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Neurons in the primary visual cortex exhibit a baffling
array of tuning properties, often unaccountable by the
classical linear feedforward model. Specifically, excita-
tory neurons display a number of nonlinear effects col-
lectively known as non-classical receptive field (nCRF)
effects [1], and inhibitory neurons have diverse orienta-
tion tuning properties [2]. Furthermore, excitatory cells
outnumber inhibitory cells by a ratio of 9:1 [3], yet the
excitatory and inhibitory drives are balanced.

Efficient coding models of early vision have been
shown to be able to explain key features of linear filter-
ing properties [4] and some single cell nonlinear effects
[5]. However, population statistics of nonlinear proper-
ties have not been studied in these models. In addition,
inhibitory cells were not typically modeled.

Here we demonstrate that many of the aforemen-
tioned excitatory cell and inhibitory cell properties
emerge naturally from a network that implements sparse
coding. To be specific, several nCRF effects including
surround suppression, contrast invariant orientation
tuning, and cross orientation suppression emerge in the
excitatory cell population as a result of sparse coding
strategy; the excitatory to inhibitory cell ratio could be
understood largely as a result of the overcompletness of
representation; moreover, a subpopulation of inhibitory
interneurons exhibit orientation tuning due to sparse
recurrent connections with the principal cells; another
subpopulation displays untuned properties due to low
rank connectivity patterns. We also demonstrate that
the network exhibits balanced excitation and inhibition,
as a result of the receptive field structure.

We simulated a population of 2048 excitatory neurons
with graded response described by the dynamics of
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locally competitive algorithm (LCA; [6]), which con-
verges to the sparse coding representation at steady
state. Inhibitory interneurons were described by linear
units. The low rank and sparse recurrent connectivity
pattern was a result of low rank plus sparse decomposi-
tion [7] of the LCA connectivity matrix. Non-classical
receptive field effects were studied by presenting bar
and drifting grating stimuli to the simulated network.
Receptive fields of the inhibitory cells were mapped by
sparse dots patterns.
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