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Abstract

synergistic neurite outgrowth.

co-treatment of growth factors and PACAP.

Background: Synergistic multi-ligand treatments that can induce neuronal differentiation offer valuable strategies
to regulate and modulate neurite outgrowth. Whereas the signaling pathways mediating single ligand-induced
neurite outgrowth, such as Akt, extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (JNK), and p38
mitogen-activated protein kinase (P38), have been extensively studied, the mechanisms underlying multi-ligand
synergistic neurite outgrowth are poorly understood. In an attempt to gain insight into synergistic neurite
outgrowth, PC12 cells were treated with one of three combinations: pituitary adenylate cyclase-activating peptide
(PACAP) with epidermal growth factor (EP), basic fibroblast growth factor (FP), or nerve growth factor (NP) and then
challenged with the appropriate kinase inhibitors to assess the signaling pathways involved in the process.

Results: Response surface analyses indicated that synergistic neurite outgrowth was regulated by distinct pathways
in these systems. Synergistic increases in the phosphorylation of Erk and JNK, but not Akt or P38, were observed
with the three growth factor-PACAP combinations. Unexpectedly, we identified a synergistic increase in JNK
phosphorylation, which was involved in neurite outgrowth in the NP and FP, but not EP, systems. Inhibition of JNK
using the SP600125 inhibitor reduced phosphorylation of 90 kDa ribosomal S6 kinase (POORSK) in the NP and FP,
but not EP, systems. This suggested the involvement of POORSK in mediating the differential effects of JNK in

Conclusions: Taken together, these findings reveal the involvement of distinct signaling pathways in regulating
neurite outgrowth in response to different synergistic growth factor-PACAP treatments. Our findings demonstrate a
hitherto unrecognized mechanism of JNK-P9ORSK in mediating synergistic neurite outgrowth induced by the
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Background

The effects of synergistic activity have been gaining atten-
tion in the treatment of diseases such as cancer and AIDS
[1,2]. Drug or ligand synergy is defined as the joint action
of two or more agents for which the result is greater than
the sum of the actions of the individual parts. Synergistic
therapeutic strategies therefore have the potential to accel-
erate the response to treatment, achieve higher efficacy,
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and potentially reduce the side effects associated with sin-
gle treatment approaches [3-5]. Indeed, several studies
have demonstrated the benefits of the co-administration
of neurotrophic factors [6] and the combinatorial treat-
ment of nerve growth factor (NGF) with glial cell-derived
neurotrophic factor (GDNF) [7] or insulin-like growth fac-
tor (IGF)-1 [8] in promoting synergistic axonal or neurite
elongation. Axonal and dendritic outgrowth from the
neuronal cell body is a key cellular aspect of neuronal
differentiation that is critically important not just in de-
velopment, but also in recovery from injuries and neu-
rodegenerative diseases [9]. Following nerve injury, the
rate of nerve regeneration is critical, as a full functional
recovery can be impeded by delayed regeneration [10].
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Thus, accelerating or facilitating neurite outgrowth
through a synergistic approach may provide a valuable
treatment strategy for patients with nerve injury. How-
ever, the mechanisms underlying such synergistic action
are currently not well understood.

Rat pheochromocytoma PC12 cells have been widely
used as a model to study neuronal differentiation. Upon
treatment with ligands such as the NGF [11], basic-
fibroblast growth factor (FGFb or FGF-2) [12], and pituit-
ary adenylate cyclase-activating peptide (PACAP) [13],
PC12 cells differentiate into sympathetic neuron-like cells
characterized by long-term and stable neurite outgrowth.
These ligands regulate neurite outgrowth through path-
ways such as the extracellular signal-regulated kinase 1/2
(Erk) [14,15], p38 mitogen-activated protein kinase (P38)
[16], c-Jun N-terminal kinase (JNK) [15,17], and the
phosphatidylinositol 3-kinase (PI3K) [18]. In compari-
son, epidermal growth factor (EGF) promotes prolifera-
tion instead of differentiation in these cells [19,20].
Studies have attributed this difference in cell fate to the
kinetics of Erk activation, where transient or sustained
Erk activation leads to proliferation or differentiation,
respectively [14,21]. Although EGF alone does not in-
duce neurite outgrowth in PC12 cells, it has been found
to synergize with cyclic adenosine monophosphate
(cAMP)-elevating agents such as PACAP and forskolin,
thereby enhancing neurite outgrowth [22,23]. Consist-
ent with the knowledge that Erk is important in regulat-
ing differentiation, enhanced Erk activity has also been
observed in the synergy model [23]. Similarly, cAMP-
elevating agents have also been found to synergize with
FGFb [24] and NGF [25,26] to enhance neurite out-
growth, where both P38 and Erk have been found to
regulate neurite outgrowth induced by NGF-cAMP
[26,27]. Whereas NGF, FGFb and EGF can all cooperate
with cAMP-elevating agents to enhance neurite out-
growth, an interesting question is whether these three
systems activate a common set of signaling pathways to
mediate such synergy.

In this study, we investigated the activation and in-
volvement of various signaling pathways in synergistic
neurite outgrowth using three combinations of ligands:
NGF-PACAP (NP), FGFb-PACAP (FP) and EGF-PACAP
(EP). As expected, all three systems showed a synergistic
phosphorylation of Erk concomitant with neurite out-
growth. Interestingly, JNK, but not Akt or P38, was also
synergistically activated in all three systems. Unexpect-
edly, inhibition of JNK blocked neurite outgrowth in the
NP and FP, but not EP, systems. This differential in-
volvement of JNK was found to be dependent on the
regulation of P9ORSK activity. Thus, a JNK-PO9ORSK link
was identified as a hitherto unrecognized mechanism
mediating the synergistic effect in neurite outgrowth.
Our results therefore demonstrate the involvement of
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distinct signaling pathways in regulating neurite out-
growth in response to different synergistic growth
factor-PACAP stimulation.

Methods

Materials

Mouse recombinant NGF was purchased from Pepro-
tech (Rocky Hill, NJ). Mouse recombinant EGF was pur-
chased from Shenandoah Biotechnology (Warwick, PA).
PACAP was purchased from American Peptide Company
(Sunnyvale, CA). MEK inhibitor U0126, JNK inhibitor
SP600125, PI3K inhibitor LY294002, and P38 inhibitor
SB203580 were purchased from LC Laboratories (Woburn,
MA). P9ORSK inhibitor BRD7389 was purchased from
Santa Cruz Biotechnology (Santa Cruz, CA). Primary anti-
bodies against phospho-specific Erk1/2 (Thr202/Tyr204)
(pErk), pan-Erk1/2, phospho-specific JNK (Thr183/
Tyr185) (pJNK), pan-JNK, phospho-specific P38 (Thr180/
Tyr182) (pP38), phospho-specific Akt (Serd73) (pAkt),
phospho-specific P9ORSK (Ser380) (pP90RSK), and pan-
RSK were purchased from Cell Signaling Technologies
(Danver, MA). An antibody against phospho-specific c-Jun
(Ser73) (pc-Jun) was purchased from Abnova (Taipei,
Taiwan). Human recombinant FGFb and an antibody
against actin were purchased from EMD Millipore
(Billerica, MA). Horseradish peroxidase-conjugated sec-
ondary antibodies, Imperial Protein Stain and Hoechst
were purchased from Thermo Scientific (Wilmington,
DE).

Cell culture

Rat pheochromocytoma PC12 cells (American Type Cul-
ture Collection, Manassas, VA) were cultured in Dulbecco’s
minimum essential medium (DMEM) supplemented with
10% heat inactivated fetal bovine serum (FBS, Sigma-
Aldrich, St. Louis, MO) and 5% Horse Serum (HS, Hyclone,
Thermo Scientific). Cells were cultured with 100U/ml peni-
cillin and 100 mg/ml streptomycin, and maintained in a hu-
midified incubator with 5% CO, at 37°C.

Western blot analyses

PC12 cells were seeded into the wells of 6-well plates pre-
coated with poly-D-lysine at a density of 500,000 cells/well
and cultured in growth medium for 48 hours. Following
this, cells were incubated in serum-depleted medium (1%
FBS, 0.5% HS) for an additional 16 hours. Cells were then
simulated with individual or combinations of NGF, FGFb,
EGEF, and PACARP. For treatments with inhibitors, the cells
were pre-incubated for 1 hour with the respective inhibi-
tors prior to stimulations with the ligands. Cells were har-
vested within 1 hour after ligand stimulation. Treated cells
were washed once with PBS and subsequently lysed in 2%
sodium dodecyl sulfate (SDS). Protein concentrations in
the total cell lysates were quantified using the microBCA
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assay (Pierce Biotechnology, Rockford, IL). The protein
samples were then separated by SDS-polyacrylamide gel
electrophoresis (SDS-PAGE), transferred onto nitrocellu-
lose membranes, blocked with 5% milk and probed with
antibodies against phosphorylated (p)Erk (1:5000 dilution),
pJNK (1:1000 dilution), pAkt (1:1000 dilution), pP38
(1:1000 dilution), pP9ORSK (1:1000 dilution), pc-Jun
(1:1000 dilution), total Erk (1:5000 dilution), total JNK
(1:1000 dilution), total P9ORSK (1:1000 dilution), and
actin (1:10,000 dilution). Blots were stripped with Re-
store Western Stripping Buffer (Pierce Biotechnology)
and re-probed for different proteins. The protein bands
were developed with Immobilon Western Chemilumin-
escent HRP Substrate (Millipore) on a ChemiDoc XRS
system (Biorad, Hercules, CA). The band intensities were
quantified using Quantity One 1-D Analysis software
(Biorad). To enable comparisons of signals across different
blots, lysates from NGF-PACAP—-treated PC12 cells were
used to generate a standard curve for each blot.

Measurement of neurite outgrowth

PC12 cells were seeded into the wells of 12-well plates at a
density of 25,000 cells/well, and cultured as described for
western blotting. After treatment with the respective
ligands for 48 hours, the cells were fixed with 4% parafor-
maldehyde for 20 minutes and permeabilized with ice-
cold methanol for 15 minutes. The cell bodies were then
stained with Imperial Protein Stain for 15 minutes and the
nuclei with Hoechst stain for 5 minutes. The images of
the cells were then captured using a Zeiss inverted fluor-
escent microscope (Zeiss Oberkochen, Germany). The
length of the neurites was quantified using HCA-Vision
software (CSIRO, North Ryde, NSW, Australia). The neur-
ite quantification procedure, which involved neuron body
detection, neurite detection, and neurite analysis, was per-
formed as previously described [28]. The neurite length
obtained under control conditions (i.e., in the absence of
NGF and PACAP) was subtracted from each treatment
condition. Thereafter, the neurite length for each condi-
tion was normalized against that obtained for cells grown
under 50 ng/ml of NGF, assigned an arbitrary value of 1.

Statistical analyses

Statistical significance was determined using the Stu-
dent’s t-test and the respective results are displayed as
the mean + standard deviation (S.D.). All experiments
and measurements were replicated at least three times.

Results

Response surface analyses suggests that synergistic
neurite outgrowth is regulated by discrete mechanisms in
different systems

NGF [25,26], FGFb [24] and EGF [22,23] are known to
synergize with cAMP-elevating agents to enhance neurite
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outgrowth. NGF or FGFb cause considerably longer neur-
ite outgrowth than EGF or PACAP (Figure 1). To better
visualize the synergistic action between growth factors
and PACAP on neurite length, we used a response surface
model (RSM) [29] and examined the effect of NGF-
PACAP (NP), FGFb-PACAP (FP) and EGE-PACAP (EP)
treatments in these cells. The cells were treated with the
ligands singly and in combination. In these plots, the
neurite length obtained after 48 hours of combinatorial
treatment was compared to that obtained by a summation
of neurite length induced by the individual ligands (addi-
tive effect). Surface plots of the three systems—NP
(Figure 1a(i)), FP (Figure 1b(i)), and EP (Figure 1c(i))—
clearly indicated that combinatorial treatments resulted in
longer neurites than the additive effects of single ligand
exposure, indicating synergism. These plots also showed
that synergism (as indicated by the plateau regions) oc-
curred over a wide range of doses of growth factors and
PACADP. To further illustrate that synergistic neurite out-
growth can occur even with low doses of PACAP, an iso-
bologram [30] was plotted for each of the three systems
(Figure 1a(ii), 1b(ii), & 1c(ii)). Significantly higher concen-
trations of PACAP were required in the absence of any
growth factors to obtain similar neurite lengths. In
addition, in the NP and FP systems, the saturating neurite
length for the combinatorial treatment was about twice
that of the additive effect, whereas a difference of about 4-
fold was observed for the EP system. This indicates a
higher degree of synergism in the EP system, and suggests
that synergistic neurite outgrowth in the EP system may
differ mechanistically from those of the NP and FP sys-
tems. Representative images of the neurite outgrowth in
each system are shown in Figure 1d.

Synergistic phosphorylation of Erk & JNK upon
combinatorial growth factor-PACAP treatment

We hypothesized that there was likely to be synergistic
activation of the various kinases that regulate synergistic
neurite outgrowth. To examine the pathways involved in
regulating synergistic neurite outgrowth in these sys-
tems, we conducted a time-course to determine changes
in the phosphorylation levels of four kinases—Akt, Erk,
JNK, and P38—upon NGF, PACAP, and NP treatments.
The kinases were activated throughout the entire 1 hour
time-course (Additional file 1: Figure S1). Thus, for con-
venience, subsequent analyses were performed only at
20 and 60 minutes time-points.

After treating the cells with multiple doses of NGF
and PACAP, the phosphorylation levels of Erk, JNK
(Figure 2a), P38 and Akt (Additional file 2: Figure S2a)
were quantified and analyzed for synergism. Single lig-
and treatment with NGF but not PACAP induced sus-
tained Erk phosphorylation. To analyze for synergistic
activation of Erk, effects upon combinatorial treatments
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(See figure on previous page.)
Figure 1 Synergistic neurite outgrowth induced by combinatorial growth factor-PACAP treatments. (a(i)), (b(i)), (c(i)) Response surface
plots for the NGF (0-50 ng/ml)-PACAP (0-500 ng/ml) (NP), FGFb (0-100 ng/ml)-PACAP (0-500 ng/ml) (FP), and EGF (0-50 ng/ml)-PACAP (0-500 ng/
ml) (EP) systems, respectively. Top panel: Experimentally obtained results of the growth factor-PACAP combinatorial treatment; Bottom panel:
Additive effect calculated through the summation of the individual effects of the growth factors and PACAP. The x, y, and z axes denote concen-
trations of PACAP (ng/ml), concentrations of growth factors (ng/ml), and neurite length, respectively. (a(ii)), (b(ii)), (c(ii)) Isobologram plots illus-
trating the concentrations of growth factor and PACAP necessary to obtain a neurite length of 0.14 for the NP, FP, and EP systems, respectively.
(d) Representative images of cells treated with each growth factor (50 ng/ml) with and without PACAP (100 ng/ml).
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Figure 2 Synergistic and sustained phosphorylation of Erk and JNK upon combinatorial NGF and PACAP treatment. (a) Time-course of
Erk and JNK phosphorylation at 20 and 60 minutes following NGF (0-50 ng/ml)-PACAP (0-100 ng/ml) (NP) treatment. Phosphorylation levels of
the proteins were analyzed by western blotting, and normalized to the levels of actin. Fold-changes in (b) pErk and (c) pJNK were quantified by
densitometry. Data for 50 ng/ml NGF and 100 ng/ml PACAP (highlighted in blue) were plotted and analyzed for synergism. Significant differences
between combinatorial experimental treatment of NGF-PACAP and summation of their individual effects were calculated using the paired
Student's t-test. A value of p < 0.05 was considered significant (**p < 0.01). Graphs showing synergistic Erk and JNK phosphorylation at the other
ligand concentrations were plotted in Additional file 3: Figure S3a & S3b. Western blot data and quantified results for pP38 and pAkt were plotted
in Additional file 2: Figure S2a-S2c.
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of NP was compared to the additive effect of the individ-
ual ligands. In the presence of both ligands, Erk phos-
phorylation was higher than the additive effects of NGF
and PACAP separately (Figure 2b, & Additional file 3:
Figure S3a). This is in congruence with the finding that
NGF and NP treatment but not PACAP induced exten-
sive neurite outgrowth, and is consistent with the idea
that sustained Erk phosphorylation is involved in neurite
outgrowth [21,27,31].

Similarly, sustained activation of JNK by NGF was ob-
served (Figure 2c). In addition, we made the novel discov-
ery that JNK was also synergistically phosphorylated upon
combinatorial NP treatment (Figure 2c, & Additional
file 3: Figure S3b) and it was sustained for up to 1 hour
post-stimulation. On the contrary, using the same ana-
lyses, synergistic phosphorylation of P38 (Additional file 2:
Figure S2a, & S2b) and Akt (Additional file 2: Figure S2a,
& S2c) were not observed in the NP system.
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Having found that Erk and JNK were synergistically
phosphorylated in the NP system, we next investigated if
these trends were also common to the FP and EP sys-
tems. Similar to the NP system, sustained and synergistic
Erk (Figure 3a(i), & b(i)) and JNK (Figure 3a(ii), & b(ii))
phosphorylation were observed for the FP and EP treat-
ments, respectively, within 1 hour of stimulation. Like-
wise, neither P38 (Additional file 4: Figure S4a(i), & S4b
(i)) nor Akt (Additional file 4: Figure S4a(ii), & S4b(ii))
were synergistically phosphorylated in the FP and EP
systems. Thus, these results indicate that specific kinases
were synergistically phosphorylated by growth factor-
PACAP co-treatment, suggestive of their roles in mediat-
ing synergistic neurite outgrowth.

The total protein levels of Erk, JNK, P38 and Akt upon
treatment with single ligand or combinations of the
growth factors and PACAP were unchanged across all
conditions and time-points (Additional file 5: Figure S5).
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Figure 3 Synergistic and sustained phosphorylation of Erk and JNK upon FP and EP treatments. Time-course of quantified Erk and JNK
phosphorylation at 20 and 60 minutes upon (a) FGFb (50 ng/ml)-PACAP (100 ng/ml) (FP) or (b) EGF (50 ng/ml)-PACAP (100 ng/ml) (EP) treatment.
Fold-change in (i) pErk, and (i) pJNK were quantified by densitometry and normalized to the levels of actin. Significant differences between com-
binatorial experimental treatment of growth factor-PACAP and the summation of their individual effects were calculated using the paired
Student's t-test. A value of p < 0.05 was considered significant (**p < 0.01; *p < 0.05).




Seow et al. BMC Neuroscience 2013, 14:153
http://www.biomedcentral.com/1471-2202/14/153

Page 7 of 14

a(i) a(ii)
2.5 - mOuM U0126 5.5 _ MOuM SP600125
@5uM U0126 @2.5uM SP600125
BE10pM U0126 BE5S5uM SP600125
2 | E@20pM UD126 > -|E10uM SP600125
E’ § 1.5 ae E" ;é 15
zE e |5
2= b 122
0.5 % 0.5 -
7
0 E: Z ZA 0 w . § 7 é
Control PACAP NGF NGF+PACAP Control PACAP NGF NGF+PACAP
a(iii) a(iv)
2.5 _mOpM SB203580 2.5 . MOuM LY294002
10pM SB203580 10pM LY294002
@20uM SB203580 20pM LY294002
2 % 2 %
3] . IHR |
2= B .
. B
0.5 %% 0.5 % /%/
| B
| | n
Control PACAP NGF NGF+PACAP Control PACAP NGF NGF+PACAP
b c
) .
o = = 1.5
g3 BE
2z 22
o2

< &° 2
S a-o“qé?'a“\? 55 55 é’a&o
e = = <
Pttty
& Qé;o < &5 “égo

[}
S & B P )
s < o S 5 P
& S S
& éyg vdg vd?g
“S'D Q‘Q Q,‘Q vs
& &
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p < 0.05 was considered significant (*p < 0.01; *p < 0.05).
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Erk is required for neurite outgrowth in all 3 systems
whereas JNK is required only for the NP and FP, but not
EP, systems

We next examined the role of these synergistically
activated kinases in regulating neurite outgrowth using
kinase inhibitors. As expected, treatment with the MEK
inhibitor, U0126, inhibited neurite outgrowth in the NP
system in a dose-dependent manner (Figure 4a(i), &
Additional file 6: Figure S6). Similarly, inhibition of
MEK also blocked neurite outgrowth in the FP and EP
systems (Figure 4b, ¢, & Additional file 6: Figure S6),
confirming the involvement of synergistic Erk phosphor-
ylation in neurite outgrowth. Further supporting the in-
volvement of synergistically phosphorylated kinases in
regulating synergistic neurite outgrowth, the JNK inhibi-
tor, SP600125, blocked neurite outgrowth in the NP
(Figure 4a(ii), & Additional file 6: Figure S6) and FP sys-
tems (Figure 4b, & Additional file 6: Figure S6). Surpris-
ingly, SP600125 at the same concentration (10 pM)
failed to inhibit neurite outgrowth in the EP system,
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showing instead enhanced neurite outgrowth (Figure 4c,
& Additional file 6: Figure S6). Higher concentrations of
SP600125 were deemed to be cytotoxic (data not shown).
Positive controls for the effects of U0126 and SP600125
are shown in Additional file 7: Figure S7a and S7b,
respectively.

As expected, inhibition of the non-synergistically acti-
vated nodes, P38 and Akt, by SB203580, and LY294002,
respectively, did not block neurite outgrowth in all three
systems (Figure 4af(iii)-(iv), b, ¢, & Additional file 6:
Figure S6). Likewise, cells treated with doses of the in-
hibitors at concentrations higher than 20 uM resulted in
high levels of cytotoxicity (data not shown). The positive
controls for SB203580 and LY294002 are shown in
Additional file 7: Figure S7c and S7d, respectively.

Next, the reduction in neurite outgrowth, after treat-
ment with inhibitors, for the NP treatment was com-
pared to the sum of reduction of neurite outgrowth in
the single ligand treatments. With U0126 (Figure 5a(i))
and SP600125 (Figure 5a(ii)), the reduction in neurite
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Figure 5 Net inhibitor-induced reduction in neurite length is greater in the synergistic systems than in the additive effect of the single
ligand treatments. Net reduction in neurite outgrowth in the (a) NP system following treatment with various concentrations of (i) U0126 (MEK
inhibitor) and (ii) SP600125 (JNK inhibitor). Reductions in neurite outgrowth in the (b) FP and (c) EP systems in the presence of specific kinase
inhibitors. Significant differences between the effects of the combinatorial treatment of growth factor-PACAP (bi-ligand) versus the sum of the
effects for each single ligand treatment were compared using the paired Student’s t-test. A value of p < 0.05 was considered significant
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(See figure on previous page.)

Figure 6 P90RSK is synergistically phosphorylated and is involved in neurite outgrowth in all three systems. (a(i)) Time-course of P9ORSK
phosphorylation at 20 and 60 minutes following NGF (0-50 ng/ml)-PACAP (0-100 ng/ml) treatment. Phosphorylation levels of the proteins were
analyzed by Western blotting, and normalized to the levels of Actin. The blots used were the same as those used for pJNK in Figure 2a. (a(ii)), (b
(i), (c(i)) Time-course measurements of pP9ORSK at 20 and 60 minutes following NGF (50 ng/ml)-PACAP (100 ng/ml) (NP), FGFb (50 ng/ml)-PACAP
(100 ng/ml) (FP) or EGF (50 ng/ml)-PACAP (100 ng/ml) (EP) stimulations, respectively. The total protein levels of POORSK upon treatment with single
ligand or combinations of the growth factors and PACAP were unchanged across all conditions and time-points (Additional file 5: Figure S5).
(a(iii)), (b(ii)), (c(ii)) Effect of P9ORSK inhibitor, BRD7389 (0.2 uM), on neurite outgrowth in the NP, FP, and EP systems, respectively. (d) Net reduc-
tion in neurite outgrowth between combinatorial ligand treatment (bi-ligand) versus the sum of neurite outgrowth reduction from treatment
with each ligand separately in the presence of BRD7389 (0.2 uM). Significant differences between the effects of combinatorial experimental treat-
ment of growth factor-PACAP and summation of their individual effects, and that between the effects of treatments with and without inhibitors

were calculated using the paired Student’s t-test. A value of p < 0.05 was considered significant (**p < 0.01; *p < 0.05).

outgrowth in the NP treatment was greater than the
sum of reduction for the single ligand treatments. Simi-
larly, for the FP (Figure 5b) and EP (Figure 5c) systems,
inhibition of the kinases required for neurite outgrowth
also resulted in a greater reduction in neurite outgrowth
in the combinatorial growth factor-PACAP treatments
than the sum of reduction for the respective single lig-
and treatments. These results support the involvement
of the various kinases in regulating synergistic neurite
outgrowth in the respective synergistic systems.

Critically, these results also suggest that these systems
utilize distinct pathways to regulate neurite outgrowth
and that not all synergistically phosphorylated kinases
are relevant to neurite outgrowth.

P90RSK is a downstream target of both Erk & JNK in the
NP & FP systems but is only downstream of Erk in the EP
system

Having found that JNK was involved in neurite out-
growth in the NP and FP, but not EP, systems, we sought
to identify the downstream targets that may be involved in
mediating this differential requirement of JNK. Among
the many downstream effectors of JNK, P9ORSK has been
recently shown to be involved in neurite outgrowth and
PC12 cells differentiation [32-34]. Thus, we examined if
P90RSK was synergistically phosphorylated and if it was
involved in JNK-mediated neurite outgrowth.

As expected, POORSK was synergistically phosphorylated
in the NP (Figure 6a(i)-a(ii), & Additional file 8: Figure
S8a), FP (Figure 6b(i)) and EP (Figure 6c(i)) systems from
20 minutes to 1 hour after stimulation. In all three systems,
neurite outgrowth was inhibited in the presence of the
P9ORSK inhibitor, BRD7389 [35,36] (Figure 6a(iii), b(ii),
c(ii), & Additional file 8: Figure S8b). In these systems,
greater reductions in neurite outgrowth were also achieved
in the combinatorial growth factor-PACAP treatments
than for the sum of the reduction in neurite outgrowth in
the respective single ligand treatments (Figure 6d), sup-
porting the involvement of P9ORSK in regulating synergis-
tic neurite outgrowth in all three systems.

To validate the role of PO9ORSK as a downstream
effector of synergistically activated JNK in the three

systems, the phosphorylation level of POORSK was exam-
ined after inhibition with SP600125. Surprisingly, treat-
ment with SP600125 inhibited P9ORSK phosphorylation
in the NP (Figure 7a) and FP (Figure 7b), but not EP
(Figure 7c), systems. These results strongly suggest that
the regulation of P9ORSK by the JNK pathway could be
a critical determinant of JNK involvement in regulating
synergistic neurite outgrowth.

In addition to JNK, P9ORSK has also been reported to
be a downstream target of Erk [37,38]. Unlike the case
for JNK inhibition, inhibition of Erk activation with U0126
suppressed PO9ORSK phosphorylation in all three systems
(Figure 7), providing further support for the role of
P9ORSK as an important mediator of neurite outgrowth.
The total levels of Erk, INK, and P9ORSK were unchanged
during the combinatorial growth factor-PACAP treat-
ments both in the presence and absence of the inhibitors
(Additional file 9: Figure S9).

Discussion
In this study, we demonstrated the involvement of dis-
tinct combinations of signaling pathways in mediating
synergistic neurite outgrowth induced by PACAP and
different growth factors (Figure 8). In these systems, Erk,
JNK, and P9ORSK were all found to be synergistically
phosphorylated. However, synergistic JNK phosphoryl-
ation was not required for neurite outgrowth following
stimulation with the combination of EGF and PACAP.
Further investigations led to the crucial finding that the
JNK-P90RSK link is critical to the involvement of JNK in
regulating synergistic neurite outgrowth in some but not
all growth factor-PACAP stimulation combinations.
cAMP-elevating agents have long been known to syner-
gize with NGF [25,26], FGFb [24], and EGF [22,23] to en-
hance neurite outgrowth. Although the pathways used by
these individual ligands to regulate neurite outgrowth
have been widely studied, little is known about the mecha-
nisms underlying synergistic neurite outgrowth. RSM-
based analyses provide a means to quantitatively compare
the degree of synergism between different treatments [29].
By such analyses, the degree of synergism in the EP system
was found to be higher than those in the NP and FP
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Figure 7 P90RSK is regulated by Erk and JNK in the NP and FP systems, but only by Erk in the EP system. (a), (b), (c) Time-course meas-
urement of pP9ORSK at 20 and 60 minutes following NGF (50 ng/ml)-PACAP (100 ng/ml), FGFb (50 ng/ml)-PACAP (100 ng/ml), and EGF (50 ng/
ml)-PACAP (100 ng/ml) treatment, respectively, in the presence or absence of MEK inhibitor, U0126 (20 uM), or JNK inhibitor, SP600125 (10 uM).
Significant differences between treatments with and without inhibitors were calculated using the paired Student’s t-test. A value of p < 0.05 was

systems, suggesting that different signaling pathways may
regulate neurite outgrowth in these systems.

To determine the pathways involved in synergistic
neurite outgrowth, four kinases were examined, each
widely reported to be involved in PC12 cells differenti-
ation: Erk [14,39,40], P38 [16,39], JNK [17,41], and Akt

Erk JNK Erk

JNK

PO9ORSK PO90RSK

| Neurite Outgrowth I | Neurite Outgrowth I

Figure 8 A schematic illustration of the different pathways
used by the three different synergistic systems, NGF-PACAP
(NP), FGFb-PACAP (FP), and EGF-PACAP (EP).

[18,40,42]. Interestingly, our results showed that Akt and
P38 were activated following ligand stimulation but not
involved in neurite outgrowth in all three systems. In
agreement with this, inhibition of these two kinases also
failed to suppress NGF-induced PC12 cells neurite out-
growth. These results were consistent with some of the
earlier reports exploring neurite outgrowth [43-45] but
not others [15-18,39-42]. A recent systems-based study
revealed a two-dimensional Erk-Akt signaling code that
was critical in governing PC12 cells proliferation and dif-
ferentiation [46]. Thus, the controversy surrounding the
involvement of P38 and Akt would be more adequately
addressed using systems-based approaches in the future.

The sustained activation of Erk has been widely re-
ported to be required for neurite outgrowth during dif-
ferentiation [14,21,27,31]. Consistent with these reports,
synergistic and sustained Erk phosphorylation was found
to be involved in neurite outgrowth in all three growth
factor-PACAP systems. This was especially evident in
the EP system, where transient Erk activation was ob-
served following treatment with EGF or PACAP alone.
Similarly, synergistic and sustained JNK phosphorylation
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was observed in all three systems. Remarkably, inhibition
of JNK led to reduced neurite outgrowth in the NP and
FP systems, but enhanced outgrowth in the EP system.
Although a previous study has found sustained JNK
activation to be sufficient to induce PC12 cells differen-
tiation [47], our results showed that sustained JNK
activation in the EP system is insufficient to induce
neurite outgrowth. These seemingly contradictory find-
ings could imply that the kinetics of JNK activation
alone is insufficient to determine if cells undergo differ-
entiation. It is likely that JNK acts in conjunction with
other signaling nodes to form a signaling network that
regulates neurite outgrowth. Nonetheless, to the best of
our knowledge, this is the first report demonstrating the
involvement of JNK phosphorylation in synergistic
neurite outgrowth.

We have shown that both Erk and JNK were synergistic-
ally phosphorylated in all three systems. This may occur
through shared common upstream effectors [48] or
through independent upstream effectors, such as PKA
and Epac [49-51]. In preliminary experiments, we ob-
served the involvement of PKA in neurite outgrowth in
the EP but not NP system (data not shown); however, a
complete understanding of the contribution of PKA and
Epac in Erk and JNK activation remains to be determined.

Although synergistic JNK phosphorylation was ob-
served in all three systems, it was not found to be in-
volved in synergistic neurite outgrowth in the EP system.
This suggests a possible difference in downstream sig-
naling. P9ORSK, which had previously been found to be
required for PCI12 cells differentiation [33], was also
found to be synergistically activated in all three systems
in our study. Interestingly, POORSK was activated by JNK
in the NP and FP, but not EP, systems. Although JNK-
mediated activation of P9ORSK has not been widely
reported, it has been observed following ultraviolet ex-
posure [34], insulin treatment [52], or transforming
growth factor alpha treatment [53]. Consistent with pre-
vious findings [38], POORSK was also regulated by Erk in
our study. The co-regulation of targets by Erk and JNK
is not uncommon, with previous studies showing that
these two kinases regulate many common targets, in-
cluding transcription factors [15,54,55], immediate early
genes [56] and differentiation-specific genes [15,56,57].
Despite this, results from several studies have suggested
that the binding sites of P9ORSK for Erk and JNK are
likely to be different [34,58], further indicating that
P90RSK may be discretely regulated by the two kinases.
Our finding of the differential regulation of P9ORSK in
the NP and EP systems in this study strongly suggests
that these synergistic systems can serve as excellent
models to decipher the mechanistic regulation of
P90RSK by its upstream kinases, Erk and JNK. The con-
tributions of Erk, JNK and P90RSK in the mechanism of
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axonal outgrowths of neurons in vivo and in vitro will
require further clarification in future studies.

Conclusions

In conclusion, our study has demonstrated distinct path-
ways involved in synergistic neurite outgrowth in differ-
ent systems. Importantly, our findings of the underlying
pathways involved in these systems have two key impli-
cations. First, some kinases such as JNK may be syner-
gistically activated by multiple ligands but yet not
necessarily involved in the synergistic neurite outgrowth
process and that its involvement in neurite outgrowth is
dependent on its interaction with P9ORSK. Second, in
the EP system, the increased synergy in neurite out-
growth and lack of JNK requirement for regulating the
process suggest that PACAP synergizes differently with
different growth factors to enhance neurite outgrowth.
These findings reveal that synergistic of neurite out-
growths induced by multiple ligands involves the inter-
play of a network of signals.

Additional files

Additional file 1: Figure S1. Time-course profiles of activations of ki-
nases upon PACAP, NGF, and NP treatments. Fold changes of (a) pErk, (b)
pJINK, (c) pP38, and (d) pAkt from 0-1 hour.

Additional file 2: Figure S2. Non-synergistic phosphorylation of P38
and Akt upon combinatorial NGF (0-50 ng/ml) and PACAP (0-100 ng/ml)
treatments. (a) Time-course of P38 and Akt phosphorylations at 20 and
60 minutes following NGF-PACAP treatments. Phosphorylation levels of
the proteins were analyzed by western blotting, and normalized to the
levels of actin. Fold changes of (b) pP38, and (c) pAkt under (i) uni-ligand
treatments, (i) bi-ligand treatments at 10 ng/ml of NGF, and (jii) bi-ligand
treatments at 50 ng/ml NGF. Significant differences between combinator-
ial experimental treatment of NGF-PACAP and summation of their indi-
vidual effects were calculated using the paired Student's t-test. A value of
p<0.05 was considered significant.

Additional file 3: Figure S3. Synergistic phosphorylation of Erk and
JNK upon combinatorial NGF (0-50 ng/ml) and PACAP (0-100 ng/ml)
treatments. Fold changes of (a) pErk, and (b) pJNK under (i) uni-ligand
treatments, (i) bi-ligand treatments at 10ng/ml of NGF, and (iii) bi-ligand
treatments at 50 ng/ml NGF. Significant differences between combinator-
ial experimental treatment of NGF-PACAP and summation of their indi-
vidual effects were calculated using the paired Student’s t-test. A value of
p<0.05 was considered significant (**p<0.01).

Additional file 4: Figure S4. Non-Synergistic phosphorylation of P38
and Akt upon FP and EP treatments. Time-course of quantified P38, and
Akt phosphorylations at 20 and 60 minutes following (a) FGFb (50 ng/
ml)-PACAP (100 ng/ml), and (b) EGF (50 ng/ml)-PACAP (100 ng/ml) treat-
ment. Fold changes of (i) pP38, and (i) pAkt were quantified by densi-
tometry and normalized to the levels of actin. Significant differences
between combinatorial experimental treatment of growth factor-PACAP
and summation of their individual effects were calculated using the
paired Student's t-test. A value of p<0.05 was considered significant.

Additional file 5: Figure S5. Total levels of Erk, JNK, POORSK, Akt and
P38 were not changed following treatments with ligands. The total
protein levels were assayed at 20 and 60 minutes post-stimulation. The
same control (C, at t=0 minutes) was used for both time-points.

Additional file 6: Figure S6. Representative images of cells treated
with growth factors-PACAP in the presence of inhibitors in the three sys-
tems. NP, FP and EP.
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Additional file 7: Figure S7. Positive controls for the kinase inhibitors
following treatment with NGF (50 ng/ml). (a) Inhibition of Erk
phosphorylation in the presence of U0126. (b) Inhibition of c-Jun phos-
phorylation in the presence of SP600125. (c) Inhibition of P38 phosphor-
ylation in the presence of SB203580. (d) Inhibition of Akt phosphorylation
in the presence of LY294002.

Additional file 8: Figure S8. Synergistic phosphorylation of P9ORSK
upon combinatorial NGF (0-50 ng/ml) and PACAP (0-100 ng/ml)
treatments. (a) Fold changes of pP90RSK under (i) uni-ligand treatments,
(i) bi-ligand treatments at 10 ng/ml of NGF, and (iii) bi-ligand treatments
at 50 ng/ml NGF. (b) Representative images of cells treated with growth
factors (50 ng/ml)-PACAP (100 ng/ml) in the presence of BRD7389 in the
three systems. Significant differences between combinatorial experimen-
tal treatment of NGF-PACAP and summation of their individual effects
were calculated using the paired Student’s t-test. A value of p<0.05 was
considered significant (**p<0.01).

Additional file 9: Figure S9. Total levels of Erk, JNK, and P9ORSK were
not changed following treatments with inhibitors. The total protein levels
were assay at 20 minutes post-stimulation. A normalizer (NGF-PACAP co-
treated cells) in each blot served as a control to normalize between dif-
ferent blots. U=U0126 (20 pM) and S=SP600125 (10 uM).
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