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Abstract

Background: Rhythmic oscillatory activity is widely observed during a variety of subject behaviors and is believed
to play a central role in information processing and control. A classic example of rhythmic activity is alpha spindles,
which consist of short (0.5-2 s) bursts of high frequency alpha activity. Recent research has shown that alpha
spindles in the parietal/occipital area are statistically related to fatigue and drowsiness. These spindles constitute
sharp changes in the underlying statistical properties of the signal. Our hypothesis is that change point detection
models can be used to identify the onset and duration of spindles in EEG. In this work we develop an algorithm
that accurately identifies sudden bursts of narrowband oscillatory activity in EEG using techniques derived from
change point analysis. Our motivating example is detection of alpha spindles in the parietal/occipital areas of the
brain. Our goal is to develop an algorithm that can be applied to any type of rhythmic oscillatory activity of interest
for accurate online detection.

Methods: In this work we propose modeling the alpha band EEG time series using discounted autoregressive
(DAR) modeling. The DAR model uses a discounting rate to weigh points measured further in the past less heavily
than points more recently observed. This model is used together with predictive loss scoring to identify periods of
EEG data that are statistically significant.

Results: Our algorithm accurately captures changes in the statistical properties of the alpha frequency band. These
statistical changes are highly correlated with alpha spindle occurrences and form a reliable measure for detecting
alpha spindles in EEG. We achieve approximately 95% accuracy in detecting alpha spindles, with timing precision to
within approximately 150 ms, for two datasets from an experiment of prolonged simulated driving, as well as in
simulated EEG. Sensitivity and specificity values are above 0.9, and in many cases are above 0.95, for our analysis.

Conclusion: Modeling the alpha band EEG using discounted AR models provides an efficient method for detecting
oscillatory alpha activity in EEG. The method is based on statistical principles and can generally be applied to detect
rhythmic activity in any frequency band or brain region.

Keywords: Alpha spindle, Adaptive autoregressive model, Classification, Electroencephalography, Time series,
Fatigue, Change point detection
Background
Alpha waves ([8, 13] Hz) were among the earliest de-
scribed functional oscillatory components in the human
EEG [1], and research has supported the general notion
that alpha band power is inversely related to brain activa-
tion [2-4] and reflects deactivated or inhibited cortical
processes [5]. Several different alpha rhythms have been
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identified (e.g., mu, sigma, tau, occipital) across various
brain regions. In particular, rhythmic alpha activity has
been observed to increase in posterior brain regions (par-
ietal-occipital) during attentional lapses [6,7] and during
states of drowsiness relative to states of alertness [8-11].
A widely-studied characteristic of the alpha frequency

band is the alpha spindle, a large narrowband burst of
alpha activity that usually occurs over short (0.5-2 s)
duration [8,11,12]. Alpha spindle spectral microstruc-
tures have peak amplitudes generally in the higher alpha
frequencies ([10, 13] Hz) and have characteristics that
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resemble the “waxing and waning” of the alpha rhythm
[12,13]. Alpha spindles also have been shown to occur pri-
marily in the parietal/occipital regions of the brain and
have been correlated with fatigue, drowsiness and reduced
driving performance in experiments of prolonged driving
[11,12]. Several methods have been developed to charac-
terize alpha power changes associated with various tasks.
These methods include fast Fourier transforms (FFT)
[7,10,11], wavelets [14], phase [15], matching pursuit
[16,17], ERD/ERS [5], autoregressive modeling [6,18,19],
adaptive filtering [20], neural network analysis [21], fuzzy
systems [22,23], and nonlinear EEG analyses [7,24]. Other
characterizations of alpha activity are the alpha band
power of the signal [10] and power ratios such as the
(alpha + theta)/beta ratio.
Recently, Simon et al. [11] developed an algorithm

specifically for detecting alpha spindles in EEG by calcu-
lating the full width at half maximum (FWHM) of the
amplitude spectral density of the alpha frequency range.
Features of alpha spindles, such as alpha spindle rate
and alpha spindle duration, were extracted from the
EEG and correlated with fatigue and drowsiness in both
real [11] and simulated [12] driving tasks. However,
Simon et al. only validated algorithm accuracy in captur-
ing high frequency narrowband alpha on simulated data
and not real EEG. Techniques based on matching pur-
suit (MP) have also been used by Schönwald et al. to
identify alpha spindles in sleep by using a dictionary of
Gabor, Fourier and Dirac delta functions [25]. They re-
port sensitivity and specificity values of approximately
0.812 in detecting alpha sleep spindles across all stages
of sleep. By changing some of the parameters in their
model, they were able to increase the sensitivity and spe-
cificity to about 0.9; however, this change increased
computational time exponentially.
The goal of this work is to develop an efficient algorithm

to reliably detect sudden increases of narrowband oscilla-
tory EEG activity with good temporal resolution. Our mo-
tivating example for the development of this algorithm is
detecting alpha spindles in EEG. We hypothesize that alpha
spindles in EEG represent a changes in the underlying
neural dynamics that can be characterized and identified by
their statistical properties. To detect these changes, we
propose a method that is based on change-point detection,
a class of time series models designed to discover changes
in the underlying statistical properties of time series data
[26-30]. These models aim to detect statistical irregularities
in data (called change points) with high temporal reso-
lution. Change point detection models have been used pre-
viously in many applications such as detecting denial of
service (DoS) attacks by monitoring packet activity in com-
puter networks [27,31] and monitoring stock prices [29].
Since EEG signals are highly dynamic, we develop a

change-point detection algorithm based on discounted
autoregressive (DAR) models to represent the EEG time
series adaptively in time. DAR models weigh points ob-
served further in the past less heavily than points more re-
cently observed, so they can adapt to the non-stationary
nature of EEG. Features that are extracted from a DAR
model are time dependent and can be used for analysis of
transient EEG. The DAR model can also be updated se-
quentially in time using an algorithm called the sequential
discounted autoregressive (SDAR) algorithm [27,28]. This
allows for the analysis and monitoring of EEG signals in
near real-time, making it a computationally efficient
method for EEG analysis.
We apply our SDAR algorithm together with predict-

ive loss scoring to identify time periods in the alpha fre-
quency range of EEG where the time-dependent DAR
model cannot adequately describe future data points
(periods of high loss scores) and correlate these time pe-
riods with alpha spindles in EEG. The model parameters,
such as the time-varying AR model coefficients and the
model variance, can be used for further analysis of these
time periods. We demonstrate the efficacy of this ap-
proach both for simulated data as well as for expert-
labeled EEG data from simulated driving tasks.

Methods
Sequential discounted AR algorithm (SDAR)
Autoregressive models (AR) represent each data point as a
linear combination of a certain number (the model order)
of previous data points. Discounted AR models assume
that data points observed further in the past contribute
less information than points more recently observed. An
algorithm for the sequential computation of the DAR
model parameters was proposed in [28]. We adapt this al-
gorithm for online detection of rhythmic oscillatory activ-
ity in EEG, with applications to detecting alpha spindles.
First, we give a description of the standard auto-

regressive model. Suppose xt is a zero-mean time series
vector of length n. AR(p), the autoregressive model of
order p, can be written as:

xt ¼
Xp
i¼1

Aixt−i þ �t

where the Ai, i = 1, …, p denote the AR model coeffi-
cients, and t is normally distributed noise with mean 0
and variance σ2, i.e., N(0,σ2). The temporal dynamics of
the time series are described by the model coefficients
θ = (A1,…, Ap, σ

2). The model structure given above im-
plies that P(xt|xt − 1,.., xt − p, θ) ~N(w, σ2):

P xt jxt−1;…; xt−p; θ
� � ¼ 1ffiffiffiffiffiffiffiffiffiffi

2πσ2
p e− xt−wð Þ2=2σ2

�
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where w ¼
Xp

i¼1

Aixt−i . While there are a variety of

methods developed to estimate AR model coefficients,
including the Yule-Walker method and the Burg method
[32], a straightforward approach is to use Maximum
Likelihood Estimation (MLE). MLE estimates the param-
eters of the model by maximizing the log-likelihood:

θ̂ ¼ argmaxθ logL θ x1;…; xnÞ:jð

The log-likelihood function for the AR(p) model can
be reduced to:

argmaxθ log Lð Þ ¼ argmaxθ log Π
n

i¼pþ1
P xijxi−1;…; xi−p; θ
� � !

¼ argmaxθ
Xn
i¼pþ1

logP xi xi−1;…; xi−p; θÞ
���

This procedure is equivalent to minimizing the sum of
squared errors for linear Gaussian models:

Â¼ argminA
Xn
i¼pþ1

xi−AT �xi
� �2

where Â is the estimate of the AR model parameters A =

(A1,…,Ap)
T and �xt ¼ xt−1;…; xt−p

� �T
. The variance σ2 can

be estimated in a similar fashion [33].
Discounted autoregressive models instead minimize:

Ât ¼ argminA
Xt
i¼pþ1

1−rð Þt−i xi−AT
t �xi

� �2

where r (0,1) is the discounting rate, and Ât is the
discounted maximum likelihood estimate of the DAR
model parameters. This model implies that time points
observed earlier in the sequence have less influence on
the overall likelihood than points observed more re-
cently by a factor of (1-r)t-i. This model has been used
previously in the analysis of time series signals in infor-
mation network security [27,28].
Using the DAR model, Urabe et al. [28] have derived

an algorithm for the sequential optimization of the
DAR model parameters, called the sequential discounted
autoregressive (SDAR) algorithm. The SDAR algorithm se-

quentially estimates the DAR model parameters Ât ; σ̂ 2
t

� �
given a new data point in the time series at time t. The
DAR model parameters have a subscript t to emphasize
that they are now time-dependent. We use this algorithm
to obtain the coefficients of the DAR model, which are
used to calculate the mean and variance of the Gaussian
distribution that describes the data at each time point. We
then calculate a predictive loss function that measures
how well the data is modeled by past data points.

�

Here we define the SDAR algorithm (using the nota-
tion from [28,34]). Let xt be the data point observed at

time t and let �xt ¼ xt−1;…; xt−p
� �T

. Set the DAR model
order p and the discounting rate r. The goal is to esti-
mate the DAR model parameters At ; σ2t ; μt

� �
at each

time t. The algorithm is given in 5 steps:

1. Initialization of parameters at t = p:

V t ¼ Ip p� pð Þ
ct ¼ r�xTt �xt 1� 1ð Þ

Mt ¼ Âburg p� 1ð Þ
σ2t ¼ σ̂ 2

burg 1� 1ð Þ
At ¼ V tMt p� 1ð Þ

2. Update the model parameters at time t = p + 1 by
calculating:

ct ¼ r �xTt V t−1 �xt
Mt ¼ 1−rð ÞMt−1 þ r �xtxt

V t ¼ 1
1−r

� �
Vt−1−

r
1−r

� 	 V t−1 �xt �xTt
� �

V t−1
� �

1−r þ ct
At ¼ VtMt

3. Update the mean μt and variance σ2t of the model:

μt ¼ AT
t �xt

σ2t ¼ 1−rð Þ σ2t−1 þ r xt−μtð Þ2

4. Calculate the quadratic loss score ψt by comparing
the current data point to the mean of the Gaussian
distribution updated in Step 3:

ψt ¼ xt−μtð Þ2

5. Repeat Steps 2–4 until the end of the time series at
t = n.

In Step 1 we initialize the parameters at time t = p,
where p is the model order. Here, Ip denotes a p × p
identity matrix. We initialize the parameters Mt and σ2t
by the Burg estimates of the AR parameters and the

noise variance, Âburg and σ̂ 2
burg , respectively, from an

available training dataset, as these values produce stable
algorithm performance. Usually we use an initial portion
of the time series as training and estimate these values
using a normal AR model.
In Step 2 we update the DAR parameters At given the

new data point xt. Step 3 updates the mean and variance
of the Gaussian distribution using the newly estimated
DAR model parameters. Step 4 calculates a quadratic
loss score by comparing the data point to the mean of
the Gaussian distribution at the current time. Steps 2–4
are repeated until the end of the recording at t = n. We
then apply a temporal smoothing function to the quad-
ratic loss score time series to reduce the impact of
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isolated outliers [27]. We smooth the loss score time
series using the mean of five (5) data points.
Alpha spindles in EEG are identified by thresholding

the smoothed loss score time series. We find the optimal
threshold value by maximizing a weighted F-measure
given as:

Fβ ¼ 1þ β2
� � precision � recall

β2 precision þ recall
� �

where β is a non-negative number, and the precision and
recall are given as:

precision ¼ TP
TP þ FP

recall ¼ TP
TP þ FN

We calculate the True Positive (TP), False Positive
(FP), and False Negative (FN) rates by comparing the
alpha spindle time regions identified by an expert with
those marked by the SDAR algorithm as having a
smoothed loss score that exceeds the specified threshold.
We use the weighted F-measure to take into account the
highly unbalanced nature of the data, as alpha spindles
occurred less than 1% of the total time. β = 1 reduces to
the standard F-measure, which weights precision and re-
call equally. β = 0.5 emphasizes precision more than re-
call, and β = 2 emphasizes recall more than precision.
We use β = 2 for this analysis to identify the loss score
threshold value that produces a minimal number of false
negatives. We split our data into two continuous equal
halves; one half was used for finding the optimal thresh-
old parameters, while the second half was used for valid-
ation. Note that the number of alpha spindles in each
half may not be the same.
To compute a direct time comparison between expert

labeling and regions marked by the SDAR algorithm as
exceeding the threshold, we use the compareLabels
Figure 1 An illustration of the comparison algorithm for comparing t
Agreement), FN (False Negative), FP (False Positive) and Agreement. An op
used to account for small timing errors in the comparison.
function from the DETECT Toolbox [35] for MATLAB
(The Mathworks, Natick, MA). An illustration of the
comparison algorithm is swn in Figure 1. There are four
possible decision types: Null Agreement or NA (agree-
ment of no event present), False Negative or FN (the al-
gorithm fails to identify the expert-labeled time region),
False Positive or FP (the algorithm identifies a time re-
gion that the expert does not), and Agreement (both the
expert and algorithm agree on the time interval). A sum-
mary of the comparison is reported by summing the
total times in each category. From these values the pre-
cision, recall, sensitivity, specificity, and the receiver op-
erating characteristic (ROC) curve can be calculated.
The compareLabels function has an optional fuzzy win-
dow parameter that can control for minor timing differ-
ences between the algorithm labeling and an expert
labeling (see [35] for more information).
We report the hit rate (HR) of the algorithm, which is

the number of times the algorithm identified a region
that was also identified by the expert, regardless of the
timing precision in the detected regions. We also report
the Spindle Temporal Error (STE) as the ratio of the
total time in the False Negative state to the total number
of alpha spindles. This gives a summary of the temporal
localization of the detected spindles.
If more than one EEG channel is modeled, the SDAR

algorithm uses a voting strategy that only selects a time
region if a certain percentage of the overall number of
channels identified the same time region. This strategy
reduces the impact of isolated outliers that may exist
only in one EEG channel. We use a voting threshold of
33% (1/3) for analyzing all the parietal/occipital EEG
channels. More or less stringent strategies can be used
by changing the voting percentage required for iden-
tifying significant time regions. Detected alpha spindle
regions separated by less than 250 ms were merged to-
gether to form a single alpha spindle. Since the literature
suggests that alpha spindle duration is generally between
wo labeled data sets. There are 4 possible decisions: NA (Null
tional parameter, the fuzzy window time (shown in green), can be



Lawhern et al. BMC Neuroscience 2013, 14:101 Page 5 of 16
http://www.biomedcentral.com/1471-2202/14/101
500 ms and 2 s, isolated alpha spindle regions shorter
than 250 ms were removed from the data [11]. These
post-processing techniques mimic post-processing pro-
cedures used by other authors [11,12].

SDAR model simulation study
We conducted a series of simulation studies to verify the
SDAR algorithm performance in tracking model changes
in time series. In these studies, an AR(2) process was
simulated with varying degrees of change. In the first
study, we simulated an AR(2) process where the AR co-
efficients changed at a known time point. The first
model (Model 1) was simulated according to:

xt ¼ 0:6xt−1−0:2xt−2 þ �t for t∈ 1; 2000½ �
xt ¼ 0:4xt−1−0:6xt−2 þ �t for t∈ 2001; 4000½ �

The noise variance was set to 1 so t ~N(0,1). In this
model, the AR coefficients change from [0.6, −0.2] to
[0.4, −0.6] at time t = 2000. For the second study (Model
2), we simulated an AR(2) process with an increase in
variance from 1 to 4 at the change point (t = 2000). The

�

Figure 2 Alpha spindle simulation results. (A) A screen capture of the D
(B) The simulated EEG activity, with the Y-axis denoting the channel locatio
AR(2) coefficients were set to [0.6, −0.2] for the entire
time period [0, 4000], 1,t ~N(0,1) and 2,t ~N(0,1):

xt ¼ 0:6xt−1−:02xt−2 þ �1;t for t∈ 1; 2000½ �
xt ¼ 0:6xt−1−:02xt−2 þ �2;t for t∈ 2001; 4000½ �:

In both simulations, the DAR model order was set to
2, and the discounting rate was set to r = 0.01.

Alpha spindle simulation study using DipoleSimulator
In another simulation study, we simulated EEG data using
DipoleSimulator (BESATools version 3.3.0.4, MEGIS Soft-
ware GmbH, Gräfelfing, Germany). DipoleSimulator al-
lows the user to simulate EEG data from user-specified
dipole characteristics and locations. Given the location
and direction of the dipoles, DipoleSimulator simulates
electrical activity that propagates through the scalp and
skull. A graphical representation of our simulation is
shown in Figure 2. We modeled two symmetric dipoles,
located in the parietal occipital region of the brain, with
the dipole direction facing the posterior of the skull
(Figure 2A). The dipoles produced a 10Hz alpha burst

� �
ipoleSimulator software program for simulating EEG activity.
ns, ordered left to right hemisphere, frontal to occipital.
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every 5 seconds with a duration of 500 ms, starting from
the 10 s mark. Twenty bursts of alpha activity were simu-
lated according to this model. The background RMS noise
level was set to 3 μV. The goal of the simulation was to
provide a “ground truth” dataset to compare the perform-
ance of the SDAR algorithm against.
To analyze the performance of the algorithm, we

changed the signal-to-noise ratio (SNR) by changing the
amplitude factor of the alpha spindle dipoles. For ex-
ample, an amplitude factor of 6 means the SNR is 2 (6/
3). We simulated the alpha spindles at SNR ratios of 1,
1.3, 1.6, 2 and 3 (corresponding to amplitude factors of
3, 4, 5, 6 and 9, respectively). ROC and F-measure ana-
lyses were performed for each SNR value.
The simulated EEG data was sampled at 300 Hz. The

data was subsequently down-sampled to 128 Hz and
band-pass filtered at [6, 15] Hz using an order 8
Butterworth filter prior to analysis. An EEG electrode
mosaic with 33 channels was used for simulating the
data, with a channel orientation following the inter-
national 10–10 system of electrode placement. We ap-
plied the SDAR algorithm with model order 1 and
discounting rate r = 0.01 to the simulation output of all
P

Figure 3 Example data from experimental protocol. (A) A screen captu
spindle event in an EEG dataset, with the Y-axis denoting the channel loca
parietal/occipital channels, setting the voting percentage
to be 33% and the fuzzy window parameter to be 0 s for
comparison purposes.

EEG data collection and processing
To test the efficacy of the algorithm, we applied the al-
gorithm to two fatigue-related driving simulator datasets
(Driving Data 1 and Driving Data 2) recorded from two
neurologically intact, healthy, adult, right-handed and
right-eye-dominant males that had been previously la-
beled by an expert. The two subjects had at least 10 years
of driving experience prior to data collection. Informed
written consent was obtained as required by the US
Army Federal Regulations [36,37]. The simulation was
conducted in a sound-attenuated room, and subjects
were presented with a straight four-lane highway with
minimal scenery (highway, roadside, and horizon) except
for an occasional speed limit sign (Figure 3A). Subjects
were requested to maintain the posted speed limit (25
mph or 45 mph) while keeping their vehicle in the cen-
ter of the lane. A perturbation force would occasionally
cause the vehicle to veer left or right in a manner similar
to the effects experienced when a gust of wind crosses a
re of the simulated driving environment. (B) An example of an alpha
tions in the EEG data set.
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real vehicle [10]. Subjects drove for approximately 70
minutes after a 10–15 minute practice period.
The EEG was recorded using a 64-channel Biosemi

ActiveTwo system, and offline referenced to the average of
the two mastoids. Four external channels were used to
record eye movements by EOG, although EOG data was
not analyzed in this study. The experiment was originally
sampled at 2048Hz and then subsequently down-sampled
to 128Hz. Figure 3B shows a sample of the resulting sig-
nal during a period of visually identifiable alpha activity.
EEG signal preprocessing for expert identification of
alpha spindles
An expert with more than 10 years of EEG processing
experience visually identified and marked alpha spindle
events in the EEG data. Recent literature has suggested
that alpha spindling occurring in the parietal and occipital
regions of the brain is related to fatigue in experiments of
prolonged driving [11,38]. Therefore, the expert used EEG
data from the parietal and occipital channels for identify-
ing alpha spindle events. The expert used three different
data operations to assist in the visual identification of
alpha spindles: the EEG data band-passed from [1, 50] Hz,
the data band-passed from [1, 15] Hz, and the Independ-
ent Component Analysis (ICA) [39-41] decomposition of
[1, 50] Hz band-passed EEG data. The expert used ICA to
isolate and remove eye blink and movement components
if the eye activity prevented an accurate time identification
of the alpha spindle events. All filters were order 8 IIR
Butterworth filters from ERPLAB [42]. We used the ex-
pert’s labeled events as the ground truth to evaluate the
performance of the SDAR algorithm. The expert manually
marked alpha spindles in the EEG using MATLAB (The
Mathworks Inc., Natick, Massachusetts) tools and func-
tions obtained from the DETECT Toolbox [35].
EEG signal preprocessing for the SDAR algorithm
The data was processed in EEGLAB [40] using a band-
pass filter of [6, 15] Hz with an order 8 IIR filter from
ERPLAB [42] before applying the SDAR algorithm. No
ICA preprocessing was performed prior to this analysis.
The datasets were analyzed in two passes. In the first
pass, we analyzed the full data and report the detection
performance and accuracy using all available informa-
tion. In the second pass we partitioned the full data into
two continuous equal halves for training and testing pur-
poses. The detection performance and accuracy were
reported for both the training and testing data. Results
from the testing data were obtained using the optimal
threshold value estimated from the training data. The re-
ceiver operating characteristic (ROC) curves and analysis
of classification performance using the F-measure were
performed only on the full and training data.
Results
SDAR model simulation results
Our first analysis verifies SDAR algorithm performance in
tracking changes in underlying AR model parameters. A
plot of the results of the simulation for Model 1 is shown
in Figure 4. Figure 4A shows a plot of the true signal in
red, with the estimated signal from the SDAR algorithm in
blue. We plot the time region around the change point
[1900, 2100], as well as plotting the change point time lo-
cation (dashed black line) for readability. Here we see that
the SDAR algorithm can accurately capture the change in
dynamics of the time series. The estimated AR(2) coeffi-
cients accurately track the true values within 100 samples
of the change point t = 2000 (Figure 4B). The variance of
the model remained constant in this simulation, and so
the estimated variance should be close to the true value
for the entire time period (Figure 4C).
The results for the simulation of Model 2 are shown

in Figure 5. As before, the SDAR algorithm was able to
accurately approximate the true time series signal
(Figure 5A and B) and correctly detected a change in the
signal variance at the change point t = 2000 (Figure 5C).
Simulated alpha spindle detection performance
Figure 6 displays the performance of the SDAR algo-
rithm in detecting alpha spindles in the simulation study
using DipoleSimulator. Figure 6A shows the ROC curves
for each of the five simulated SNR datasets, while
Figure 6B shows the F-measures at each SNR value. The
performance of the algorithm increases with increasing
SNR values, achieving an F-measure value of approxi-
mately 0.95 at SNR of 3. These results suggest that spin-
dle activity at SNR values of 2 or greater can be reliably
detected using the SDAR algorithm.
Alpha spindle detection in real EEG data
We then analyzed the two datasets obtained from the
simulated driving experiment (see Methods). These
datasets are referred to as Driving Data 1 and Driving
Data 2, respectively. We use an order 1 SDAR model
with discounting rate r = 0.01 and 33% (1/3) voting per-
centage for the duration of the paper. The results of
using an order 2 SDAR model were similar, and are in-
cluded in the Additional file 1 included with this manu-
script. Our first analysis compares the expert labeled
data to the SDAR algorithm’s labeled data using a fuzzy
window parameter of 0 s. Detected spindles of less than
250 ms were removed prior to analysis, while spindles
separated by less than 250 ms were merged to form one
spindle. An online implementation of this algorithm
would have a delay of at least 250 ms (to verify that the
activity is a spindle), plus any additional computational,
data acquisition, and processing overhead. The



Figure 4 AR model 1 simulation results. (A) A plot of the simulated AR(2) signal for the time range [1900, 2100] for readability. Blue = original
signal, Red = estimated signal, Dashed vertical line: time of the change point at t = 2000. (B) The plot of the estimated AR(2) coefficients over-
plotted with the known true value of the AR(2) coefficients. (C) The plot of the estimated variance σ2 over-plotted with the known true value of
the variance.
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processing of each channel can be done in parallel, redu-
cing the computational burden.
Results of the analysis are shown in Table 1. In the

Full Data condition, the SDAR algorithm detected 138
of 141 total alpha spindles, for a hit rate of 97.87%. The
Spindle Temporal Error (STE), which is the total time
in the False Negative condition divided by the total
number of alpha spindle events, summarizes the tem-
poral localization accuracy of the algorithm. For the
Full Data analysis, the STE is approximately 100 ms, in-
dicating excellent temporal resolution of the alpha
spindle detections. Analysis of the Testing Data (using
the training data parameters) showed similar results.
This section only contained 45 alpha spindles, of which
42 were correctly identified. The STE for this condition
is approximately 150 ms. The sensitivity, specificity, and
precision values are roughly constant in the two halves
(Training and Testing) parts of the datasets. We also re-
port the total time in each of the 4 states (Agreement,
Null Agreement, False Positive, False Negative) as
reported by the compareLabels function from the
DETECT Toolbox.



Figure 5 AR model 2 simulation results. (A) A plot of the simulated AR(2) signal for the time range [1900, 2100] for readability. Blue = original
signal, Red = estimated signal, Dashed vertical line: time of the change point at t = 2000. (B) The plot of the estimated AR(2) coefficients over-
plotted with the known true value of the AR(2) coefficients. (C) The plot of the estimated variance σ2 over-plotted with the known true value of
the variance.
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Note that a fuzzy window parameter of 0 s indicates
that very minor differences in labeled regions will count
negatively against the performance of the algorithm. It is
unrealistic in practice to assume an exact temporal
agreement between an expert and the algorithm, or even
among two different experts. Incorporating an allowable



A B

Figure 6 Alpha spindle detection performance on simulated data. (A) Plot of the ROC curves for each of five different SNR values at β = 2.
(B) Plot of the F-measure versus the SNR.
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timing error in the comparison can produce a more ap-
propriate comparison.
When using a fuzzy window parameter of 100 ms

(meaning errors less than 100 ms before or after the
events are treated as agreements), the performance of
the algorithm significantly increases (Table 2, Data 1 col-
umns). While the hit rate remained unchanged in the
Full Data (137/141), the False Negative time significantly
decreased to only 7.438 s of the data (from 13.586 s),
resulting in an improved STE of about 52 ms. This indi-
cates that many False Negative errors are associated with
small timing differences between the expert and the
algorithm; these small differences may be negligible in
real EEG analysis. A majority of the timing error is
accounted for by using the fuzzy window parameter.
The ROC curve and F-measure plots are shown in
Figure 7. The analysis for Driving Data 2 is also shown
in Table 2.
An example detection in the testing data of Driving

Data 1 is shown in Figure 8. The shaded cyan region de-
notes the labeled region by the algorithm, while the start
and end event codes denote the expert labeled alpha
Table 1 Classification performance of the algorithm versus th
conditions: the full data without partitioning, the training da

Full data

Sensitivity/Recall .915

Specificity .966

Precision .536

Hit Rate 97.87% (138/141)

Spindle Temporal Error ~96 ms

Agreement 146.430 s

Null Agreement 3591.156 s

False Negative 13.586 s

False Positive 126.828 s

A fuzzy window parameter of 0 s was used.
spindle regions. Figure 8 (Top) shows an example where
the algorithm labels a slightly narrower region when
compared to the expert. A fuzzy window parameter of
0 s will generate two False Negative decisions (for both
the start and end time of the alpha spindle being incor-
rect) for a total of about 150 ms. A similar situation is
shown in Figure 8 (Bottom), where the algorithm over-
estimates the alpha spindle region. This will generate
two False Positive decisions with the total error approxi-
mately 200 ms. In both cases, the algorithm and the ex-
pert agreed that an alpha spindle was present; only
minor timing errors in the start and end times of the
alpha spindle were present. A fuzzy window parameter
of 100 ms (meaning 100 ms before and after agreement
regions are treated as agreements) eliminates most of
the error in these detections and provides a more appro-
priate summary of the performance.

Comparison with other alpha spindle detection measures
Previously, Simon et al. [11] introduced a technique for
detecting alpha spindles in EEG based on calculating
the amplitude spectral density (ASD) of a Hamming-
e ground truth events for Driving Data 1 for three data
ta and the testing data, respectively

Training data Testing data

.895 .863

.966 .984

.612 .581

100% (96/96) 93.33% (42/45)

~120 ms ~150 ms

98.617 s 43.055 s

1762.414 s 1861.141 s

11.531 s 6.813 s

62.445 s 31.000 s



Table 2 Classification performance of the algorithm versus the ground truth events for Driving Data 1 and Driving
Data 2 for three data conditions: the full data without partitioning, the training data and the testing data, respectively

Full data Training data Testing data

Data 1 Data 2 Data 1 Data 2 Data 1 Data 2

Sensitivity/Recall .957 .876 .959 .914 .952 .904

Specificity .981 .964 .974 .958 .989 .934

Precision .704 .620 .706 .660 .701 .400

Hit Rate 97.16% (137/141) 94.36% (184/195) 100% (96/96) 95.38% (124/130) 91.11% (41/45) 93.85% (61/65)

Spindle Temporal Error ~52 ms ~114 ms ~50 ms ~77 ms ~40 ms ~96 ms

Agreement 165.422 s 157.008 s 114.539 s 106.688 s 50.833 s 59.047 s

Null Agreement 3635.516 s 2584.453 s 1167.875 s 1257.414 s 1866.859 s 1275.273 s

False Negative 7.438 s 22.195 s 4.875 s 9.984 s 2.563 s 6.273 s

False Positive 69.625 s 96.344 s 47.720 s 54.922 s 21.703 s 89.414 s

A fuzzy window parameter of 0.1 s was used.
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windowed EEG signal in a sliding window (using 1 s win-
dows with a 250 ms temporal slide). The ASD algorithm
then finds the maximum peak frequency in [3, 40] Hz in
each window. If this peak is in the alpha range [8, 13] Hz,
the ASD algorithm calculates the full-width at half max-
imum (FWHM), which is the width of the peak at half the
maximum amplitude. If the FWHM is less than twice the
noise bandwidth (NBW) of the Hamming window (2 ×
1.37), the ASD algorithm identifies the time region as an
alpha spindle. The algorithm also calculates the oscillation
index, which is the ratio of the area under the peak in the
FWHM range and the area under an exponential fit of the
data in the same FWHM range as a measure of the signal-
to-noise (SNR) of the alpha spindle. The exponential fit is
used to estimate the 1/f-like noise found in EEG [43]. In
our implementation we fit an exponential of the form:

f xð Þ ¼ exp
x
γ

� �
Figure 7 Alpha spindle detection performance on real data. (A) Plot o
Data and Training Data of Driving Data 1 using a fuzzy window parameter
ROC curves shown in (A).
where γ is the shape parameter of the exponential func-
tion. We estimate γ by minimizing the sum of squared
errors:

γ̂ ¼ argminγ
XN
i¼1

yi−f xi; γð Þð Þ2
 !

where xi,yi is the pair of fitted and observed values of the
ASD, respectively. An example for a time segment with an
alpha spindle is shown in Figure 9. Here, the peak fre-
quency is located at approximately 11Hz. The FWHM of
this spectrum is less than 2.74, and so the segment is
treated as an alpha spindle.
We compare the ASD and SDAR approaches for Driv-

ing Data 1. In order to compare SDAR with ASD, we ap-
plied the ASD algorithm as follows. For the ASD
algorithm we processed the data according to the pro-
cedure used in [11] (128 Hz sampling rate and [0.5, 48]
Hz band-pass filter, ICA to minimize muscle and eye
artifacts). For comparison purposes with the SDAR
f the ROC curve for the alpha spindle detection algorithm for the Full
of 100 ms. (B) The corresponding modified F-measure plot for the



Figure 8 A plot comparing expert-labeled alpha spindles with alpha spindles labeled by the SDAR algorithm. The algorithmic labelings
are shown in light blue, while the start and end event codes (in green and red, respectively) denote the expert-labeled regions. (Top). An
example where the algorithm labels a slightly narrower region as alpha spindle when compared to the expert. This minor timing difference
will generate False Negative errors if no fuzzy window parameter is used. (Bottom). An example where the algorithm over-estimates the
alpha-spindle region. This will generate False Positive errors, which can be accounted for if a fuzzy window parameter is used.
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Figure 9 An illustration of the technique used in [11] for
detecting alpha spindles in EEG. The blue curve is the Amplitude
Spectral Density (ASD), the red is the exponential fit to the data, and
the black line is the full-width at half maximum (FWHM) of the
peak amplitude.
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algorithm, we also applied the ASD algorithm without
ICA artifact removal. For the SDAR algorithm we
processed the data only using a [6, 15] Hz band-pass fil-
ter. We chose only one channel, PO7, in our analysis as
this produced the highest detection accuracy for single-
channel detection with the ASD algorithm. We used a
fuzzy window of 0.1 s.
The results of the comparison are shown in Table 3.

The ASD algorithm without ICA artifact removal has
sensitivity, specificity and precision values that are sig-
nificantly lower than those of SDAR. The ASD algo-
rithm detects 78% of the alpha spindles in the data with
an STE of 478 ms. After ICA artifact removal, the per-
formance of the ASD algorithm improved in specificity
and precision with a slight reduction to sensitivity.
ASD with ICA artifact removal achieved a slightly
lower hit rate (67%) when compared to without ICA. In
comparison, SDAR modeling has higher sensitivity/
specificity/precision values as well as a higher overall
hit rate.



Table 3 Comparison between the SDAR algorithm fitting and the ASD algorithm for channel PO7 of Driving Data 1

SDAR ASD algorithm without ICA ASD algorithm with ICA

Sensitivity/Recall .942 .607 .529

Specificity .984 .728 .909

Precision .728 .094 .209

Hit Rate 97.16% (137/141) 78.72% (111/141) 66.67% (94/141)

Spindle Temporal Error ~150 ms ~478 ms ~560 ms

Agreement 157.008 s 104.063 s 88.961 s

Null Agreement 3584.453 s 2700.063 s 3373.461 s

False Negative 22.195 s 67.320 s 79.359 s

False Positive 96.344 s 1006.555 s 336.359 s

A fuzzy window parameter of 0.1 s was used.
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Discussion
In this paper we propose an efficient method for
detecting large narrowband increases in oscillatory EEG
activity using change point detection methods based on
discounted autoregressive models. This technique was
applied to the alpha frequency range where the goal of
the method was to detect alpha spindling activity and to
estimate features of the alpha spindling such as the spin-
dle rate and temporal localization. Our results show that
this approach successfully identifies alpha spindles in
EEG time series with good time resolution, allowing
for the possibility of using characteristics such as alpha
spindle frequency and duration as features for other
types of modeling approaches, including state classifica-
tion, fatigue monitoring, and performance prediction.
Early work using change point detection models for

EEG data analysis was done by Brodsky et al. [44]. These
authors use nonparametric modeling techniques for the
analysis of alpha activity with eyes closed versus eyes
open. In contrast to their work, our work uses para-
metric modeling of the EEG using the DAR model to
detect oscillatory activity. As the EEG is naturally time-
dependent, methods based on autoregressive models are
appropriate representations of the dynamics of EEG.
Our use of the DAR model is especially attractive in that
the model can adapt to non-stationary time series, a fea-
ture that is often present in EEG. Our approach is also
computationally efficient, only requiring a few matrix
operations at each iteration of the algorithm, making it
an attractive analysis technique for large EEG datasets.
There are some differences in processing between our

SDAR method and the ASD method proposed by Simon
et al. [11] that deserve mention. First, our method band-
passes the data to [6, 15] Hz, while the ASD method
uses a [0.5, 48] Hz band-pass. The band-pass from [6,
15] Hz effectively removes muscle in the higher fre-
quency bands, while limiting the impact of eye-related
artifacts in the lower frequency bands. This reduces the
need for extensive artifact removal post-processing with
ICA [41] and auto-regressive techniques [45] as used in
[11]. Also, the effects of eye-related movements in EEG
are minimal, since we are only analyzing parietal and oc-
cipital channels. Finally, our approach is not based on
frequency characteristics of the signal other than the ini-
tial [6, 15] Hz band-pass. Because of this, we are not
limited by the time-resolution of FFT-based methods in
short time windows.
The SDAR approach sequentially calculates a quad-

ratic loss score at each time point and uses this score
function to identify irregular periods in the data. We ob-
tain an effective time resolution equal to the window
size of our temporal smoothing function. One possible
disadvantage of our approach is that it requires a priori
knowledge of the frequency range of interest before ana-
lysis. This may not be much of a concern for the analysis
of EEG, since researchers often use well-understood,
predetermined bands for analysis.
One important parameter of the SDAR model is the

discounting rate, r. This parameter controls the level of
contribution past data points have in the current model.
If the discounting rate is large (> .05) the model adapts
very quickly to the new dynamics of the data, making
detecting unusual behavior difficult. It also is less robust
to minor variations in the signals which are not sta-
tistically significant. Therefore we suggest using slower
learning rates to prevent the model from learning too
much of the alpha spindle behavior while still adapting
to slowly changing behavior. We found that discounting
rates between 0.01 and 0.001 perform well in isolating
alpha spindles of data sampled at 128 Hz. These learning
rates would need to be adjusted for different sampling
frequencies: the rates should be decreased when the
sampling rate increases and the rates should be in-
creased when the sampling rate decreases.
Previous research in autoregressive modeling of EEG

data has shown that large model orders are needed to
estimate the underlying dynamics of the EEG signal. For
example, [46] used AR models of order 10 to analyze the
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spectral contents in short EEG signals, while [47] used
AR models of order 6 for distinguishing among several
different mental tasks. In contrast, our work has shown
that using low model orders are sufficient to identify sta-
tistically irregular EEG data segments. A possible ex-
planation for this is the fact that we narrowly band-pass
the EEG signal to the alpha frequency range prior to
analysis. This band-pass reduces the frequency content
of the signal. Because of this, only a few model orders
may be needed to capture the oscillatory dynamics of
this narrow band signal and discounting captures model
variation. For EEG data filtered at a wider band, more
orders are likely needed. Another possible explanation is
that we are primarily focused on when EEG data is sta-
tistically irregular and not necessarily why it is statisti-
cally irregular. A low order representation of the EEG
may be sufficient purely for identifying when sections of
data are statistically irregular.
Several techniques have been proposed for detecting

oscillatory activity in higher frequency bands. For ex-
ample, a technique based on FFT analysis in the [80,
500] Hz frequency range was proposed in [48]. Another
study of higher frequency data [49] proposed a tech-
nique for oscillatory event detection based on amplitude
and duration thresholding of a short-time line length
function. This technique is similar to our approach in
that the short-time line length function bears a large de-
gree of similarity to the order 1 autoregressive structure
used in this work. Another technique based on an
adaptive Hilbert Transform has been proposed for oscil-
latory EEG analysis in neonates [50]. An adaptive Hilbert
Transform could be used to capture a time-dependent
amplitude envelope which could be thresholded to find
alpha spindles. In contrast to these previous works, our
work is based on an adaptive statistical representation of
the alpha-band EEG.

Future applications
The SDAR algorithm is based on an adaptive statistical
representation of the EEG time series and is not limited
to alpha spindle detection in EEG. Results of our simu-
lation study show that alpha spindles can be detected
reasonably well if the spindle signal strength is at least
50% stronger than then the background noise signal
(Figure 6). This suggests that this algorithm can be po-
tentially used to detect oscillatory activity in other EEG
frequency bands if the expected SNR of the activity is at
least 1.5. For example, Craig et al. [51] analyzed EEG os-
cillatory activity in a simulated driving paradigm and
showed that as the subject tired, oscillatory activity in
both theta and alpha bands increased over the entire
cortex, while activity in the delta band showed no sig-
nificant changes. Fast wave activity also showed a sig-
nificant increase primarily in frontal areas.
Other types of oscillatory activity could be modeled
using our SDAR approach. For example, oscillatory ac-
tivity in the theta range was analyzed by Cruikshank
et al. [52] using wavelet-based techniques to analyze
cortical activity underlying sensorimotor integration in
humans. High frequency oscillatory activity is also a
major area of interest in epilepsy research [48]. As new
experiments are conducted at increasing sampling rates,
oscillatory activity in several different EEG bands can be
analyzed to find spatiotemporal patterns across a range
of experimental paradigms [53]. Our technique based on
SDAR modeling of the EEG can be applied to find spa-
tiotemporal patterns of changes that may be indicative
of mental state changes. This will be investigated in fu-
ture research.
Our method requires an initial band-pass of the EEG

data in a relevant frequency range of interest prior to
analysis. For our analysis we band-passed the data at
[6, 15] Hz for detecting alpha spindle oscillations in
EEG. Since eye movement artifacts in EEG are generally
in frequency ranges smaller than 6 Hz and artifacts from
muscle movements are generally greater than 15 Hz, no
additional artifact preprocessing is required. However,
analysis of other brain regions may require additional
preprocessing to remove artifacts prior to analysis. This
is especially true for [3, 7] Hz theta oscillations, as eye
movement artifacts will be more prevalent and pervasive
when compared to the analysis of the alpha band. Ana-
lysis of the gamma frequency range will require removal
of high frequency muscle activity as well as the removal
of power-line noise (either at 50 or 60 Hz) prior to mod-
eling by the SDAR algorithm.
Our primary goal of this work was the development of

an algorithm for accurately identifying alpha spindles in
EEG. We focused primarily on the parietal-occipital EEG
channels as alpha spindles generally occur in these re-
gions. However, this approach could be applied to analyze
all the EEG channels simultaneously. In this way, the
changes in the EEG could be correlated across brain re-
gions, thus revealing additional features that can be useful
for analysis. This is currently the topic of future research.
Recent advances in sensor technologies have enabled

the non-invasive recording of neural activity in a variety of
scenarios [38,54] with some technologies aimed at im-
proving performance in healthy individuals [55]. Efficient
methods for detecting and identifying changes in EEG os-
cillatory activity may have practical applications in BCI
contexts. For example, our work in detecting alpha
rhythm changes (alpha bursts/spindles) may facilitate early
detection of fatigue onset before lapses or microsleeps
occur [7,9-12,38] and may be useful for preventing poten-
tially dangerous situations such as attention lapses or
microsleeps during tasks that require sustained levels of
vigilance. Parameters that may be used for analysis of



Lawhern et al. BMC Neuroscience 2013, 14:101 Page 15 of 16
http://www.biomedcentral.com/1471-2202/14/101
rhythmic alpha activity include frequency range, duration,
rate, topography and peak frequency [11,12,56]. Another
area where our approach might be useful is for real-time
online monitoring of sleep. Rechtschaffen and Kales [57]
published guidelines for manually scoring stages of sleep,
including criteria for scoring alpha spindles in the form of
k-complexes observed during stages I-II of sleep. Auto-
mated methods for sleep stage scoring based on the R&K
gold standard visual scoring of EEG recordings have been
published; however, none of these methods have reached
the level of acceptance to the extent of R&K [56]. An auto-
mated system that is robust and validated is still lacking
today.

Conclusion
In this work we showed that discounted autoregressive
models can be used to model the alpha band EEG time
series for detecting alpha spindle events in EEG. Our
method is based on statistical principles and can gener-
ally be applied to detect rhythmic activity in any fre-
quency band or brain region. As the algorithm is based
on a time-adaptive statistical representation of the signal,
it can account for slowly non-stationary behavior, mak-
ing it an attractive model for EEG data analysis.
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