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Abstract

Background: Transcranial direct current stimulation (tDCS) is a non-invasive technique that modulates the
excitability of neurons within the primary motor cortex (M1). Research shows that anodal-tDCS applied over the
non-dominant M1 (i.e. unilateral stimulation) improves motor function of the non-dominant hand. Similarly,
previous studies also show that applying cathodal tDCS over the dominant M1 improves motor function of the
non-dominant hand, presumably by reducing interhemispheric inhibition. In the present study, one condition
involved anodal-tDCS over the non-dominant M1 (unilateral stimulation) whilst a second condition involved
applying cathodal-tDCS over the dominant M1 and anodal-tDCS over non-dominant M1 (bilateral stimulation) to
determine if unilateral or bilateral stimulation differentially modulates motor function of the non-dominant hand.
Using a randomized, cross-over design, 11 right-handed participants underwent three stimulation conditions: 1)
unilateral stimulation, that involved anodal-tDCS applied over the non-dominant M1, 2) bilateral stimulation,
whereby anodal-tDCS was applied over the non-dominant M1, and cathodal-tDCS over the dominant M1, and 3)
sham stimulation. Transcranial magnetic stimulation (TMS) was performed before, immediately after, 30 and 60
minutes after stimulation to elucidate the neural mechanisms underlying any potential after-effects on motor
performance. Motor function was evaluated by the Purdue pegboard test.

Results: There were significant improvements in motor function following unilateral and bilateral stimulation when
compared to sham stimulation at all-time points (all P < 0.05); however there was no difference across time points
between unilateral and bilateral stimulation. There was also a similar significant increase in corticomotor excitability
with both unilateral and bilateral stimulation immediately post, 30 minutes and 60 minutes compared to sham
stimulation (all P < 0.05). Unilateral and bilateral stimulation reduced short-interval intracortical inhibition (SICI)
immediately post and at 30 minutes (all P < 0.05), but returned to baseline in both conditions at 60 minutes. There
was no difference between unilateral and bilateral stimulation for SICI (P > 0.05). Furthermore, changes in
corticomotor plasticity were not related to changes in motor performance.

Conclusion: These results indicate that tDCS induced behavioural changes in the non-dominant hand as a
consequence of mechanisms associated with use-dependant cortical plasticity that is independent of the electrode
arrangement.

Keywords: Transcranial Direct Current Stimulation, Motor Cortex Plasticity, Motor Performance

* Correspondence: dawson.kidgell@deakin.edu.au

"Equal contributors

Centre for Physical Activity and Nutrition Research, Deakin University,
Melbourne, Australia

- © 2013 Kidgell et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
( B.oMed Central Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:dawson.kidgell@deakin.edu.au
http://creativecommons.org/licenses/by/2.0

Kidgell et al. BMC Neuroscience 2013, 14:64
http://www.biomedcentral.com/1471-2202/14/64

Background

In recent years, there has been an effort to optimize
motor training approaches following neurological injury
that employ techniques that non-invasively modulate the
excitability of neuronal circuits within the primary
motor cortex (M1). In particular, transcranial direct
current stimulation (tDCS) of the M1 has emerged
as a popular neuromodulation technique, with recent
evidence demonstrating modifications in cortical and
motor function following stimulation [1]. tDCS is a non-
invasive, painless, easy to administer and cost effective
procedure with minimal side effects, and thus is ideally
suited for use in neuro rehabilitation [2].

A key feature of tDCS is that it adjusts regional brain
activity by modifying the membrane potential of neurons
[3,4]. The application of low level direct electrical
current is delivered through saline soaked electrodes se-
cured above the area of interest on the M1, at intensities
of approximately 1-2 mA for periods of 2—-20 minutes,
with the electrode montage (anodal or cathodal) deter-
mining the physiological effect of stimulation (for a
detailed review refer to 1). In general, anodal-tDCS of
long duration (ie. up to 20 minutes) induces facilitator
effects of motor-evoked potentials (MEPs) [5-7], whilst
cathodal-tDCS leads to inhibitory effects [4,8-10]. Single
session anodal-tDCS with current intensities of 0.6 mA
up to 2 mA applied for between 5-20 minutes has been
shown to increase corticomotor excitability for up to 60
minutes after stimulation [2]. Several transcranial mag-
netic stimulation (TMS) studies have reported increased
corticomotor excitability [4,6], reduced intracortical
inhibition [11,12] and reduced interhemispheric inhib-
ition (IHI) following both unilateral (anodal-tDCS over
the M1) and bilateral tDCS (simultaneously applying
cathodal-tDCS over the dominant M1 and anodal-tDCS
over non-dominant M1) [13]. However, few studies have
compared the effects of unilateral-anodal and bilateral
tDCS on modulating motor function [13,14].

The temporary modification in cortical plasticity fol-
lowing anodal-tDCS has been reported to correspond
with transient improvements in motor function [11,15].
For example, anodal-tDCS applied over M1 has been
shown to improve sequential finger movement tasks,
visuomotor coordination, and reaction time and hand
function [16-19]. In addition, applying anodal-tDCS to
the non-dominant M1 also facilitates motor function in
the non-dominant upper limb of healthy adults and
stroke affected patients [11,15,20].

Emerging evidence suggests that bilateral tDCS may
facilitate corticomotor excitability and motor function to
a greater extent than just unilateral anodal-tDCS [13,14].
In healthy adults, 20-40 minutes of bilateral stimulation,
with the anode fixed over the non-dominant M1 and
the cathode over the dominant M1, facilitates motor
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function to a greater magnitude compared to previous stu-
dies employing unilateral and sham stimulation [13,19,21].
Asymmetric use of the non-dominant hand compared
to the dominant hand is associated with reduced motor
task performance [22]. Similarly, asymmetries in motor
function between the non-dominant and dominant
limbs, is a likely consequence of hemispheric differences
in corticomotor excitability and inhibition [23-26].
As such, the use of bilateral tDCS could be used to
optimize corticomotor excitability in the non-dominant
M1 and by default improve motor function.

The potential mechanisms underpinning improve-
ments in motor function following bilateral stimulation,
although speculative (and not well understood), may
reside in reduced IHI [13,27]. It is hypothesized that
during bilateral stimulation, corticomotor excitability of
the dominant M1 is reduced with cathodal tDCS, which
dampens the inhibitory projections from the dominant
onto the non-dominant M1, presumably releasing the
non-dominant M1 from inhibition and augmenting the
excitatory effect of the anode and seemingly enhances
motor function in the non-dominant limb [13,17,19,21].
Despite this evidence, there is limited data available to
show an association between changes in tDCS induced
corticomotor plasticity and improvements in motor
function [11,15,20,28]. Although the after-effects of tDCS
in inducing corticomotor plasticity are well described
[1], there have been no reports of motor function effects
in healthy young adults lasting longer than 30 minutes
following bilateral tDCS on enhancing motor function.
Therefore, the purpose of this study was to determine
whether unilateral or bilateral stimulation differentially
induces enhanced motor function of the non-dominant
hand in healthy adults and to further elucidate the
neural mechanisms underlying any potential after-
effects on motor function following unilateral and
bilateral stimulation.

Methods

Participants

Eleven healthy adults aged 22-36 years without a history
of upper limb injury or neurological disorder par-
ticipated in the study. All participants were right hand
dominant (mean laterality quotient, 72.5 + 14.5) ac-
cording to the 10-item version of the Edinburgh Hand-
edness Inventory [29]. Prior to the experiment, all
participants completed the adult safety screening ques-
tionnaire to determine their suitability for TMS and
tDCS application [30]. All participants gave written in-
formed consent prior to participation in the study, which
was approved by the Deakin University Human Research
Ethics Committee. All experiments were conducted
according to the standards established by the Declar-
ation of Helsinki.
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Experimental approach

Using a randomized, cross-over design; each participant
was exposed to 13 minutes of sham, unilateral-anodal or
bilateral tDCS applied at 1.0 mA (25 cm? electrodes,
current density 0.040 mA/cm?). In all tDCS conditions,
the anode was placed over the “hot spot” of the non-
dominant extensor carpi radialis longus (ECRL) muscle
as determined by TMS. The order of these conditions
were counterbalanced and randomized across partici-
pants, with a one weeks rest between each condition. A
purpose made Excel macro was used to randomize each
experimental condition. This was a double-blinded trial
as the investigator performing the experimental treat-
ment and evaluation along with the participant, was not
aware of which tDCS condition was being applied. This
was achieved as the tDCS machine used, allowed for the
use of a code to determine whether tDCS was active or
inactive (sham). Within the sham condition, 50% of the
unilateral stimulation and 50% of the bilateral stimula-
tion was randomized for sham stimulation. Single and
paired-pulse TMS was used to assess the after-effects of
unilateral, bilateral or sham stimulation on corticomotor
excitability of the right M1 and motor function of the
non-dominant left ECRL. Ten single-pulse (130% of active
motor threshold [AMT]), 10 paired-pulse (70% of AMT)
and 10 test (test-intensity set to produce MEPs of ~1 mV)
TMS stimuli were applied over the cortical area for the
left ECRL at baseline, immediately following, 30 and 60
minutes post tDCS, with the order of TMS stimuli (single,
paired-pulse or test) prior to and following tDCS, ran-
domized throughout the trials (30 trials in total for each
time point). Motor function was measured at each of
these time points in all conditions by having participants
complete a Purdue pegboard test with their left hand only.
Figure 1 displays a schematic representation of the
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experimental protocol with measures obtained before and
after tDCS. Importantly, all electrophysiological measures
for each time point were measured prior to the perform-
ance of the pegboard, as post MEP facilitation and the ef-
fectiveness of SICI has been shown to be modulated
immediately following the completion of the pegboard test
[25].

Motor function

The Purdue pegboard was used to assess manual dexter-
ity of the participants’ non-dominant left hand. The task
involved picking up small pegs from a well and placing
them as quickly as possible in a vertical array of holes
using only the index finger and thumb. Motor function
was quantified by recording the time taken to complete
the left hand side of the peg board. Each participant was
tested three times at each time point with the average
time recorded.

Transcranial direct current stimulation of primary

motor cortex

Sham, unilateral and bilateral stimulation was delivered
by a battery driven constant-current transcranial direct
current stimulator (NeuroConn, Ilmenau, Germany) via
a pair of conductive rubber electrodes, each positioned
inside a saline-soaked surface sponge electrode (25 cm?).
During unilateral stimulation, the anode was fixed with
two straps over the optimal cortical representation of
the left ECRL muscle as identified by TMS over the right
cortex, and the cathode (25 cm?) was placed over the left
contralateral supra orbital area. During bilateral stimula-
tion, the anode was placed over the cortical representa-
tion of the left ECRL and the cathode was placed over
the cortical representation of the right ECRL. For the
sham condition, both unilateral and bilateral (50% each)

Purdue Purdue Purdue Purdue
Pegboard Pegboard Pegboard Pegboard
10 x Single Pulse TMS : 13 min tDCS : : :
1 {1 mA) 1 1 1
10 x Paired Pulse TMS : Sham : : :
Test response: ~ 1mV 1 Unilateral 1 1 1
Conditioning stimulus: 70% AMT : Bilateral e : T : his :
5% AMT 5x 5x 5x
M-waves M-waves M-waves M-waves
0 min 30 min 60 min
Baseline Intervention Post Intervention
Figure 1 Schematic representation of the experimental protocol with measures obtained before, immediately after (0 min),
30 and 60 minutes after tDCS. Time-course measures included assessments of Myax, active motor threshold (AMT), cortical excitability
(130% AMT), short-interval intracortical inhibition (SICl) and motor function (pegboard).




Kidgell et al. BMC Neuroscience 2013, 14:64
http://www.biomedcentral.com/1471-2202/14/64

sham stimulation was applied according to the electrode
positioning above. In order to obtain the participants
perception of discomfort throughout the tDCS condi-
tions, discomfort was assessed using a visual analogy
scale (VAS), with “no discomfort” at one end of a 100-
mm line and “extremely uncomfortable” at the other,
during the first three minutes of cortical stimulation.

Transcranial magnetic stimulation and electromyography
Focal TMS was used to measure corticomotor excitabil-
ity and SICI of the contralateral ECRL. Specifically, TMS
was applied over the right M1 using a BiStim unit at-
tached to two Magstim. 200 stimulators (Magstim Co,
Dyfed, UK) to produce MEPs in the non-dominant left
ECRL. A figure-eight coil, with an external loop diam-
eter of 9 cm, was held over the right M1 at the optimum
scalp position to elicit MEPs in the left ECRL. The
induced current in the brain flowed in a posterior-to-
anterior direction. Sites near the estimated centre of the
ECRL were explored to determine the optimal site at
which the largest MEP amplitude was obtained, and this
area was marked by a small X’ in permanent marker. To
ensure consistency throughout the study period and reli-
ability of coil placement, the participant and researcher
maintained the mark between experimental conditions.
Care was taken by the researcher to ensure that the coil
was held over the same position on the scalp so that the
same area of the M1 was stimulated for all experimental
conditions. All TMS measures were taken during weak
voluntary contraction, by having the participant hold
their hand in line with their wrist (neutral position).
Root mean square (rms) electromyography (EMG) of the
ECRL was obtained prior to each TMS stimulus to
ensure that there were no changes in pre-stimulus
rmsEMG which may have altered the MEP amplitude.
AMT was determined as the minimum stimulus inten-
sity that produced a small MEP (200 £V in 5 out of 10
consecutive trials) during isometric contraction of the
ECRL at 5 + 2% of maximal rmsEMG activity. A con-
stant level of contraction was maintained with reference
to an oscilloscope (HAMEG, Mainhausen, Germany)
that displayed the rmsEMG signal in front of the partici-
pant. The stimulus intensity started at 50% of maximum
stimulator output (MSO) and was altered in increments
of £+ 1% of MSO until the appropriate threshold level
was achieved. All MEP amplitudes were evaluated using
an in test-stimulus intensity of 130% AMT.

Surface electromyography (SEMG) activity was re-
corded from the left ECRL muscle using bipolar Ag-
AgCl electrodes. These electrodes were placed on the
ECRL muscle, with an inter-electrode distance (centre to
centre) of 2 cm with a muscle belly-tendon montage. A
grounding strap placed around the wrist was used as a
common reference for all electrodes. All cables were
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fastened with tape to prevent movement artifact. The
area of electrode placement was shaven to remove fine
hair, rubbed with an abrasive skin rasp to remove dead
skin, and then cleaned with 70% isopropyl alcohol. The
exact sites were marked with a permanent marker by
tracing around the electrode, and this was maintained
for the entire three week period by both the researcher
and participant to ensure consistency of electrode place-
ment relative to the innervation zone. An impedance
meter was used to ensure impedance did not exceed 10
kQ prior to testing. sSEMG signals were amplified (x100-
1000), band pass filtered (high pass at 13 Hz, low pass at
1000 Hz), digitized online at 2 kHz for 500 ms, recorded
and analyzed using Power Lab 4/35 (AD Instruments,
Bella Vista, Australia).

Short-Interval Intracortical Inhibition (SICI)

The protocol for SICI included 10 unconditioned stim-
uli, with a test intensity set to produce MEPs of ~1 mV
in the ECRL and 10 conditioned stimuli, with a condi-
tioning stimulus intensity set at 70% of AMT to induce
SICL Both AMT and the test stimulus intensity were ad-
justed at each time point following the removal of tDCS,
if required, to ensure that AMT (% MSO) and the test
MEP amplitudes were similar (1 mV) prior to and fol-
lowing tDCS. An inter-stimulus interval (ISI) of 3 ms be-
tween the conditioning and test stimulus was used [31].
Single and paired-pulse stimuli were presented according
to a predetermined randomization protocol, with a 6-9
second time period between each stimulus.

Maximal compound muscle action potential

Direct muscle responses were obtained from the left
ECRL muscle by supramaximal electrical stimulation
(pulse width 1 ms) of the brachial plexus (Erbs point)
under resting conditions (DS7A, Digitimer, UK). The site
of stimulation that produced the largest M-wave was
located by positioning the bipolar electrodes in the
supraclavicular fossa. An increase in current strength
was applied to the brachial plexus until there was no fur-
ther increase observed in the amplitude of the SEMG
response (Mpiax). To ensure maximal responses, the
current was increased an additional 20% and the average
Muax was obtained from five stimuli, with a period of
6-9 seconds separating each stimulus. Myax was
recorded at baseline and at each time point following
the removal of tDCS for each condition, to ensure that
there were no changes in peripheral muscle excitability
that could influence MEP amplitude.

Data analyses

Pre-stimulus rmsEMG activity was determined in the
ECRL 100 ms prior to each TMS stimulus during each
condition. Any pre-stimulus rmsEMG that exceeded 5 +
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2% maximal rmsEMG were discarded and the trial re-
peated. The peak-to-peak amplitude of MEPs evoked as
a result of stimulation was measured in the ECRL
muscle contralateral to the cortex being stimulated
in the period 10-50 ms after stimulation. MEP am-
plitudes were analyzed using LabChart 7.3.6 software
(ADInstruments, Bella Vista, NSW, Australia) after
each stimulus was automatically flagged with a cursor,
providing peak-to-peak values in mV and were then nor-
malized to Mpyax. Average MEP amplitudes were ob-
tained for each trial for single, paired-pulse and test TMS
for each stimulation block (30 trials for each time point)
separately. SICI was quantified by dividing the average
paired-pulse MEP by the average single-pulse MEP (test-
intensity set to produce MEPs of 1 mV) and multiplying
by 100.

Statistical analysis

A split-plot in time, repeated measures ANOVA was
used to compare the effect of each tDCS condition
(sham, unilateral and bilateral) on corticomotor plasti-
city and motor function. When appropriate, univariate
and post-hoc (LSD) analyses for pair wise comparisons
of means for each dependent measure were used when
significant interactions were found. Pearson’s correla-
tions (r) were calculated to assess the association be-
tween M1 plasticity and motor performance. For all
tests, the Huynh-Feldt correction was applied if the
assumption of sphericity was violated. Alpha was set at
P < 0.05, and all results are displayed as means + SEM.

Results

Baseline characteristics

There were no differences in Myax, MEP amplitude,
SICI, rmsEMG and motor function between conditions
at baseline (all P > 0.05; Table 1).

Pre-trigger rmsEMG, MyaxandVAS

Averaged over all conditions and time points, the mean
pre-trigger rmsEMG was 0.061 + 0.034 mV. Pre-trigger
rmsEMG did not vary between single and paired-pulse
trials, and there were no changes over time for any con-
dition and thus no time-by-condition interactions were
present. My, did not change as a function of time or
by condition, and there were no time-by-condition inter-
actions present, similarly, the perception of discomfort
during tDCS did not vary between conditions (all P>
0.05, Table 1).

Changes in motor function following tDCS

Performance in the pegboard task is summarized in
Figure 2. Overall, a significant time-by-condition inter-
action was detected for motor function (F, 5= 4.119;
P = 0.032). Univariate post hoc analyses revealed a 5%
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Table 1 Mean + SEM participant characteristics and
baseline excitability measures before tDCS

Sham Unilateral Bilateral P-value
AMT (%) 30.36+ 30.36+ 2936+ 0.89
1.71 167 1.60
SI(130% AMT) 39.09+ 3945+ 3838+ 0.94
237 227 216
SITmV (%) 40.09+ 3845+ 37.36+ 0.76
278 256 232
CS (%) 23.00+ 23.09+ 2218+ 0.86
1.35 1.28 1.26
Mmax (MV) 10.09+ 10.24+ 10.13+ 0.99
1.62 161 1.50
MEP (%6Mpiax) 14.80+ 1413+ 13.99+ 0.98
328 328 336
SICI ratio 29.66+ 2862+ 30.07+ 093
295 2.71 273
rmsEMG 0.056+ 0.060+ 0.058+ 0.90
(130% AMT) 0.005 0.006 0.006
VAS 1.29+ 1.10+ 1.64+ 0.25
0.19 022 027
Purdue 56.84+ 56.23+ 51.04+ 025
Pegboard 40.80 2.89 313 0.069

Values are mean + SEM. AMT, Active motor threshold; CS, conditioning
stimulus; SI stimulation intensity to produce TmV, Myax, maximum, M-wave;
VAS, visual analogue scale.

increase in motor function immediately following bilateral
stimulation when compared to sham stimulation (P <
0.05). Immediately following unilateral stimulation, there
was also a significant 5% increase in motor function rela-
tive to baseline (P < 0.05), but this change was not signifi-
cantly different from sham stimulation (time-by-condition
interaction, P = 0.274). At 30 minutes post stimulation,
the increase in motor function was significant for both
unilateral (11%, P < 0.05) and bilateral stimulation (6%,
P < 0.05) relative to sham stimulation (F,, 5o = 7.426; P =
0.004), but there was no significant difference between
these two conditions (P > 0.05). Motor function was still
facilitated 60 minutes following unilateral and bilateral
stimulation compared to sham stimulation (F; 0=
10.204; P = 0.001), with unilateral stimulation increasing
motor function by 19% (P < 0.05) and bilateral stimulation
increasing motor function by 10% (P <0.05). However,
again there were no differences between unilateral and bi-
lateral stimulation (P < 0.05).

Changes in corticomotor excitability following tDCS

Figure 3 shows the mean MEP peak-to-peak amplitude
normalized as a percentage of Myax at each time point
for each tDCS condition and Figure 4 shows an example
of raw MEP traces (mV) taken from a representative
participant at Baseline, post 1, post 2 and post 3 for each
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Figure 2 Mean (+ SEM) changes in motor function before and after sham, unilateral and bilateral stimulation. Motor function improved
immediately following unilateral (5%) and bilateral stimulation (5%), with an 11 and 6% improvement at 30 min and a 19 and 10% improvement
at 60 min post. *P < 0.05 compared with baseline. A P < 0.05 motor function compared with sham stimulation.

condition respectively. Overall, a significant time-by-
condition interaction was detected for corticomotor
excitability (Fy, 50= 5.017; P = 0.017). Univariate post
hoc analyses revealed an increase in MEP amplitude im-
mediately following unilateral stimulation (39%, P <
0.05) and bilateral stimulation(40%, P < 0.05) when com-
pared to sham stimulation, but there was no difference
between these two conditions at this time point (P =
0.581). Similarly, at 30 minutes post stimulation the
magnitude of the increase in MEP amplitude relative to
sham stimulation remained significant (F,, 59 = 5.711;
P = 0.011) for both unilateral stimulation (49%, P < 0.05)
and bilateral stimulation (62%, P < 0.05), but again there
was no difference between unilateral stimulation and bi-
lateral stimulation (P > 0.05). Interestingly, at 60 minutes
post bilateral stimulation, MEP amplitude was still facili-
tated (62%) compared to sham stimulation (P < 0.05).
For unilateral stimulation, there was a significant 33%

increase in MEP amplitude at 60 minutes relative to
baseline (P < 0.05), but this change was not significantly
different from sham stimulation (P >0.05). Upon
conducting correlation analysis, data for the two active
tDCS conditions were pooled, as there were no between
condition differences in any dependent variable. In the
sham stimulation, there were no changes over time in
MEDPs and as such this condition was excluded from the
analysis. The relationship between the change in MEP
amplitude and motor function across all time points was
not significant (r = 0.152, 0.079, 0.051, all P > 0.05).

Changes in intracortical inhibition following tDCS

The effectiveness of ICI was assessed from the ratio of
the MEP size in conditioned and test-alone trials. The
effects of tDCS on ICI are summarized in Figure 5.
Overall, a significant time-by-condition interaction was
detected for SICI (F,, 50= 3.517; P= 0.049). Univariate
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Figure 3 ECRL MEP amplitude obtained before and after sham, unilateral and bilateral stimulation. MEP amplitude (Mean + SEM % Myax)
increased immediately following (39 and 40%), 30 minutes (49 and 62%) and 60 minutes post stimulation (33 and 62%). *P < 0.05 compared with
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Figure 4 MEP amplitude (130% AMT) sweeps recorded for one participant at baseline, immediately post, 30 minutes and 60 minutes
post stimulation for sham (a) unilateral (b) and bilateral (c) stimulation.
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Figure 5 Mean (+ SEM) changes in SICI before and after sham, unilateral and bilateral stimulation. SICI decreased immediately following
unilateral (18%) and bilateral stimulation (25%) with a 45 and 18% improvement at 30 minutes. SICl returned to baseline at 60 minutes in both
conditions. *P < 0.05 compared with baseline. A P < 0.05 SICI compared with sham stimulation.
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post hoc analyses revealed significant decrease (25%) in
SICI immediately following bilateral stimulation when
compared to sham stimulation (P <0.05). Immediately
following unilateral stimulation there was also a signifi-
cant decrease (18%) in SICI relative to baseline (P <
0.05), but this change was not significantly different
from sham stimulation (P > 0.05) or bilateral stimulation
(P>0.05). At 30 minutes post stimulation, there was a
decrease in SICI following both unilateral (45%, P < 0.05)
and bilateral stimulation (18%, P < 0.05) relative to sham
stimulation (F,, 59 = 5.295; P = 0.014), but again no sig-
nificant difference between unilateral stimulation and
bilateral stimulation (P>0.05). At 60 minutes post
stimulation there was no difference in SICI between uni-
lateral or bilateral stimulation when compared to sham
stimulation (P >0.05). For both conditions, SICI had
returned to baseline levels (time effect: unilateral tDCS,
P = 0.289; bilateral tDCS, P = 0.143). Finally, Pearson
correlation analysis revealed that the change in SICI by
time and condition were not associated with improved
motor function (r = 0.103, 0.279 and 0.242).

Discussion

The main findings from this randomized, cross-over trial
was that both unilateral and bilateral tDCS enhanced
motor function of the non-dominant hand, which
remained facilitated for 60 minutes post stimulation, and
induced corticomotor plasticity for up to 60 minutes,
but there were no differences in the responses between
these two tDCS conditions. Furthermore, there was no
association between the change in MEP amplitude and
SICI, which are thought to reflect elements of corti-
comotor plasticity, and the magnitude of motor function
for the peg board task in the non-dominant hand of
healthy adults.

tDCS over M1 improves motor function of the non-
dominant hand

Several previous studies have reported that tDCS, particu-
larly unilateral stimulation (i.e. anode over non-dominant
M1), can improve motor function [16,17,21,32-35], but
whether there is a differential effect between unilateral
stimulation and bilateral stimulation improving motor
function beyond 30 minutes of stimulation is not known.
Several previous studies have shown that bilateral stimula-
tion improves motor function immediately after stimulation
when compared to unilateral and sham stimulation [13,14],
which has been attributed in part to reduction in IHI
[14,21]. In contrast to these findings, we found that there
was a similar improvement in motor function following
both unilateral and bilateral stimulation immediately after,
which persisted for up to 60 minutes. This suggests that
these two tDCS conditions do not differentially modulate
motor function of the non-dominant hemisphere in healthy

Page 8 of 12

adults. In part support of these findings, several studies
have reported that both unilateral and bilateral stimulation
protocols can induce acute improvements in motor func-
tion in both upper and lower limb musculature of stroke
patients [36-38] and in the elderly [12,20].

The findings that motor function improved following
both stimulation conditions is consistent with the results
from previous studies, which reported gains in motor
function between 9-11% [14,17]. Interestingly, we ob-
served that under both stimulation conditions, motor
function was maintained at 30 minutes (11 and 6%) and
at 60 minutes (19 and 10%) post stimulation. Further-
more, the time-course improvement of motor function
was similar to the time-course effects on corticomotor
excitability following tDCS (i.e. increased MEPs) (see 1
for a detailed review). Thus, motor function may have
improved as a direct consequence of the effects of tDCS.
For instance, an advantage of tDCS is that it modifies
the transmembrane potential of neurons, which by de-
fault and in most cases, increases M1 excitability and
primes a given motor area [14,19,21,27]. Experimental
data shows such an effect following unilateral and bilat-
eral stimulation protocols in healthy adults [34], elderly
[12] and stroke patients [37,39]. However, the present
findings show that motor function is not differentially
modulated by the type of tDCS, indicating that the
physiological mechanisms potentially regulating motor
function are not different. In light of this, we cannot ex-
clude the potential role of other cortical regions, such as
the basal ganglia, somatosensory cortex and spinal cord
underpinning the improvement in motor function.

Change in corticomotor excitability following unilateral
and bilateral tDCS

An increase in MEP amplitude of the target muscle fol-
lowing unilateral and bilateral tDCS is thought to reflect
cortical elements of plasticity [40] via intrinsic changes
in excitability of corticospinal cells [41,42]. A change in
MEP amplitude that remains elevated for up to 60 mi-
nutes has been reported and confirmed by mathematical
models, that show tDCS can modify the transmembrane
potential [43,44], which influences the excitability of
individual neurons.

We hypothesized that unilateral and bilateral stimu-
lation would differentially induce corticomotor excitabil-
ity, with bilateral stimulation increasing MEP responses
compared to unilateral stimulation. Given that unilateral
and bilateral stimulation did not differentially induce
corticomotor excitability at any time period shows that
the same cortical circuits were stimulated to a similar
magnitude and that the mechanisms involved in
the after-effects for both stimulation conditions were
similar. These findings are consistent with a previous
unilateral stimulation study, whereby the physiological



Kidgell et al. BMC Neuroscience 2013, 14:64
http://www.biomedcentral.com/1471-2202/14/64

mechanisms appear to evolve during stimulation that
most likely involves modification of the transmembrane
potential [43].

There are several reports to show that corticomotor
excitability is facilitated for up to 60 and even 90 mi-
nutes following unilateral stimulation [1], however there
is only one report on the after-effects of bilateral sti-
mulation [27]. Our findings are in agreement with
Mordillo-Mateos et al. [27]; however there are some im-
portant differences. First, they reported that MEP ampli-
tudes returned to baseline by 20 minutes, whereas we
have shown that unilateral and bilateral stimulation in-
creases corticomotor excitability that remains elevated
even at 60 minutes post stimulation. Second, we applied
tDCS for 13 minutes in all conditions compared to only
5 minutes in their study. A series of studies examining
the effects of different durations of unilateral stimulation
on corticomotor excitability indicated a linear relationship
between the duration of application and the increase in
the duration of the after-effects [1,4,6,7,45-49]. Our results
confirm these previous findings for unilateral stimulation;
however, corticomotor excitability remained elevated at 60
minutes post bilateral stimulation, which shows that bilat-
eral stimulation facilitates corticomotor excitability be-
yond 20 minutes and that the same after-effects occur as
those for unilateral stimulation.

The mechanisms inducing the after-effects of unilat-
eral stimulation are well described [1], however, the
mechanism for modulating corticomotor excitability fol-
lowing bilateral stimulation remains uncertain. Given
that IHI was not measured in the current study, the
induction of corticomotor plasticity via bilateral stimu-
lation may be related to the differences in the induced
cortical electrical field current density. Certainly, current
flow direction is different when using a motor cortex-
contralateral supraorbital arrangement compared to motor
cortex-motor cortex arrangement [50]. Recent computa-
tional data suggests that the spatial focality of induced
cortical electrical field current densities is greater when
the active (anode) and return (cathode) electrodes are
closer together. For example Faria et al. [50] demon-
strated that decreasing the inter-electrode distance
resulted in increased current density on the scalp under
the edges of the electrode. It’s likely that the reduced
inter-electrode distance in the bilateral stimulation con-
figuration has increased the effectiveness of the anodal
“target” electrode over the M1 hot spot for the non-
dominant ECRL muscle. Therefore, the induction of
corticomotor plasticity following bilateral stimulation is
likely due to increased focality.

Although only speculative, it’s possible that the ca-
thode decreased corticomotor excitability in the dominant
M1 which reduced the inhibitory inputs onto the ho-
mologous non-dominant M1, which has subsequently
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increased corticomotor excitability by increasing the net
effect of the anodal stimulation [13,14,21]. One caveat to
this interpretation is that we did not measure MEPs for
the dominant hemisphere.

Changes in intracortical inhibition following unilateral
and bilateral tDCS

Adjustments in SICI have been reported to be critical in
the selective activation of muscles, particularly hand
muscles, suggesting that intracortical inhibition is im-
portant for motor function [51,52]. No studies have
compared the after-effects of unilateral and bilateral
tDCS on modulating SICI. Similar to corticomotor excit-
ability, unilateral and bilateral tDCS did not differentially
induce SICI. Despite this, SICI was reduced for 30
minutes post stimulation, during both stimulation condi-
tions it returned to baseline by 60 minutes. These find-
ings are consistent with previous studies [7,11], whereby
SICI was reduced following unilateral stimulation. How-
ever, in contrast to our original hypothesis that bilateral
stimulation would reduce SICI further compared to uni-
lateral stimulation, there was no interaction between the
type of stimulation and the modulation of GABAergic
inhibition. While Nitsche et al., [7] reported that the
after-effects of SICI were predominantly induced by uni-
lateral stimulation; a previous study reported no signifi-
cant difference in SICI with bilateral stimulation [13].

The reduction in intracortical inhibition (for up to 30
minutes) could have contributed to the task-dependent
MEP facilitation by unmasking existing excitatory con-
nections to corticospinal neurons activated by TMS
[53-55] and/or by enhancing synaptic plasticity at a cortical
level [40,41,56]. Taken together, these results demonstrate a
noticeable involvement of intracortical synaptic mecha-
nisms that modulate indices of corticomotor plasticity.

We specifically investigated SICI as several plasticity
inducing interventions, such as motor skill training,
show that reduced SICI is an important mechanism
for optimal motor skill learning and for inducing
corticomotor plasticity [57]. Additionally, tDCS stu-
dies have been advocated to act as a potential pri-
mer for improving motor function in healthy adults
[16-18,34] and stroke patients [11,16,36,38]. How-
ever, the contribution of SICI to improved motor
function remains unresolved.

Association between corticomotor plasticity and motor
function from tDCS

There is a widespread belief that increased corticomotor
excitability and reduced ICI are associated with the mag-
nitude of behavioral improvement [58]. However, in
agreement with several published studies [23,59], we
found no association between the changes in corticomotor
plasticity (increased MEP amplitude and reduced SICI)
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and improved motor function (pegboard task). Consistent
with these findings, Rogaschet al., [59] reported that in-
creased MEP amplitude and reduced SICI were not asso-
ciated with the degree of motor learning during a simple
index finger motor task in young adults. Interestingly,
Williams et al., [13] reported a strong association between
changes in MEP amplitude and motor performance, but
no association between SICI and motor performance.
These mixed findings between indices of corticomotor
plasticity and motor function are likely to be the result of
many factors that are known to influence the plasticity re-
sponse, such as the extent of skilled hand use, prior his-
tory of synaptic activity, genetic factors (e.g. brain derived
neurotrophic factor gene) [60], and gender, with the po-
tential effect of the menstrual cycle [61]. Nonetheless,
motor function still improved following unilateral and bi-
lateral stimulation, which provides further evidence that
tDCS may be viable rehabilitation tool following neuro-
muscular injury or disease.

There are several limitations associated with this
study. Indices of corticomotor plasticity were only mea-
sured from the non-dominant hemisphere, therefore, it
is unclear whether cathodal stimulation over the domin-
ant hemisphere would result in reduced corticomotor
excitability as previous studies have suggested [1,9].
However, there is evidence that bilateral stimulation can
improve motor function of the non-dominant hand, with
the reported mechanisms related to modifications in IHI
following bilateral stimulation, without any TMS mea-
sures. Also, intracortical facilitation (ICF) was not mea-
sured, and as such the changes in SICI may have been as
a result of increased ICF. Indeed, some evidence shows
increased ICF following tDCS [7]. Finally, it could be
suggested that measuring MEPs and SICI from the
ECRL muscle may lack specificity to the pegboard task
that involves intrinsic muscles of the hand. However, the
performance of the pegboard task requires the coordi-
nated control and activation of the muscles of the entire
arm, and not just the intrinsic muscles of the hand and
fingers. Further, there are several kinematic phases in-
volved, with the transportation of the pegs to be placed
in the well, governed largely by the muscles proximal to
the hand, and as such we don’t believe that recording
from the ECR was a distinct limitation.

Conclusions

Previous studies have demonstrated improved motor
function following both unilateral and bilateral stimula-
tion protocols; however few have compared the time
course effects of tDCS on modulating motor function.
We examined the effects of a single-session of unilateral
stimulation, bilateral and sham stimulation on modulating
motor function of the non-dominant limb and indices of
corticomotor plasticity. In healthy adults, the extent of
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motor function improvement and corticomotor plasticity
were similar between unilateral and bilateral tDCS. There-
fore, the physiological mechanisms regulating motor func-
tion were not different. Nevertheless, the present data
indicate that tDCS induces behavioral changes in the non-
dominant hand as a consequence of mechanisms associ-
ated with use-dependent cortical plasticity and is not
influenced by the tDCS electrode arrangement.
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