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Sparse coding accounts for several physiological properties
of primary visual cortex (V1), including the shapes of sim-
ple cell receptive fields and the highly kurtotic firing rates
of V1 neurons [1]. Current spiking network models of pat-
tern learning [2] and sparse coding [3] require direct inhi-
bitory connections between the excitatory simple cells, in
violation of Dale’s Law which states that neurons can
either excite or inhibit but not both. At the same time, the
computational role of inhibitory neurons in cortical micro-
circuit function has yet to be fully explained.
Here we show that adding a separate population of

inhibitory neurons to a recently proposed model of V1

[3] not only brings spiking network models of sparse cod-
ing in line with Dale’s Law, but it also predicts excitatory-
to-inhibitory neuron ratios and explains how inhibitory
neurons may function computationally. When trained on
natural images, this excitatory-inhibitory spiking circuit
learns Gabor-like receptive fields as found in V1 using
spiking neurons and synaptically local plasticity rules.
The inhibitory cells enable sparse code formation using a
novel learning rule by collaboratively discovering and
suppressing correlations within the excitatory population
(Figure 1). The model predicts that only a small number
of inhibitory cells is required relative to excitatory cells,
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Figure 1 A. Circuit diagram of our spiking network with separate excitatory (E) and inhibitory (I) neural populations (top) compared to current single
population models (bottom). This network was simulated with different numbers of excitatory and inhibitory cells. B. Adding inhibitory cells to the
network differentiates the receptive fields and decreases image reconstruction error during learning. C. This error reduction is caused by decreased
correlations among the excitatory neurons that are collaborating to form a sparse representation of the visual input. The network was trained on 8x8
image patches (64 pixels) drawn from whitened natural images. Excitatory neuron counts (# E cells) ranged from 64 to 384 (1x to 6x overcomplete).
Inhibitory neuron counts (# I cells) ranged from 3 to 64 (.05x to 1x overcomplete). We find that reconstruction errors are roughly constant for
populations of interneurons that are at least ~20% of the size of the total population, assuming the total neural population is at least 4x overcomplete
relative to the input. This is consistent with the 80/20 ratio of excitatory-to-inhibitory neurons observed in visual cortex.
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matching physiological ratios observed in primary visual
cortex.
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