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Abstract

are furthermore associated with cognitive performance.

Background: Resting-state recordings are characterized by widely distributed networks of coherent brain
activations. Disturbances of the default network - a set of regions that are deactivated by cognitive tasks and
activated during passive states - have been detected in age-related disorders such as Alzheimer's or Parkinson'’s
disease but alterations in the course of healthy aging still need to be explored.

Results: Using magnetoencephalography (MEG), the present study investigated how age-related functional resting-
state brain connectivity links to cognitive performance in healthy aging in fifty-three participants ranging in age
from 18 to 89 years. A beamforming technique was used to reconstruct the brain activity in source space and the
interregional coupling was investigated using partial directed coherence (PDC). We found significant age-related
alterations of functional resting-state connectivity. These are mainly characterized by reduced information input
into the posterior cingulum/precuneus region together with an enhanced information flow to the medial temporal
lobe. Furthermore, higher inflow in the medial temporal lobe subsystem was associated with weaker cognitive
performance whereas stronger inflow in the posterior cluster was related to better cognitive performance.

Conclusion: This is the first study to show age-related alterations in subsystems of the resting state network that

Background

It is becoming increasingly acknowledged that effective
information processing crucially depends on the integrity
of communication between distributed cortical and sub-
cortical regions. Deviating network patterns have been
identified in mental disorders (e.g. [1,2]) and also demen-
tia [3-5]. However, a growing amount of structural and
functional evidence implies that even through normal
aging dramatic changes in brain networks occur. Total
brain volume declines with age [6] with evidence for
changes in cingulate sulci, hippocampus, insula, caudate,
cerebellum and the entorhinal cortices [7,8]. Atrophy has
been documented for gray and white matter [9-12] as
well as loss of synaptic connections [13]. Amyloid deposi-
tion can be observed even in non-demented elderly
[14-16] in association with an aberrant default network
functional activity as measured by means of fMRI [17].
However, hemodynamic measures are very slow, in the
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range of seconds, and do not directly capture large parts
of relevant cortical activities which however unfold in the
range of milliseconds and are frequently expressed in
oscillations [18]. MEG is becoming an increasingly
important non-invasive tool to investigate the dynamics
of brain networks, since it has the temporal resolution
needed to cover major bands of oscillatory brain activity
as well as an increasingly improving spatial resolution
due to advances in electromagnetic sourceimaging. We
employed magnetoencephalography (MEG) to analyze
age-related changes in connectivity up to 100 Hz. Identi-
fied network changes were tested for behavioral signifi-
cance by correlating them with neuropsychological test
performance.

A beamforming technique was used to reconstruct the
magnetic brain activity in the source space and the
strength of coupling between different areas was investi-
gated using partial directed coherence (PDC). PDC is an
approach to measure coupling between multivariate
time series that is related to the concept of Granger
causality [19] and captures the direction of information
flow in the frequency domain [20,21].
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As an interconnected system, a network consists of
nodes (here: voxels) and connections between them
(here: coherence). The importance of a node within the
network varies among other things with the number of
connections it entertains with other nodes. Accordingly,
a node with a larger number of links (called hub) receives
information from many other nodes and/or influences
activity in many other nodes. In directed networks, the
information on the directionality of the information flow
is retained. The “inflow” to a voxel indicates that the
activity of this voxel is driven by other voxels. Similarly,
the “outflow” describes the influence of this voxel onto
oscillatory activity in other voxels.

Here we investigated age-related alterations in the
inflow and outflow characteristics of these functional
neural networks and their association with cognitive
performance.

Methods

Participants

Fifty-three right-handed and healthy subjects (23 males
and 30 females) ranging in age from 18 to 89 years
(m = 53.06 years, sd = 20.07) participated in this study.
Their mean education was 15 years (ranging from 10 to
22 years). Subjects were recruited by notifications posted
in different locations in the Konstanz area (e.g. residen-
tial homes for the elderly, senior citizen centers, sports
clubs, the campus of the University of Konstanz) and by
advertisement in the local newspaper and radio station.
They were paid 30€ for their participation. Exclusion
criteria were a history of psychiatric disorders, a history
of psychopharmacological medication, left-handedness,
metal objects in the body as well as a history of severe
head injuries or neurological problems (like epilepsy,
strokes, brain tumors etc.). The ethics committee of the
University of Konstanz approved this study.

Procedures

Upon arrival in the laboratory, participants were famil-
iarized with the room where MEG measurements were
taken, and the study procedures and goals were clarified.
All participants gave written informed consent. After-
wards subjects were screened for potential psychiatric
disorders with the MINI International Neuropsychiatric
Interview [22]. Subsequently, demographic data were
assessed and handedness was determined using the
Edinburgh Inventory [23]. Furthermore, cognitive abil-
ities were assessed with the CERAD-NP-plus test battery
[24] with the subtests Verbal Fluency (VF = sum score
of semantic and phonemic fluency), Word List Learning
(WLL), Word List Delayed Recall (WLDR), Word List
Recognition (WLR), Figure Recall (FR), Trail Making
Test A and B (TMT-A/B). Additionally, the Digit Sym-
bol, the Mosaic and the Digit Span subtests of the
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German version of the Wechsler Adult Intelligence
Scale (HAWIE-R) [25] as well as the Benton Visual
Retention Test - revised form [26] were conducted.

After the neuropsychological assessment, MEG record-
ings were obtained during a 5 min resting period with
eyes open. We recorded the electrooculogram (EOG)
using a bipolar montage where electrodes were attached
near the left and right outer cantus (horizontal EOG) and
below and above the right eye (vertical EOG). For record-
ing of the electrocardiogram (ECG), two electrodes were
attached at the left lower forearm and the right collar-
bone. Subsequently, participants were seated in the mag-
netically shielded room (Vakuumschmelze Hanau) and
their head shapes were digitized with a Polhemus 3 Space
Fasttrack (Polhemus, Colchester, VT, USA). Five index
points were determined to calculate the relative head
position within the MEG sensor for source analysis. The
subjects’ head position relative to the pickup coils of the
sensor was estimated before and after the measurement.
During MEG measurement subjects were lying in a com-
fortable supine position and were instructed to stay
awake in a resting state. They were further asked to fixate
a mark on the ceiling of the magnetically shielded room
and to avoid eye as well as any body movements through-
out the recording to reduce artifacts. A video camera
installed inside the magnetically shielded room allowed
monitoring subjects’ behavior and ensured compliance
throughout the experiment.

MEG was recorded continuously and digitized at a rate
of 678.17 Hz using a 148-channel whole head magnet-
ometer system (MAGNES™, 2500 WH, 4D Neuroima-
ging, San Diego, USA). A band-pass filter of 0.1 - 200 Hz
was used for data acquisition. EOG and ECG were
recorded with a SynAmps amplifier (Neuroscan ™) using
Ag/AgCl1 electrodes. Before and after the MEG record-
ing, the head position of the participants were measured.
If the head position of the participant after the MEG
recording deviated by 1 cm or more from the position
prior to the scan, the scan was excluded.

Data Analysis

For data preprocessing and most other steps of data
analysis, the fieldtrip toolbox (F. C. Donders Centre for
Cognitive Neuroimaging: http://www.ru.nl/fcdonders/
fieldtrip) was used. First, all data were downsampled to
600 Hz and cut into epochs of 2 s duration. Prior to
downsampling, the contionous data were filtered with a
band-pass of 0.1 - 200 Hz. Epochs containing blinks or
muscle artifacts were excluded from further analysis
based on visual inspection. Second, an independent
component analysis (ICA) was calculated for each indi-
vidual data set to identify components reflecting cardiac
activity and these components were removed for further
analyses (using the logistic infomax ICA algorithm
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implemented in eeglab: http://sccn.ucsd.edu/eeglab/).
ICA components that represent the cardiac activity were
selected based on the time course of the component
and their topography. Depending on the individual com-
ponent structure either zero, one, or two ICA compo-
nents were removed.

Afterwards, 90 2-s epochs were selected randomly
from the remaining time segments and used for the fol-
lowing analyses. This selection was done in order to
keep the number of trials constant across all subjects.
Source projection
In order to estimate activity in source space, we used a
linearly constrained minimum variance [27] beamformer
on each individual data set. The LCMV beamformer uses
the covariance matrix of the signal data to construct a
spatial filter that passes the signals for each time point to
a predefined source while minimizing the contributions
of other sources. The spatial filters were multiplied with
the sensor time series, to derive the single-epoch activ-
ities. The orientations were rotated for each epoch so
that the first orientation accounted for a maximum of the
signal. The orientations were then averaged across
epochs and applied to the signal epoch. The subsequent
analysis steps were then performed on the first orienta-
tion. A voxel grid was designed to fulfill the following cri-
teria: 1) The grid needs to cover the entire brain volume
and should be as fine as possible. 2) Voxels located out-
side the brain volume need to be excluded from the grid.
Voxels not containing any relevant brain activity would
introduce noise to the multivariate auto-regressive model
and lead to erroneous PDC values. 3) Voxels at the outer
border of the brain volume that cover only a small per-
centage of the bain volume still remain part of the grid to
ensure that no relevant brain activity is missed by the
analysis. 4) The number of model parameters that can
reliably be estimated in the autoregressive model is lim-
ited by the number of trials that are used for the analysis,
the duration of the trials and the sampling rate. Increas-
ing the number of voxels (and thus the number of model
parameters) over a certain limit would result in an ill-
posed autoregressive model and spurious PDC estimates.
Therefore, the maximum number of voxels was limited.
With respect to the criteria 1) - 4) the grid of 326 voxels
and a voxel size of 2 x 2 x 2 cm was the best resolution
for this type of analysis. With this voxel size, the mini-
mum distance between the centres of two neighbouring
voxels is 2 cm and the term “long-range connectivity”
that we use in this manuscript thus referes to rather
macroscopic brain distances of at least 2 cm.

Correlation coefficients between the beamformer
weights were calculated for all possible voxel pairs. Over
all participants, beamformer weigths correlated very low
with a mean of 0.044 and a variance of 0.024. Further-
more, there was no significant correlation between the
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average correlation of beamformer weights and the par-
ticipants age (r = .16, p = .25). This was an important
prerequisite for the following analysis to ensure that the
functional connectivities below are not a result of corre-
lated beamformer weights.

Partial directed coherence

We closely followed the procedure developed and
described in detail by [28]: For each subject, we com-
puted partial-directed coherence (PDC) for the full set of
voxels [21]. Partial directed coherence is a measure of
effective coupling that captures the direction of the infor-
mation transfer between the voxels. Thus, with a set of N
voxels, we get a total of N x N PDC values for each sub-
ject that reflects for each pair of voxels the effective cou-
pling in both directions. This approach is based on
multivariate autoregressive (MVAR) modeling that inte-
grates temporal and spatial information. Here, we model
for each voxel the influence of all other voxels for a given
time range. The model order defines this time range of
the autoregressive process and describes how many time
points - back in time - are used for modeling the current
value. The optimal model parameter p was found by cal-
culating the Schwarz Bayesian Criterion (SBC) [29] for
model orders from 2 - 20. Averaged over the study sam-
ple, the minimum of the SBC function was located at p =
6 which was then taken as the model order for all sub-
jects. Partial directed coherence is a statistical measure
that is related to the concept of Granger causality [19]
and is able to detect asymmetric coupling between the
compared voxels for a given frequency range. In this
study, for each voxel we modeled the influence this single
voxel receives from all other voxels in the frequency-
range from 1 to 100 Hz (increments of 1 Hz). The PDC
values were calculated using functions implemented in
the biosig toolbox http://www.biosig.sf.net.

There is no generally established way of calculating
the statistical significance of the PDC estimators. Thus,
we used a permutation approach to estimate thresholds
for significant coupling between pairs of voxels (cou-
plings of one voxel with itself were excluded from the
analysis). Therefore, the following three steps were
repeated 1000 times for each data set:

First, the matrix of the autoregressive coefficients was
shuffled pseudo-randomly. This was done the following
way: The matrix of the autoregressive coefficients is a
square matrix with 326 rows and 326 columns. There-
fore, we generated a vector with random numbers
between 1 and 326. The columns and rows were reor-
dered according to the random vector. Subsequently,
the rows were shuffled according to the same random
vector. Second, the PDC estimators were again calcu-
lated in the way that was described above. Third, we
determined the 99%-percentile of the PDC estimator for
each frequency and saved it. The maximum value over
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these 1000 permutations was used as a threshold of sig-
nificance for each frequency bin. In a very recent publi-
cation, Florin and colleagues [30] systematically
compared random permutation with the leave-one-out-
method (LOOM) and found that random permutation
with PDC values result in less false positives, however,
more misses than the LOOM approach. There was a
genereal effect showing that lower frequency bands
engage stronger functional connectivity than the higher
frequencies, which will be reported elsewhere by the
same group. Due to this effect it was necessary to use
different thresholds of significance for the distinct fre-
quency bins rather than one threshold for all frequen-
cies in order to avoid weighting the lower frequencies
over the higher frequencies.

Hubmapping

Networks of any kind can be described by the distribu-
tion of their hubs. Within a network, the degree of a
node can be calculated by the number of connections
that link to other nodes in the network and nodes with
a high degree are called hubs [31]. Based on the mea-
sures of partial directed coherence we constructed net-
works whereby the nodes in the network correspond to
the brain voxels and the links correspond to the esti-
mated functional connectivity between the brain voxels.
A voxel with a high degree of connectivity therefore
gives us a measure for the importance of this region
within the functional brain network. In this analysis we
weighted the degree of the hub by the strength of the
couplings (i.e. the PDC estimator). Only significant cou-
plings between pairs of voxels were used for the calcula-
tion of the hubs. Since Partial Directed Coherence
allows an interpretation of the directionality of the cou-
pling between two voxels we were able to differentiate
between “Inflow” and “Outflow”. The degree of inflow at
voxel x is therefore a measure of how strong the activity
in voxel x is influenced by the activity of other voxels.
Likewise, the degree of outflow is a measure of how
strong voxel x influences the activity of all other voxels.
The degrees for inflow and outflow were calculated for
each frequency bin separately. For statistical analysis
and visualization purposes, they were mapped on a tem-
plate MRI from the Montreal Neurological Institute
(MNI) using a nearest-neighbor interpolation.

Statistical analysis

Age-related effects

The correlation between age and inflow/outflow was cal-
culated using a nonparametric randomization test
[32,33] with the following procedure: First, a Pearson
product moment correlation between inflow/outflow
and age was calculated for each voxel and voxels with a
p-value lower than .05 were selected. Clusters of the
selected voxels were formed based on their adjacency in
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the frequency domain and space. The statistical signifi-
cance of this cluster was tested using a randomization
method that controls for type I error. A total of 1000
permutations were performed by randomization of
the age values. The correlation coefficients were re-cal-
culated for all cluster and the maximum correlation
coefficient was taken. The distribution of this 1000 cor-
relation coefficients was used to generate the t-values
reported here. This statistical analysis was calculated for
the inflow and the outflow degrees separately (see [28]).
Correlation with behavioral data

In the first step, we were interested in age-related altera-
tions in the organization of resting state networks.
Accordingly, we correlated age and inflow or outflow,
respectively, and found clusters of corresponding age-
related changes. Furthermore, we were interested in the
correlation between the inflow and cognitive perfor-
mance. Therefore, the clusters with age-related inflow
changes found in the first step were defined as clusters of
interest and used for further statistical analyses. To inves-
tigate the relationship between the age-related changes of
the functional brain networks with the behavioral data
from the neuropsychological testing we calculated Pear-
son’s product-moment correlation coefficients between
the average degree of the clusters of interest of all partici-
pants with their neuropsychological test scores. To cor-
rect for multiple comparison, we adjusted the threshold
for a significant correlation to the level of p = 0.0045
according to the Bonferroni-method. This correlation
was calculated for the average of all inflow clusters.
Correlation between significant inflow clusters

In order to investigate whether the clusters with age-
related inflow changes found in the first step are inde-
pendent of each other, the Pearson’s product-moment
correlation coefficient was calculated.

Results

Age-related differences

Inflow

In an analysis of the inflow of the cortical networks we
found 5 clusters that showed significant age effects
(Figure 1). In the clusters 1 (p = .01), 2 (p = .01), 3 (p =
.02) and 4 (p = .05) inflow was significantly increased
with increasing age (Figure 2). Given that the positive
clusters 1-4 covered broadly the same area in the medial
and inferior temporal lobes we illustrated them alto-
gether in Figure 1 in red and yellow color. These colors
symbolize positive values, implying that the inflow in
this region becomes stronger with higher age. With
increasing age, inflows were stronger for the 40-70 Hz
(cluster 1), 8-32 Hz (cluster 2), the 85-100 Hz (cluster
3) and the 32-40 Hz (cluster 4) frequency bands. Cluster
5 was the only cluster with negative ¢ values, i.e. the
degree of inflow was stronger for younger compared to
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Figure 1 Clusters of significant correlations between age and strength of inflow projected on a template brain. Positive t-values (cluster
1-4 jointly illustrated) indicate that older people have more inflow in this region (mainly medial temporal lobes including hippocampus);
negative t- values (cluster 5) imply less inflow for older adults. A cluster-based randomization was done in order to calculated the t-values from a
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older individuals (p < .001). The voxels of cluster 5
overlay a large area of the posterior part of the brain.
The inflow was significantly reduced for the elderly in
the 1-100 Hz frequency range (Figure 1 and 3).

Outflow

For the outflows, we found 8 clusters exhibiting signifi-
cant age-related differences (Figure 4). Cluster 1 (p =
.003), 4 (p = .02) and 6 (p = .03) are located in roughly
the same medial frontal regions. In this region, outflow
was increased for the elderly in the 5-55 Hz (cluster 1),
the 65-80 Hz (cluster 4), and the 80-97 Hz frequency
bands. Clusters 2 (p = .003), 5 (p = .03), and 7 (p = .03)
are located in the parietal region of the right hemisphere.

Outflow was increased for the elderly in the 35-85 Hz
(cluster 2), 15-35 Hz (cluster 5), and the 90-100 Hz (clus-
ter 7) frequency bands. Cluster 3 is located in the dorsal
aspects of the left frontal lobe and is significant for the
68-100 Hz frequency range. Cluster 8 is the only signifi-
cant cluster with negative ¢ values, i.e. the degree of out-
flow was stronger for younger compared to elderly
individuals. This cluster covers parts of the right prefron-
tal lobe. Outflow was significantly reduced for the elderly
people in the 1-12 Hz frequency range. While the results
of the inflow pattern could be summarized into two main
effects (see Figure 2 and 3), the results of the outflow pat-
tern were numerous and less concise with at least eight
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Figure 2 Correlation of age and the average weighted degrees for the significant positive inflow cluster in the medial temporal lobes
(r =.60, p < .001).
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Figure 4 Clusters of significant correlations between age and the strength of the outflow, projected on a template brain. Positive t-
values mean that older individuals have more outflow from this region, negative t-values imply less outflow for older individuals. A cluster-based
randomization was done in order to calculated the t-values from a distribution of 1000 randomizations.

significant main clusters and multiple additional smaller
clusters. Therefore, we focused the following analysis on
the inflow clusters to give a more detailed view on the
inflow pattern.

Correlation with psychometric data

In this step of analysis our goal was to investigate
whether the two prominent clusters that showed signifi-
cant age-related changes in inflow (the positive cluster
in the medial temporal lobes and the negative cluster in
the posterior part of the brain) correlate with behavioral
performance. Therefore, we correlated the results of the
psychometric testing with the degrees of the two signifi-
cant clusters for each subject. We found several statisti-
cally significant correlations.

Positive cluster in the medial temporal lobe

Significant correlations were found for the Digit Symbol
test (p < .001; r = -.45), Mosaic test (p = 0.004; r =
-.39), the Benton test (p < .001; r = -.51), Figure Recall
(p <.001, r = -47) as well as the Trail Making test ver-
sion A (p < .001; r = .45) and B (p = .003; r = .40) (For
further details see table 1). In sum, stronger inflow in
the medial temporal lobe was associated with weakened

performance in executive function and cognitive speed
(assessed with the Digit Symbol as well as the Trail
Making Test A and B), visuoconstruction (Mosaic Test)
as well as figural memory (Benton Test and Figure
Recall).

Negative cluster in the posterior region

For this cluster, the correlations were significant for the
Digit Symbol test (p < .001; r = .48), the Mosaic test (p
< .001; r = .50), the Benton test (»p = .003; r = .41), and
the Trail Making test version B (p = .003; r = -.41) (For
further details see table 2). In conclusion, decreased
inflow in this region was associated with weakened per-
formance in executive functions and cognitive speed
(measured with the Digit Symbol Test and the Trail
Making Test), visuoconstruction (Mosaic Test) as well
as figural memory (Figure Recall).

Correlation between the significant inflow clusters

The correlation between the two clusters with age-
related inflow changes (the positive cluster in the medial
temporal lobe and the negative cluster in the precu-
neus/posterior cingulum region) was significant (r =
-43; p = .001).
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Table 1 Correlation of the positive inflow clusters in the
medial temporal lobes with cognitive performance
(Pearson’s product-moment correlation coefficient
between the average degree of the respective cluster of
all participants with their neuropsychological test score.
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Table 2 Correlation of the negative inflow cluster in
posterior areas with cognitive performance (Pearson’s
product-moment correlation coefficient between the
average degree of the respective cluster of all
participants with their neuropsychological test score.

Neuropsychological Test R P Neuropsychological Test R P

Digit Symbol Test -45 < .001* Digit Symbol Test 48 < .001*
Mosaic Test -39 .004* Mosaic Test 5 < .001*
Digit Span -16 25 Digit Span 09 53
Benton Test =51 < .001* Benton Test 4 .003*
Verbal Fluency -19 a7 Verbal Fluency .09 53
Word List Learning -33 02 Word List Learning 33 02
Word List Delayed Recall -31 03 Word List Delayed Recall 3 03
Word List Recognition -23 09 Word List Recognition 27 05
Figure Recall -47 < .001* Figure Recall 3 03
Trail Making Test A 45 < .001* Trail Making Test A -28 05
Trail Making Test B 4 .003* Trail Making Test B -41 .002*

To correct for multiple comparison, the threshold for a significant correlation
was adjusted to the level of p = 0.0045 according to the Bonferroni-method)

Digit Symbol Test = Digit Symbol subtest of the German version of the
Wechsler Adult Intelligence Scale; Mosaic test = Mosaic subtest of the German
version of the Wechsler Adult Intelligence Scale; Digit Span = Digit Span
subtest of the German version of the Wechsler Adult Intelligence Scale;
Benton Test = correct answers of the Benton Visual Retention Test (revised
form); Verbal Fluency = Sum score verbal fluency (semantic and phonemic) of
the German version of the CERAD-NP-Plus test battery; Word List Learning =
Subtest Word List-Learning of the German version of the CERAD-NP-Plus test
battery; Word List Delayed Recall = Subtest Word List-Delayed Recall of the
German version of the CERAD-NP-Plus test battery; Word List Recognition =
Subtest Word List-Recognition of the German version of the CERAD-NP-Plus
test battery; Figure Recall = Subtest Figure Recall of the German version of
the CERAD-NP-Plus test battery; TMT-A = Trail Making Test - Version A;

TMT-B = Trail Making Test - Version B

*p < .0045

Discussion

The present study was conducted to answer two ques-
tions: 1) Is there neuromagnetic evidence for age-related
alterations in long-range cortical networks and functional
connectivity during the resting state and 2) do these
potential changes correlate with the participants’ cogni-
tive performance? We will discuss the results of this
study in relation to these questions.

Considering the first question, we identified brain
regions with age-associated alterations in the functional
connectivity with respect to the inflow and outflow char-
acteristics of various brain regions. A strong inflow indi-
cates that this area is driven by other regions whereas a
strong outflow means that this area considerably influ-
ences the activity of other brain regions. Increasing age
was associated with significantly more inflow in medial
temporal areas and significantly less inflow in posterior
parts of the brain. These alterations were found for the
frequency bands from 8 to 100 Hz for the positive inflow
cluster in the medial temporal lobe and for the frequency
bands from 1 to 100 Hz in the negative inflow cluster in
the posterior region. Regarding the outflow pattern,

To correct for multiple comparisons, the threshold for a significant correlation
was adjusted to the level of p = 0.0045 according to the Bonferroni method)
Digit Symbol Test = Digit Symbol subtest of the German version of the
Wechsler Adult Intelligence Scale; Mosaic test = Mosaic subtest of the German
version of the Wechsler Adult Intelligence Scale; Digit Span = Digit Span
subtest of the German version of the Wechsler Adult Intelligence Scale;
Benton Test = correct answers of the Benton Visual Retention Test (revised
form); Verbal Fluency = Sum score verbal fluency (semantic and phonemic) of
the German version of the CERAD-NP-Plus test battery; Word List Learning =
Subtest Word List-Learning of the German version of the CERAD-NP-Plus test
battery; Word List Delayed Recall = Subtest Word List-Delayed Recall of the
German version of the CERAD-NP-Plus test battery; Word List Recognition =
Subtest Word List-Recognition of the German version of the CERAD-NP-Plus
test battery; Figure Recall = Subtest Figure Recall of the German version of
the CERAD-NP-Plus test battery; TMT-A = Trail Making Test - Version A;

TMT-B = Trail Making Test - Version B

*p < .0045

higher age was related to more outflow in medial frontal
areas, in the parietal region of the right hemisphere as
well as in dorsal areas of the left frontal lobe. Reduced
outflow with increasing age was found in the right pre-
frontal lobe. These results, together with the scatterplots
in Figure 2, strongly suggest distinct and progressive
alterations in the functional organization of long-range
cortical networks during healthy aging.

Interestingly, the areas with altered functional organi-
zation patterns largely overlap regions of the so-called
“default-mode network”, i.e., the regions with hemody-
namic coupling during the resting state (e.g. [34,35]).
This network is formed by a specific set of brain regions
which is engaged when individuals are not focused on
the external environment but is active when people are
occupied with internally focused tasks like remembering
or daydreaming. Buckner and colleagues [35] have argued
that the default-mode network consists of several subsys-
tems, namely the medial temporal lobe system, the med-
ial frontal system as well as integrating systems like the
posterior cingulate cortex/precuneus system. Alterations
in the default network have already been reported for
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people with Alzheimer’s disease [3,4] or corresponding
genetic risk [36], mild cognitive impairment [5,37], and
normal aging [3,17,38]. So far, evidence for alterations in
the default network mainly comes from fMRI studies.
However, the BOLD response lacks the temporal resolu-
tion needed to cover major bands of oscillatory brain
activity. Hence, time-sensitive tools like MEG are suited
to complement fMRI investigations and several studies
have suggested that MEG recordings can be used to reali-
ably analyze functional connectivity of the human brain
(see e.g. [30,39-42]).

First, we found an age-related decrease in inflow in
posterior parts of the brain, which would fit with the pos-
terior cingulate cortex and the precuneus. This effect was
found across the broad frequency range of 1-100 Hz and
was not specific for a distinct frequency band. Thus, we
suspect a rather general distortion of functional connec-
tivity with this region. This is in line with results from
Sperling and colleagues [17] who showed that cognitively
intact elderly people with high amyloid burden exhibit
disrupted default network activity, especially in the pos-
terior cingulate cortex. The posterior cingulate cortex
and the precuneus are prominent hubs in intrinsic func-
tional connectivity [34] and they are vulnerable to early
amyloid deposition [17]. It has been suggested that this
region gathers information from the environment [34]
and integrates input from different subsystems [35]. We
observed a significant correlation of the inflow into this
precuneus/posterior cingulate (PPC) region with increas-
ing age. Further, this reduction was strongly associated
with a decrease of cognitive performance in test of execu-
tive functions, cognitive speed, visuoconstruction and
verbal memory. Working memory performance, however,
did not correlate with the inflow into this region.

Second, we found a significant increase of inflow in the
medial temporal region. In light of the default mode net-
work, this region is part of the medial temporal lobe
memory sub-system. It is active during internally directed
cognition and is thought to be involved in declarative
memory, especially in autobiographical memory
[35,43,44]. Thus, an enhanced input into this region
might go along with a stronger focus on autobiographical
events and a reduced orientation to external stimulation.
Here we found that inflow into this medial temporal
region significantly correlates with the performance in
cognitive speed, executive functions, visuoconstructive
abilities and visual memory, but not with working
memory.

Our results lead to the conclusion that there are sev-
eral brain networks active during the resting state. Two
resting state systems that are especially important for
this study are the medial temporal lobe system and the
posterior cingulum/precuneus system. The medial tem-
poral lobe system is thought to reflect an internal
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orientation whereas the posterior cingulum/precuneus
system seems to reflect a more external orientation [35].
More activity in one network is accompanied by
reduced activity in the other [45,46]. During rest there
are periodical and transient shifts in this network domi-
nance, resulting in temporary shifts between internal
and external foci of attention [45,46]. Accordingly, the
strength of activation in these clusters and cognitive
performance should be correlated in a way that the
more external the focus, the better the performance on
cognitive tests. This is exactly what we found: Higher
inflow in the medial lobe subsystem (reflecting a stron-
ger internal attention focus) was associated with wea-
kened cognitive performance whereas stronger inflow in
the posterior cluster (reflecting a stronger external
attention focus) was related to better cognitive
performance.

Furthermore, our results indicate that the balance
between these two different subsystems underlies altera-
tions with increasing age. Elderly people in general show
more inflow in the medial temporal lobe subsystem and
less inflow into the posterior cingulum/precuneus sub-
system during the resting state, what we interpret as
increased attention to internal processes and less atten-
tion to external stimulation.

It needs to be mentioned that the voxel grid that we
used poses a limitation to this study. Due to the relatively
large voxel size of 2 cm we cannot make assumptions on
precisely localized brain regions since only the average
activity of the 2 x 2 x 2 cm voxel was entered into the
MVAR modeling. Therefore, it is also possible that we
missed relevant brain activity which could have effected
the modeling of the functional network.

Conclusions

In summary, we found significant age-related alterations
of functional resting-state connectivity. These are mainly
characterized by reduced information input into the
posterior cingulum/precuneus region together with an
enhanced information flow to the medial temporal lobe.
The pattern of these changes in functional cortical con-
nectivity might indicate that the ongoing resting-state
brain activity in elderly people is driven by attention to
internal processes and autobiographical memories as
opposed to attention to external stimulation. In our
sample, these changes were associated with reduced per-
formance in cognitive assessment batteries.
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