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Neurons as Time Encoding Machines (TEMs) have been
proposed to capture the information present in sensory
stimuli and to encode it into spike trains [1]. These neu-
rons, however, produce spikes at firing rates above
Nyquist, which is usually much higher than the amount
of information actually present in stimuli. We propose a
low-rate neuron which exploits the sparsity or compres-
sibility present in natural signals to produce spikes at a
firing rate proportional to the amount of information
present in the signal rather than its duration. We con-
sider the IAF (Integrate-and-Fire) neuron circuit as pre-
sented in [1], provide appropriate modifications to
convert it into a low-rate encoder and develop an algo-
rithm for reconstructing the input stimulus using Com-
pressive Sampling (CS) techniques. The class of input
signals is assumed to be a mixture of periodic wave-
forms, consistent with the brain mechanism of generat-
ing and entraining oscillations at multiple frequencies (S
in number) simultaneously. The LowRate IAF neuron
circuit uses fixed thresholds (3) as opposed to random
thresholds used in [1]. The randomness in inter-spike-
interval exhibited in spike trains is produced by an addi-

tional component that switches off the IAF circuit
(mimicking the “absolute refractory” period) for a ran-
dom amount of time (with mean p) after each spike (see
figure 1A). We compare the performance of our Low-
Rate neuron firing at spike-rate K (which is determined
by the parameters 6 and p) with IAF neurons in [1]
operating at and above Nyquist rate N (>K). Because we
inject additive white Gaussian noise into the input sig-
nal, we use the traditional measure of signal-to-noise
ratio (SNR) as our performance metric. The recovery
method developed is a greedy pursuit algorithm similar
to the one described in [2]. Figure 1B plots the mean
output SNR vs. input SNR for a signal with S = 10 fre-
quencies and sparse-encoding ratio K/N = 0.3052. The
LowRate IAF neuron (even when operating at about one
third the Nyquist rate in this example) outperforms the
IAF neurons operating at and above Nyquist rates. Fig-
ure 1C (for signals with S = 60) demonstrates that an
increase in sparse-encoding ratio K/N improves the per-
formance of LowRate IAF neuron. We are currently
extending this methodology to signals sparse in other
domains as well.
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Figure 1 CS IAF neuron A) circuit; output SNR vs. input SNR for B) signals with S = 10 C) signals with S = 60.
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Conclusions

By exploiting sparsity, the LowRate IAF neuron encodes
the information present in the input stimulus into spike
trains with average firing rate well below Nyquist rate
while using the spiking information in a smart manner
to improve stimulus recovery.
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