinas from light-adapted
adult wildtype C57BL/6 ] mice (Jackson Laboratories, Bar
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Harbor, ME). Mice were kept on a 12-hour light: 12-hour
dark cycle, with food and water available ad libitum. Ani-
mals were euthanized by rapid cervical dislocation. All
animal procedures were approved by the University of
Oklahoma Health Sciences Center Institutional Animal
Care and Use Committee and conformed to the guidelines
of the US Public Health Service and the Institute for
Laboratory Animal Research.

Following euthanasia, eyes were enucleated, the cornea
was punctured with a needle to facilitate fixation, and the
eyes were immersion fixed in 4% paraformaldehyde in
0.1 M cacodylate or 0.1 M phosphate buffered saline (PBS)
at pH 7.2 for 30 minutes to 2 hours at 4°C. After fixation,
the anterior segment and lens were removed to create an
eyecup. Eyecups were rinsed in PBS, cryoprotected in 30%
sucrose in PBS, embedded in Optimal Cutting Temperature
medium (OCT; Sakura Tissue Tek; VWR, West Chester,
PA), and then rapidly frozen in liquid nitrogen. Frozen
sections of 10—15 pm thickness were cut on a cryostat,
collected on Superfrost Plus slides (Fisher Scientific,
Pittsburgh, PA) and stored at —20°C to —-35°C until use.

Antisera, antibodies, and lectins

A panel of well-characterized antibodies and lectins
directed against well known cell- and synapse-specific
markers was used to localize P-Rex2 in the mouse retina.
Details regarding source, immunogen, host species and
dilutions for these reagents are provided in Table 1. La-
beling patterns obtained in the current studies were con-
sistent with previous reports and labeled appropriate cell
types in the mouse retina.

Mouse monoclonal anti-Calbindin was raised against
purified bovine kidney Calbindin-D-28 K, and does not
recognize other members of the EF hand calcium bin-
ding protein family. Immunolabeling patterns matched
previous reports in the mouse retina [21]. Mouse mono-
clonal anti-glutamic acid decarboxylase, 65 kDa isoform
(GAD-65) was raised against GAD purified from rat brain
and recognizes a single band on western blots [22]. GAD-
65 immunolabeling matched the pattern reported previ-
ously in mouse retina [21]. Goat polyclonal anti-GlyT1
was raised against a C-terminus peptide from rat GlyT1
and produced immunolabeling that matched previous
reports in mouse retina [21,23]. Mouse monoclonal anti-
MAP-1 was raised against microtubules purified from rat
brain and recognizes a single band corresponding to
MAP-1 on western blots of rat brain and does not cross
react with MAP-2 [24]. MAP-1 immunolabeling of gan-
glion cell dendrites in the IPL matches previous reports
[25]. Peanut agglutinin (PNA) is a lectin that recognizes
B(1-3)-GalNAc carbohydrates and is a specific marker for
the extracellular matrix surrounding cone outer segments
and the base of cone terminals [26,27]. Mouse monoclonal
anti-PKCa was raised against amino acids 270-427 of
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Table 1 List of antibodies and lectins used for immunolabeling

Antigen  Immunogen Host Dilution Source
Calbindin  Purified Calbindin from bovine mouse 1:300 Sigma, St Louis, MO (Catalog # C9848; clone CB-955)
kidney
GAD-65 Immunoaffinity purified GAD mouse 1:500 Developmental Studies Hybridoma Bank, U lowa, (Catalog # GAD-6;
from rat brain clone GAD-6)
GlyT1 C-terminus peptide sequence goat 1:500 Chemicon, Temecula, CA (Catalog # AB1770)
from Rat GlyT1
MAP-1 Microtubules purified from rat mouse 1:300 Sigma, St Louis, MO (Catalog # M4278; clone HM-1)
brain
PKC Human PKCa, aa. 270-427 mouse 1:100 B-D Transduction Labs, San Jose, CA (Catalog # 610107; clone 3/PKC)
PNA _ _ 1:20 Invitrogen-Molecular Probes, Carlsbad, CA (Catalog # L21409)
P-Rex2 Mouse P-Rex2, aa. 717-799 rabbit 1:1000 Dr. Heidi C.E. Welch, The Babraham Institute, Cambridge, England
(affinity purified antiserum #78)
Synapto-  Zebrafish hindbrain membranes mouse 1:200 Zebrafish International Resource Center, Eugene, OR (Catalog # znp-1;
tagmin 2 clone znp-1)
Syntaxin 1 Rat hippocampus synaptosomes mouse 1:500 Sigma, St Louis, MO (Catalog # S0664; clone HPC-1)
VGIUT1 Peptide, aa. 541-560 of rat guinea pig  1:1000-1:2000 Chemicon, Temecula, CA (Catalog # AB5905)
VGIuT1
VGIuT1 Peptide, aa. 493-560 of rat mouse 1:100-1:300  UC Davis/NIH NeuroMab Facility, Davis, CA (Catalog # 75-066;
VGIuT1 clone N28/9)

human PKCa, recognizes a single 82 kDa band on western
blots of rat brain, and specifically immunolabeled rod
bipolar cells in the mouse retina as appropriate [21,28,29].
Affinity purified rabbit polyclonal anti-P-Rex2 was raised
against amino acids 717-799 of mouse P-Rex2 and recog-
nizes a single band on western blots of mouse cerebellar
lysates and does not cross-react with P-Rex1 [12]. Mouse
monoclonal anti-synaptotagmin 2 was raised against adult
zebrafish hindbrain membranes [30] and recognizes a sin-
gle 60 kDa band in western blots of mouse cerebellar ly-
sates and synaptosomes identified as synaptotagmin 2 by
mass spectrometry [31]. Anti-synaptotagmin 2 labeled
horizontal cells, Type 2 OFF-cone bipolar cells, and Type 6
ON-cone bipolar cells as previously reported for mouse ret-
ina [28,31]. Mouse monoclonal anti-syntaxin la was raised
against rat hippocampal synaptosomes [32] and recognizes
a single 35 kDa band on western blot corresponding to
syntaxin la [33]. Immunolabeling matched patterns previ-
ously reported in retina and selectively labels amacrine cells
and their processes and conventional synapses in the inner
plexiform layer of the mammalian retina [23,32,34]. Two
different antibodies directed against VGIuT1 were used.
The guinea pig polyclonal antibody and the mouse mono-
clonal antibody both recognize a single 52 kDa band on
western blots and do not crossreact with VGIuT2. Both
VGIuT1 antibodies produce immunolabeling of photo-
receptor and bipolar cell terminals, matching the previously
reported distribution of VGLUT1 in the retina [35,36].

Immunolabeling
Methods for immunolabeling of paraffin and frozen sec-
tions were as described previously [23,37]. Paraffin sections

were de-paraffinized, and then subjected to antigen re-
trieval through 100% methanol at -20°C for 20 min,
followed by 1% NaBH,, then 0.1 M citrate buffer (pH 6.0)
at 85-95°C for 45 min, after which they were exchanged to
PBS or Hank’s buffered saline solution (HBSS, pH 7.4) and
blocked and processed as described below for frozen sec-
tions. Frozen sections were thawed, rehydrated and treated
with 1% NaBH,, rinsed, and exchanged to PBS or HBSS.
Sections were then incubated in blocking solution
(“blocker,” 10% normal goat serum + 5% bovine serum al-
bumin + 1% fish gelatin + 0.5% triton X-100 in PBS or
HBSS) for 2 hours at room temperature. Blocker was re-
moved and primary antibody or a cocktail of primary anti-
bodies for double or triple labeling experiments were
applied for 1-2 days at 4°C. After removing primary anti-
body, sections were rinsed in PBS or HBSS, and fluorescent
secondary antibody, or a cocktail of secondary antibodies
+ PNA for multiple labeling experiments, was applied
for 1 to 1.5 hours at room temperature. Sections were
rinsed and coverslipped using Prolong Gold + DAPI
(Invitrogen-Molecular Probes, Carlsbad, CA). Control
sections processed in parallel using normal host sera
substituted for primary antisera or by omitting primary
antibody showed no labeling. Control sections that
received only one primary antibody showed labeling in
only the appropriate channel when treated with multiple
fluorescent secondary antibodies.

Imaging and analysis

Widefield visualization of immunolabeling was performed
using an Olympus BX61WI fluorescence microscope
(Olympus America, Center Valley, PA) equipped with a
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Hamamatsu ORCA-ER camera (Hamamatsu, Bridgewater,
NJ). Slidebook software (Intelligent Imaging Innovations,
Denver, CO) was used for image acquisition. Confocal mi-
croscopy was performed using an Olympus FluoView1000
confocal microscope (Olympus America, Center Valley,
PA). Confocal images were acquired using a 60x oil
immersion objective lens (NA =1.42) and Olympus
Fluoview software. To prevent bleed-through of signals
between fluorescence channels, detector sensitivity and
laser power were adjusted and images were collected se-
quentially in the different fluorescent channels. For pre-
paration of figures, widefield or confocal images were
exported to Photoshop (Adobe, Mountain View, CA) and
brightness, contrast and threshold were adjusted to high-
light specific labeling.

Results

P-Rex2 is expressed specifically in the synaptic layers of
the retina

Immunolabeling for P-Rex2 produced strong labeling in
both the outer and inner plexiform layers (OPL and IPL,
respectively) of the retina (Figure 1). Labeling in the
OPL was intense and localized to a band of large terminals
adjacent to the outer nuclear layer (ONL), consistent with
labeling of photoreceptor terminals. Labeling in the IPL
was characterized by large puncta distributed across the
OFF and ON sublayers of the IPL, consistent with labeling
of bipolar cell terminals. Some weaker diffuse labeling also
was present in the IPL. Labeling in the inner and outer
segments of the photoreceptors was comparable to the
autofluorescence commonly observed in these structures.

P-Rex2 is expressed specifically in rod and cone terminals
in the OPL

The characteristics of P-Rex2 labeling in the OPL
suggested that P-Rex2 might localize specifically to
photoreceptor terminals. Immunolabeling for P-Rex2 in
combination with VGIuT1, a specific marker for the
glutamatergic terminals of rod and cone photoreceptors
[35,36], showed extensive colocalization, confirming
that P-Rex2 was present in photoreceptor terminals
(Figure 2). To determine unequivocally whether P-Rex2
was present in the terminals of both rods and cones, we
performed double labeling for P-Rex2 and peanut agglu-
tinin (PNA), a marker that specifically labels synaptic
contacts at the base of cone terminals [26,27]. Confocal
microscopy showed that P-Rex2 labeling was present in
the large terminals of cones identified by their PNA-
positive synaptic contacts, as well as in the smaller and
more numerous terminals of rods (Figure 2).

To assess whether P-Rex2 also was present in the
processes of the second-order horizontal and bipolar cells
in the OPL, we performed double labeling for P-Rex2 and
markers that specifically label horizontal cell processes
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Figure 1 P-Rex2 is localized to the synaptic layers of the retina.
Intense labeling for P-Rex2 is present in the OPL. Punctate labeling
for P-Rex2 is distributed across the OFF and ON sublayers of the IPL.
Weak labeling is present in some cell bodies in the position of
bipolar cells in the INL. Labeling in the inner and outer segments of
the photoreceptors is comparable to the autofluorescence
commonly observed in these structures. Nuclei are counterstained
with DAPI (blue) to illustrate nuclear layers. OS, outer segment; IS,
inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer;
INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell
layer. Scale bar =20 um.

and the dendrites of bipolar cells (Figure 3). Double label-
ing for P-Rex2 and calbindin, a specific marker for hori-
zontal cells and their processes [21], showed that P-Rex2
labeling was absent from the proximal portion of the OPL
where the large processes of the horizontal cells ramify.
Confocal microscopy confirmed that P-Rex2 also was
absent from the fine processes of the horizontal cells that
invaginate into the photoreceptor terminals to contact
the photoreceptors at ribbon synapses. Double labeling
for P-Rex2 and synaptotagmin 2, a specific marker for
the processes of horizontal cells and Type 2 OFF-cone
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nuclear layer. Scale bars =20 um for A-C; 10 um for D-F.

Cone terminal

Figure 2 P-Rex2 is present in rod and cone photoreceptor terminals. A-C: P-Rex2 labeling in the OPL. A: P-Rex2 is expressed in numerous
terminals in the distal portion of the OPL. B: VGIuT1 is a specific marker for photoreceptor terminals. C: P-Rex2 colocalizes extensively with
VGLUT1 in photoreceptor terminals (Overlay). Arrowheads indicate the large terminals of cones; arrows indicate smaller terminals of rods.

D-F: Confocal imaging of P-Rex2 and peanut agglutinin (PNA) labeling in the OPL. P-Rex2 is expressed in the terminals of both rod and cone
photoreceptors. D: P-Rex2 immunolabeling in photoreceptor terminals in the distal OPL. E: PNA specifically labels flat contacts made by OFF-cone
bipolar cells at the base of cone terminals. F: Overlay of panels D and E demonstrates that P-Rex2 labeling is present in the large terminals of
cones and smaller rod terminals. Maximum intensity projection of approximately 1.5 um total thickness shown (5 optical planes at 0.3 um step
size). Nuclei are counterstained with DAPI (blue) in panels A and D to show the position of the ONL and INL. Confocal data are shown as
maximum intensity projections of 1-5 optical planes acquired at 0.3 um step size. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner

Cone terminal

and Type 6 ON-cone bipolar cells [28,31], showed that
the large processes of the second-order cells in the
proximal portion of the OPL did not contain P-Rex2.
Confocal microscopy demonstrated that P-Rex2 also
was absent from the fine processes that contact the
photoreceptor terminals. These fine processes from the
second-order neurons occupied positions adjacent to
the P-Rex2-positive photoreceptor terminals or positions
within the invaginations in the photoreceptor terminals
associated with the ribbon synaptic complexes. Similarly,
rod bipolar cell dendrites, labeled for PKC [21], showed
no labeling for P-Rex2. Together these results indicate that
P-Rex2 in the OPL is specifically expressed in the ribbon
synapse containing terminals of the rod and cone photore-
ceptors but not in the processes of second-order neurons.

P-Rex2 expression in the IPL is restricted to bipolar cell
terminals

The P-Rex2-positive terminals in the IPL showed the size
and distribution characteristics of bipolar cell terminals.
Labeling for P-Rex2 in combination with VGIuT1, which
labels the terminals of all bipolar cells [35,36], showed a
high degree of correspondence (Figure 4). However, the
correspondence of P-Rex2 and VGIuT1 labeling was im-
perfect, with bipolar cell terminals that showed VGIuT1
only and other small P-Rex2 puncta that did not show
VGIuT1 labeling. The intensity of P-Rex2 labeling also var-
ied among bipolar cell terminals suggesting heterogeneity
in P-Rex2 expression levels among bipolar cell terminals.

To test whether P-Rex2 also might be expressed in the
conventional synapses of amacrine cells, we performed
double immunolabeling for P-Rex2 and amacrine cell
markers (Figure 5). Double labeling for P-Rex2 and the
65 kDa form of glutamic acid decarboxylase (GAD-65),
a specific marker for GABAergic amacrine cells [21],
revealed little evidence of colocalization of labeling for
P-Rex2 and GAD-65, indicating that GABAergic ama-
crine cells express little, if any, P-Rex2. Similarly, there
was little evidence of colocalization between P-Rex2
and Glycine Transporter 1 (GlyT1), a specific marker for
glycinergic amacrine cells [21] or syntaxin la (not shown),
a transmitter-independent marker for the synapses and
processes of amacrine cells in the IPL [23,32,34]. To test
whether P-Rex2 might be present in ganglion cell den-
drites, we performed double labeling for P-Rex2 and
Microtubule-Associated Protein 1 (MAP-1), a ganglion
cell marker [25]. There was little if any colocalization of
P-Rex2 and MAP-1 labeling (Figure 6).

Together these results indicate that P-Rex2 is localized
specifically to the synaptic terminals of bipolar cells in
the IPL, but is not present in the synapses or process of
amacrine or ganglion cells.

Identification of bipolar cell types expressing P-Rex2
To identify specific types of bipolar cells expressing
P-Rex2 in their terminals, we performed double labeling
for P-Rex2 in combination with markers for the terminals
of specific rod- and cone-driven bipolar cell subtypes.
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Figure 3 (See legend on next page.)
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Figure 3 P-Rex2 is absent in second-order neuronal processes in the OPL. A-C: Widefield microscopy of P-Rex2 and calbindin labeling.

A: P-Rex2 labeling in photoreceptor terminals. B: Calbindin labeling in horizontal cells (H) and their processes, including the fine processes that
contact ribbon synapses (arrowheads). C: Overlay of A and B. D-F: Confocal imaging of P-Rex2 and calbindin labeling. D: P-Rex2 labeling in
photoreceptor terminals. E: Calbindin is present in horizontal cell processes and their fine endings in photoreceptor terminals (arrowheads).

F: Overlay of panels D and E confirms that horizontal processes do not contain P-Rex2. G-I: Widefield microscopy of P-Rex2 and Synaptotagmin 2
labeling. G: P-Rex2 is present in photoreceptor terminals. H: Synaptotagmin 2 is present in horizontal (H) and bipolar cells (B) and their processes,
including the fine horizontal cell processes that contact photoreceptor terminals (arrowheads). I: Overlay of panels G and H. J-L: Confocal
imaging of P-Rex2 and synaptotagmin 2 labeling. J: Photoreceptor terminals show P-Rex2. K: Synaptotagmin 2 is present in bipolar and horizontal
cell processes, including the fine horizontal cell processes that contact photoreceptor terminals (arrowheads). L: Overlay of J and K confirms that P-
Rex2 and synaptotagmin 2 do not colocalize. M-O: Confocal imaging of P-Rex2 and PKC labeling. M: P-Rex2 is present in photoreceptor terminals.
N: PKC labeling in rod bipolar cells (RB) and their dendritescontacting rod terminals (arrowheads). O: Overlay of panels M and N. Rod bipolar cell
dendrites do not show P-Rex2 labeling. DAPI (blue) shows nuclear layers in A, D, G, J, and M. Confocal images shown as single optical planes of
approximately 0.3 um thickness. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer. Scale bars = 20 um for A-C and G-I;

10 um for D-F and J-O.

The large P-Rex2-positive terminals in the inner-
most portion of the IPL showed the large size and
placement characteristic of rod bipolar cells, which
comprise a single cell type that can be identified by la-
beling for PKC [21]. Double labeling for P-Rex2 and
PKC confirmed that rod bipolar cell terminals showed
strong labeling for P-Rex2 (Figure 7). Interestingly, the
distribution of P-Rex2 and PKC within a given ter-
minal was not identical, with P-Rex2 labeling showing
a more restricted spatial distribution than PKC labeling,
indicating that P-Rex2 localized to specific domains within
the terminal.

Cone bipolar cells in the mouse retina comprise
approximately 9 different types that terminate at charac-
teristic depths in the IPL corresponding to their depolariz-
ing (ON) or hyperpolarizing (OFF) light-driven responses
[31,38]. The presence of P-Rex2-positive bipolar cell ter-
minals throughout the depth of the IPL (see Figure 4) in-
dicated that both ON- and OFF-cone bipolar cell subtypes
expressed P-Rex2 in their terminals. To begin identifying
specific cone bipolar cell types that contained P-Rex2 in
their terminals, we performed double labeling for P-Rex2
and synaptotagmin 2, a specific marker for Type 2 cone
bipolar cells (an OFF type) and Type 6 cone bipolar cells

Figure 4 P-Rex2 is localized to ribbon synaptic terminals of bipolar cells in the IPL. Confocal imaging of P-Rex2 and VGIuT1 labeling in the
IPL (Single optical plane of approximately 0.3 pm thickness shown). A: P-Rex2 labeling is present in discrete puncta (arrowheads) located
throughout the depth of the IPL. B: Labeling for VGIuT1 identifies bipolar cell terminals throughout the IPL. The large terminals of rod bipolar
cells along the inner edge of the IPL are prominently labeled. C: Labeling for P-Rex2 colocalizes extensively with VGIUT1 labeling, indicating that
P-Rex2 is localized to many bipolar cell terminals. Nuclei are counterstained with DAPI (blue) in panel A to illustrate the location of the INL and
GCL. INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bars =20 um.
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for D-F.

Figure 5 Amacrine cells express little, if any, P-Rex2 in their processes and terminals. A-C: Confocal imaging of P-Rex2 and glutamic acid
decarboxylase 65 kDa (GAD-65) labeling in the IPL. A: P-Rex2 labeling is present in discrete puncta located at all levels of the IPL (arrowheads).
B: Labeling for GAD-65, a marker for GABAergic amacrine cells, labels numerous synapses and processes throughout the IPL. C: Overlay of panels
A and B shows that P-Rex2 and GAD-65 are independently distributed. D-F: Confocal imaging of P-Rex2 and Glycine Transporter 1 (GlyT1)
labeling in the IPL. D: Terminals at all levels of the IPL (arrowheads) show labeling for P-Rex2. E: Labeling for GlyT1 is present in glycinergic
amacrine cell bodies (A) and processes throughout the IPL. F: Overlay of panels D and E confirms that P-Rex2 and GlyT1 show independent
distributions. Single optical planes of approximately 0.3 um thickness shown. Nuclei are counterstained with DAPI in panels A and D to illustrate
the location of the INL and GCL. INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bars =10 um for A-C; 20 um

(an ON type) and their terminals in the IPL (Figure 8).
There was extensive colocalization of P-Rex2 and
synaptotagmin 2 labeling in the terminals of Type 2
cone bipolar cell terminals in the distal (OFF) sublayer
of the IPL. However, some Type 2 cone bipolar cell
terminals showed no P-Rex2 labeling, indicating that P-
Rex2 levels can be heterogeneous among bipolar cell
terminals of the same cell type. Similarly, there was

extensive colocalization of P-Rex2 and synaptotagmin 2
labeling in the proximal (ON) sublayer of the IPL, indi-
cating that the terminals of Type 6 cone bipolar cells
also contained P-Rex2. Heterogeneous levels of P-Rex2
expression also were noted among Type 6 cone bipolar
cell terminals. In addition, many other bipolar cell termi-
nals throughout the OFF and ON sublaminae of the IPL
showed single labeling for only P-Rex2, indicating that
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Figure 6 Ganglion cell dendrites express little, if any, P-Rex2. A-C: Confocal imaging of P-Rex2 and Microtubule-Associated Protein-1 (MAP-1)
labeling in the IPL. A: P-Rex2 labeling is present in discrete puncta located throughout the IPL. B: Labeling for MAP-1 is present in ganglion cell
dendrites throughout the IPL, as well as ganglion cell bodies in the GCL and their axons (Ax). C: Overlay of panels A and B shows that P-Rex2
and MAP-1 are independently distributed. Nuclei are counterstained with DAPI in panel A to illustrate the location of the INL and GCL. Single
optical plane of approximately 0.3 um thickness shown. IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bars =20 um.

cone bipolar cell types in addition to the Type 2 and Type
6 cells also expressed P-Rex2 in their terminals.

Discussion

These studies establish that P-Rex2, a GEF that specifically
activates Rac small GTPases, is expressed in a cell- and
synapse-specific manner in the retina. P-Rex2 localized to
the synaptic terminals of photoreceptor and bipolar cells,
as indicated by extensive double labeling with VGIuT1 and
other bipolar cell terminal markers. In contrast, P-Rex2
was not expressed in horizontal or amacrine cell processes
or terminals or in the dendrites of bipolar or ganglion
cells, as indicated by the absence of colocalization with an
array of cell- and synapse-specific markers, including
calbindin, synaptotagmin 2, PKC, GAD-65, GlyT1, and
MAP-1 [21,23,25,28,31,32,34]. Thus, P-Rex2 in the retina
is expressed specifically in the specialized glutamatergic
ribbon synaptic terminals of photoreceptors and bipolar
cells that transmit information vertically through the
retina, and not the conventional synapses of amacrine cells
or the processes of horizontal cells that mediate lateral
processing in the IPL and OPL, respectively.

P-Rex2 localized to both rod and cone photoreceptor
terminals in the OPL and to both rod and cone bipolar
cell terminals in the IPL, indicating that P-Rex2 expression
is not restricted specifically to either rod- or cone-driven
synaptic pathways. Similarly, P-Rex2 expression is not
exclusively associated with either ON or OFF pathways in
the retina as P-Rex2 localized to bipolar cell terminals
distributed across the ON and OFF sublayers of the IPL.
The distribution of P-Rex2-positive bipolar cell terminals
throughout the depth of the IPL further indicates that
multiple bipolar cell types contained P-Rex 2 in their
terminals. Double labeling for P-Rex2 in conjunction with

PKC and synaptotagmin 2 positively identified P-Rex2
expression in the terminals of rod bipolar cells and Type 2
and Type 6 cone bipolar cells [21,28,31]. These studies
also showed that the terminals of many additional bipolar
cells also contained P-Rex2. On the basis of depth of
stratification and the size characteristics of these termi-
nals, it is clear that P-Rex2 also must be present in the ter-
minals of several additional cone bipolar cell types and
potentially could be present in the terminals of all bipolar
cell types.

The distribution of P-Rex2 does not precisely match
the reported distribution of its effector, Racl. Rac 1 has
been localized to photoreceptor outer segments and
undergoes light-induced activation [39]. Activation of
Racl in the outer segment appears to have a key role in
light-induced photoreceptor cell death [40,41]. P-Rex2
seems unlikely to modulate light induced activation of
Racl in the outer segment, as our data show little evi-
dence for enrichment of P-Rex2 in photoreceptor outer
segments. In contrast, our data suggest that P-Rex2 may
be more important in the regulation of Racl activity
specifically in photoreceptor terminals. Consistent with
this notion, Racl has been localized to the distal portion
of the mouse OPL [40]. Although Racl is known to be
important for proper development and polarization of
Drosophila photoreceptors [42], conditional knockout of
Racl from mouse rods does not appear to greatly
disrupt the structure or function of mouse rods [41],
although the structural organization and plasticity of
photoreceptor terminals in vertebrate photoreceptors
lacking Racl has not been examined in detail. The
expression of Racl by cells in the inner retina and Racl
labeling in the IPL has been reported previously [40,43],
but little is known regarding the cell-specific distribution
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Figure 7 P-Rex2 is expressed in rod bipolar cell terminals. A-C: Widefield microscopy of double labeling for P-Rex2 and Protein kinase C
(PKC), a rod bipolar cell marker. A: P-Rex2 is present in photoreceptor terminals in the OPL and in numerous bipolar cell terminals in the IPL.

B: Labeling for PKC identifies rod bipolar cells (RB) and their terminals in the innermost portion of the ON sublamina of the IPL (arrowheads).

C: The overlay of panels A and B shows that P-Rex 2 is localized to rod bipolar cell terminals in the IPL. Rod bipolar cell dendrites in the OPL did
not show P-Rex2 labeling. D-F: Confocal imaging of P-Rex2 and PKC labeling in the IPL confirms that P-Rex2 (panel D) is localized to rod bipolar
cell terminals (arrowheads) labeled for PKC (Panel E). There is little labeling for P-Rex2 in the axons of the rod bipolar cells coursing through the
IPL. Panel F shows the overlay of panels D and E. Single optical plane of approximately 0.3 um thickness shown. Nuclei are counterstained with
DAPI (blue) in panels A and D to illustrate the locations of the nuclear layers. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner
nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bars =20 pm for A-C; 10 um for D-F.
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P-Rex2| B Synaptotagmin 2| ¢

Figure 8 P-Rex2 is expressed in the terminals of OFF- and ON-cone bipolar cells. A-C: Widefield microscopy of double labeling for P-Rex2
and Synaptotagmin 2, a marker for Type 2 OFF-cone and Type 6 ON-cone bipolar cell terminals. A: P-Rex2 is present in photoreceptor terminals
in the OPL and in numerous bipolar cell terminals in the ON and OFF sublaminae of the IPL. B: Labeling for Synaptotagmin 2 reveals an extensive
plexus of Type 2 OFF-cone bipolar cell terminals in the OFF sublamina of the IPL. Type 6 ON-cone bipolar cell terminals form a sparser plexus in
the ON sublamina of the IPL. Labeling of horizontal and bipolar cell processes is present in the OPL and faint labeling of Type 2 bipolar cell
bodies (B) is visible in the INL. C: Overlay of panels A and B shows apparent colocalization of P-Rex 2 and synaptotagmin 2 labeling in the OFF
and ON sublayers of the IPL. D-F: Confocal imaging of P-Rex2 and synaptotagmin 2 labeling in the IPL confirms that P-Rex2 (panel D) and
synaptotagmin 2 (panel E) colocalize in the terminals of Type 2 OFF-cone and Type 6 ON-cone bipolar cells (arrowheads) in the OFF and ON
sublayers of the IPL, respectively. Panel F shows the overlay of panels D and E. Intensity of P-Rex2 labeling varies considerably among individual
Type 2 and Type 6 bipolar cell terminals, with some terminals showing no P-Rex2 labeling. Single optical plane of approximately 0.3 um thickness
shown. Nuclei are counterstained with DAPI in panels A and D to illustrate the locations of the nuclear layers. ONL, outer nuclear layer; OPL,
outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bars =20 um for A-C; 10 um for D-F.
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or activation of Racl in the inner retina. The finding that
P-Rex2 is selectively localized to bipolar cell terminals
suggests that P-Rex2 provides specific regulation of Racl
activity in those terminals.

The P-Rexes regulate actin cytoskeleton remodeling by
activating Rac GTPases. P-Rex activation requires coin-
cident signals via PI3K and G-protein receptor activation
[18,19,44] and is a key mechanism for the regulation of
membrane dynamics and remodeling of cytoskeleton in
response to external cues [11,15,18,19,44,45]. Diminished
P-Rex function in neurons leads to aberrations in growth
cone structure, membrane ruffling, neurite outgrowth,
and neuritic architecture, resulting in functional deficits
and impaired synaptic plasticity [11-13,20]. It is likely that
P-Rex2 serves a similar function in the terminals of photo-
receptors and bipolar cells. One attractive possibility is
that P-Rex2 may mediate adaptive remodeling of the ter-
minal in response to simultaneous activation of G-protein
and PI3K mediated pathways in the terminal. The termi-
nals of photoreceptors and bipolar cells and their synaptic
partners undergo significant anatomical remodeling in re-
sponse to changes in illumination, including the extension
and retraction of processes from the terminal itself and
rearrangements associated with post-synaptic processes
[46-54]. Plasticity of this nature is best known in the
retinas of non-mammalian species [48-53], but adaptive
structural changes also occur in mammalian photorecep-
tor and bipolar cell terminals [46,47,54]. This structural
remodeling is dependent at least in part on the actin
cytoskeleton as treatment with cytochalaisin D inhibits
remodeling [50,52], which would be consistent with a
role for P-Rex2 in adaptive remodeling.

Another potential function for P-Rex2 is coordination
of adaptive remodeling of the synaptic machinery
within photoreceptor and bipolar cell terminals, pre-
sumably via activation of Racl which is known to be
present in photoreceptors and other retinal cells
[39-41,43,55]. For example, synaptic ribbons, and active
zones in rod photoreceptor terminals undergo adaptive
light-dependent (i.e., activity-dependent) remodeling
[56-58]. Ribbon and active zone material is removed in
the first few hours after light onset resulting in shorten-
ing or disappearance of some synaptic ribbons and
active zones, and detachment of other ribbons from the
terminal plasma membrane. This remodeling is then
reversed in darkness. Synaptic vesicle density can also
change with light- or dark-adaptation [59]. The mech-
anism(s) mediating the movement and remodeling of
ribbon and active zone material is currently unknown,
but P-Rex2-mediated activation of Racl leading to local
remodeling of actin within the terminal is a plausible
contributor.

P-Rex2 also potentially might modulate functional
plasticity at photoreceptor and bipolar cell terminals via
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the regulation of receptors at the surface of the terminal.
Double knockout of P-Rex1 and 2 interferes specifically
with late phase consolidation of long-term potentiation
at the parallel fiber to Purkinje cell synapse in the cere-
bellum, most likely due to the failure of the synapse to
consolidate changes in AMPA receptor density in the
absence of P-Rex [20]. It is unlikely that P-Rex2 would
modulate functional plasticity at photoreceptor or bipolar
cell terminals by direct modulation of transmitter release,
as synaptic vesicle exocytosis is not actin-dependent.
However, P-Rex2 activation potentially could affect recyc-
ling and trafficking of synaptic vesicles in the reserve pool,
which are tethered to the actin cytoskeleton by the sy-
naptic vesicle protein synapsin in conventional synapses
[60-62]. However, it is not clear whether P-Rex2 might
modulate synaptic vesicle interactions with the actin cyto-
skeleton in photoreceptor and bipolar terminals, which
lack synapsins [63].

While the signals that regulate P-Rex2 activity in the
terminals of photoreceptors and bipolar cells are not
known, P-Rex2 activation requires coincident signaling
via PI3K and G-protein-coupled receptor mechanisms
[18,19,44]. Furthermore, the available evidence suggests
that activated P-Rexes translocate to spatially restricted
domains of the plasma membrane in order to activate
Rac GTPases [19,45]. Thus, P-Rex2 activation would ap-
pear to be ideally suited to tight spatial and temporal
regulation of Rac GTPase activation in photoreceptor
and bipolar cell terminals in response to very specific
combinations of external signals. Although the precise
signals that activate P-Rex2 in photoreceptor and bipolar
cell terminals are not known, defects in phosphoinositide
signaling disrupt the structure, maintenance and function
of photoreceptor terminals [64,65] and photoreceptors
and bipolar cells possess a variety of G-protein coupled
receptors that might contribute to activation of P-Rex2. A
challenge for the future will be to define the precise func-
tional role of P-Rex2 in ribbon synaptic terminals and the
signals regulating its function.

Conclusions

These studies indicate that P-Rex2 is associated specif-
ically with the ribbon synaptic terminals of photorecep-
tors and bipolar cells in the retina. These synapses are
highly specialized for rapid glutamate release and serve
to transmit visual signals vertically through the retina.
The selective expression of P-Rex2 at ribbon synapses
suggests a role for P-Rex2 associated specifically with
ribbon synapse function that is not shared with the con-
ventional synapses of the retina, which typically utilize
inhibitory neurotransmitters and do not show labeling
for P-Rex2. Because P-Rex2 is a Rac-GEF, it is likely that
it regulates the activity of Rac-GTPases and the actin
cytoskeleton in glutamatergic ribbon synaptic terminals
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of retinal photoreceptors and bipolar cells. It is highly
unlikely that actin is directly involved in glutamate re-
lease from ribbon synapses, but P-Rex2 would be ideally
positioned to modulate rearrangements of the actin
cytoskeleton that must accompany plastic changes in
the shape and conformation of photoreceptor and bipo-
lar terminals associated with light and dark adaptation.
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