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Abstract

Background: β-amyloid (Aβ) accumulation is described as a hallmark of Alzheimer’s disease (AD). Aβ perturbs a
number of synaptic components including nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs),
which are abundantly expressed in the hippocampus and found on GABAergic interneurons. We have previously
demonstrated the existence of a novel, heteromeric α7β2-nAChR in basal forebrain cholinergic neurons that
exhibits high sensitivity to acute Aβ exposure. To extend our previous work, we evaluated the expression and
pharmacology of α7β2-nAChRs in hippocampal interneurons and their sensitivity to Aβ.
Results: GABAergic interneurons in the CA1 subregion of the hippocampus expressed functional α7β2-nAChRs,
which were characterized by relatively slow whole-cell current kinetics, pharmacological sensitivity to
dihydro-β-erythroidine (DHβE), a nAChR β2* subunit selective blocker, and α7 and β2 subunit interaction using
immunoprecipitation assay. In addition, α7β2-nAChRs were sensitive to 1 nM oligomeric Aβ. Similar effects were
observed in identified hippocampal interneurons prepared from GFP-GAD mice.

Conclusion: These findings suggest that Aβ modulation of cholinergic signaling in hippocampal GABAergic
interneurons via α7β2-nAChRs could be an early and critical event in Aβ-induced functional abnormalities of
hippocampal function, which may be relevant to learning and memory deficits in AD.

Keywords: Nicotinic acetylcholine receptor, Amyloid, Hippocampal interneuron, Patch-clamp, Acutely dissociated
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Background
Aβ accumulation is considered to be a hallmark of
Alzheimer’s disease (AD) and responsible for synaptic
deficits and neuronal degeneration in AD [1]. Although
AD is considered to be a result of aberrant Aβ produc-
tion [2], the underlying mechanisms of how Aβ depo-
sition contributes to neuronal damage remain unclear.
Nicotinic acetylcholine receptors containing α7 subunits
(α7-nAChRs) regulate development, differentiation, cogni-
tion and pathophysiology of the central nervous system
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[3-7]. In hippocampus, the highest levels of α7-nAChRs
are most commonly found on GABAergic interneurons
[8-10], suggesting their potential role in modulating the
physiology of the hippocampus, an area of the brain impli-
cated in learning/memory.
Accumulating lines of evidence indicate that α7-nAChRs

are involved in AD pathology, and suggest possible patho-
physiological links between Aβ and nAChRs. Wang et al.
[11,12] first reported high affinity binding of Aβ1-40 and
Aβ1-42 to α7-nAChRs. Two other groups subsequently
reported direct and functionally-relevant interactions of
Aβ1-42 with α7-nAChRs [9,13]. Thereafter, several groups,
including ours, reported the effects of Aβ on α7-nAChRs
[14-17]. Although some reports demonstrate an activating
effect of Aβ on heterologously transfected and native
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nAChRs [18,19], most in vitro studies show an inhibitory
effect of acute application of Aβ to neural model prepa-
rations including native α7-nAChR expressing cells in
culture, in brain slices, or transfected cell-line with α7-
nAChRs [9,13,17,20].
Recent findings have demonstrated that neuronal cir-

cuits exhibit hyper-excitation rather than hypo-excitation
in both AD patients and model animals [21-26]. Given
that α7-nAChRs expressed on hippocampal interneurons
are inhibited by Aβ, a disruption of these cholinergic
inputs to hippocampal interneurons may not only affect
neurotrophic support to these interneurons and cause
neuronal degeneration, but may also cause disinhibition of
pyramidal neurons in hippocampus and lead to neuronal
network hyper-excitation due to a disrupted homeostatic
regulation [23,24,27].
In our previous studies, we discovered a novel type of

heteromeric α7β2-nAChR in rodent basal forebrain cho-
linergic neurons that is sensitive to Aβ, implying that
α7β2-nAChRs might be a critical target for AD patho-
genesis [17]. In the present study, we extend our previous
work to investigate whether or not this heteromeric α7β2-
nAChR is also expressed in hippocampal GABAergic
interneurons and to determine its sensitivity to patho-
logically relevant concentration of Aβ oligomer by
utilizing electrophysiological, histological and genetic
engineering approaches. Our findings suggest the exis-
tence of functionally heteromeric α7β2-nAChRs in
hippocampal GABAergic interneurons and these α7β2-
nAChRs are sensitive to low nanomolar concentrations
of Aβ oligomer.
Figure 1 Functional α7*-nAChRs in acutely dissociated mouse hippoc
dissociated typical interneuron from the rat hippocampal CA1 area. Ab: Bio
streptoavidin. Ac: Double-staining of biocytin-injected neuron with GAD 67
Ba: Unlike pyramidal cells, hippocampal interneurons exhibit relatively high
agonist-induced whole-cell currents in an acutely dissociated interneuron (
α7-nAChRs expressed in these neurons.
Results
Functional α7-containing nAChRs in hippocampal CA1
interneurons
To identify hippocampal GABAergic interneurons, tissue
was punched from CA1 and the cells were acutely disso-
ciated and selected based on their morphology. As shown
in Figure 1, unlike pyramidal neurons, the typical hippo-
campal interneurons display bipolar or multipolar confi-
gurations (Figure 1Aa) and relatively rapid spontaneous
action potential firings (Figure 1Ba). Figure 1Bb shows
that 10 mM choline (a selective α7-nAChR agonist)
induced a typical inward current from a hippocampal
interneuron (red trace) and non-interneuron (blue trace)
acutely dissociated from CA1 area. To confirm that the
recorded neuron was GABAergic, biocytin was microin-
jected through the pipette solution and followed by immu-
nostaining with streptoavidin (Figure 1Ab, green) and GAD
67 antibody (Figure 1Ac, red, a marker for GABAergic
neurons).

Nicotinic receptor α7 and β2 subunits are co-expressed
and co-assembled in mouse hippocampus
To test the possibility that nAChR α7 and β2 subunits
are co-expressed and co-assembled in hippocampus, we
performed co-immunoprecipitation (co-IP) assays using
nAChR α7 and β2 subunit-specific antibodies. The spe-
cificity of these antibodies has been described previously
[17]. Protein extracts from wild type or β2 knockout
mice hippocampus or vertical diagonal band (VDB)
tissues (collected from mice aged between 18 and 22
postnatal days identical to electrophysiology recordings)
ampal interneurons. Aa: Phase contrast microscopic image of acutely
cytin was injected into a recorded interneuron and stained with
antibody. Scale bar for panel Aa = 20 μm, for Ab and Ac = 30 μm.
frequency spontaneous action potentials. Bb: α7-nAChR
red trace) and a non-interneuron (blue trace), indicating functional
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were subjected to immunoprecipitation (IP) (Figure 2)
with a rabbit anti-nAChR α7 subunit antibody (H302)
followed by immunoblotting (IB) with a rat anti-nAChR
β2 subunit monoclonal antibody (mAb270). As indicated
in Figure 2, the β2 subunit was readily detected immu-
nologically in anti-α7 immunoprecipitates from either
hippocampus or VDB in wild type mice but not from
hippocampus in β2 knockout mice under the same experi-
mental conditions (Figure 2, lanes 1 2, and 3). Reprobing
the same blot with the rabbit anti-α7 antibody (H302)
verified that similar amounts of α7 subunits were precipi-
tated from both hippocampus and VDB tissues of wild
type mice (Figure 2, lanes 1 and 3). Collectively, conside-
ring the fact that both α7 and β2 subunits are mostly
expressed on hippocampal interneurons [10,28,29], these
results suggest that nAChR α7 and β2 subunits are very
likely co-assembled in mouse hippocampal interneurons.

Determination of Aβ forms
In this study, AFM was used to monitor aggregation
forms of Aβ. Aβ was dissolved in distilled water to a
concentration of 100 μM and then diluted to desired
concentrations. Preparations of Aβ at 100 nM (0–4 hr)
contained small oligomers (Figure 3A), small and large
oligomers (Figure 3B) and large oligomer and protofi-
briles (Figure 3C) in AFM images. 1 nM Aβ at 0, 2 and
4 hr after preparation mostly form smaller oligomers. In
all experiments within this study, Aβ was used within
4 hr before discarded.
Although AFM is able to distinguish oligomer from

fibril or monomer (since monomer is not detectable)
Figure 2 Co-assembly of α7β2-nAChRs in the hippocampal
CA1. Protein extracted from wild type mouse hippocampus CA1
(lane 1) or β2 KO mouse hippocampus CA1 (lane 2) or from VDB of
wild type mice (lane 3) were immunoprecipitated (IP) with rabbit
anti-α7 antiserum H302 (lanes 1, 2, and 3). The eluted proteins from
the precipitates were analyzed by immunoblotting (IB) with rat
monoclonal anti-β2 subunit antibody mAb270 (top) or rabbit anti-α7
antiserum H302 (bottom).
based on their sizes, it can not specify the exact forms of
oligomer during the aggregation state. To examine what
forms of Aβ peptides were present in our samples, we
utilized electrophoresis to test the exact forms of oligo-
mer during aggregation state. As shown in Figure 3G,
after 2 hrs aggregation of Aβ, if dissolved with water, the
major form is 9 mer, while the major form of DMSO
dissolved Aβ after 2 hrs aggregation remains in the mono-
mer state.

Pharmacological profiles of functional α7*-nAChRs in
hippocampal CA1 interneurons
Pharmacological approaches were used to characterize
and compare features of functional nAChRs expressed in
hippocampal CA1 interneurons and in ventral tegmental
area (VTA) dopamine (DA) neurons since VTA DA neu-
rons are known to express homomeric α7-nAChRs
[30,31]. The α7-nAChR-selective antagonist methylly-
caconitine (MLA) showed similar antagonist potency
toward choline-induced currents in either hippocampal
CA1 (Figure 4Aa) interneurons or VTA DA neurons
(Figure 4Ab). Analysis of concentration-inhibition curves
by preincubation with MLA for 2 min (Figure 4Ba) yielded
IC50 values and Hill coefficients of 0.5 nM and 1.2 for hip-
pocampal interneurons (n = 6) and 0.3 nM and 1.0 for
VTA DA neurons (n = 6, hippocampus vs. VTA p > 0.05),
respectively. However, the β2*-nAChR-selective antagonist
DHβE was ~500-fold more potent as an inhibitor for
choline-induced current in hippocampal interneurons
(Figure 4Ba) than that in VTA DA neurons (Figure 4Bb).
IC50 values and Hill coefficients for DHβE-induced inhib-
ition were 0.18 μM and 0.8, for hippocampal interneurons
(n = 6), and >100 μM and 0.5 for VTA neurons (n = 6;
hippocampus vs. VTA, p < 0.001; Figure 4Bc), respectively.
These results are consistent with the hypothesis that func-
tional α7*-nAChRs on hippocampal interneurons likely
contain DHβE–sensitive β2 subunits.

Aβ inhibits α7β2-nAChRs expressed on acutely
dissociated hippocampal interneurons
To test the sensitivity to Aβ of α7-nAChRs in hippocam-
pal interneurons, we examined the effects of 1 nM Aβ1-42
(with predominantly oligomers) on these receptors. The
experimental protocol involved repeated, acute challenges
with 10 mM choline spaced at a minimum of 2-min
intervals. During a continuous exposure to 1 nM Aβ1-42
starting just after an initial choline challenge and
continuing for 10 min, responses to choline challenges
were progressively inhibited with time by 1 nM Aβ1-42
in hippocampal interneurons, although reversibly as
demonstrated by response recovery after 6 min of pep-
tide washout (Figure 5Ac). By contrast, exposure to 1 nM
scrambled Aβ (as a control peptide) had no effect
(Figure 5Ab). Choline-induced currents in dissociated



Figure 3 AFM image shows the forms of Aβ1-42 after preparation. Aa-c: 100 nM Aβ after preparation at 0, 2 and 4 hrs. Red arrows indicate
the small oligomers (Aa), small and large oligomers (Ab) and large oligomer and protofibriles (Ac). Ad-f: 1 nM Aβ at 0, 2 and 4 hrs after
preparation. B: When dissolved with DMSO, monomer is the major form of Aβ after 2 hrs aggregation (Lane a). 9 Mer is the major form of Aβ,
when dissolved with ACSF, after 2 hrs aggregation (Lane b).
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VTA DA neurons were not sensitive to 1 nM Aβ oligo-
meric treatment (Figure 5Aa). Concentration-response
profile shows that choline-induced currents in hippo-
campus CA1 interneurons were more sensitive to block
by Aβ (at the indicated concentrations in M after pre-
exposure for 2 min) compared to those in VTA neurons
Figure 4 Pharmacological properties of α7β2-nAChRs expressed in hi
of selective α7-nAChR antagonist (MLA), or β2-nAChR antagonist (DHβE) on
CA1 interneuron (a) and a VTA DAergic neuron (b) at a holding potential o
that after pre-incubation for 2 min, 10 mM choline-induced whole-cell curr
significantly different (Ba). However, DHβE significantly inhibited choline-in
those from VTA DA neurons (Bb, **p < 0.01, t-test).
(Figure 5B). Quantitation of three replicate experiments of
6 cells (Figure 5C) confirmed that Aβ, even at 1 nM con-
centration, specifically inhibits putative α7β2-nAChR
function on hippocampal GABAergic interneurons, but
not the function of homomeric α7-nAChRs on VTA DA
neurons.
ppocampal CA 1 interneurons. A. A typical trace of inhibitory effects
choline-induced whole cell currents recorded from a hippocampal

f −60 mV. B. Analysis of concentration-inhibition curves of MLA shows
ents in hippocampal CA1 interneurons and VTA DA neurons were not
duced whole-cell currents from hippocampal CA1 interneurons but not



Figure 5 Effects of 1 nM Aβ on α7β2-nAChRs expressed in acutely dissociated hippocampal interneurons or VTA dopamine neurons.
Typical traces illustrate the effects of 1 nM scrambled Aβ (Aa) or oligomeric Aβ Ab) on 10 mM choline-induced currents recorded from
hippocampal interneurons and from VTA DA neurons (Ac). The membrane potential was held at −60 mV for these recordings.
B: Concentration-response profile shows that choline-induced currents in hippocampus CA1 interneurons were more sensitive to block by Aβ
(at the indicated concentrations in M after pre-exposure for 2 min) than those in VTA neurons. C: Summarized results of experiments as shown
in A. Each symbol was averaged from 6 cells tested. The vertical bars indicate Mean ± SE. **p < 0.01, t-test.
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Aβ inhibits choline-induced responses on acutely
dissociated hippocampal GAD-positive interneurons
prepared from GFP-GAD knock-in mice
To confirm the effect of Aβ on identified GABAergic
interneurons in hippocampus, we examined Aβ’s effect
on GFP-expressing cells acutely dissociated from hippo-
campus of GAD67-GFP knock-in mice (Figure 6Aa-d).
As shown in Figure 6Ad, dissociated GABAergic neu-
rons could be easily identified since they exhibited green
fluorescence. We then examined and compared the
effects of 1 nM scrambled Aβ or 1 nM oligomeric Aβ on
10 mM choline-elicited currents in the identified
GABAergic neurons. Choline was repetitively exposed to
recorded neuron with an interval of 2 min (Figure 6B).
Results from quantitative analysis indicate that choline-
induced currents in identified GABAergic neurons are
sensitive to 1 nM Aβ exposures (Figure 6C). These data
support our findings that putative α7β2-nAChR expressed



Figure 6 Effects of 1 nM Aβ on α7*-nAChRs in acutely dissociated hippocampal interneurons prepared from GAD67-GFP knock-in
mouse. A: Acutely dissociated hippocampal GABAergic interneurons from GAD67-GFP knock-in mice. Phase contrast microscopic image of
ventral hippocampus section from a GAD 67-GFP knock-in mouse (Aa). Red labeled region of ventral hippocampus CA1 indicates the area
punched out for acute dissociation. GAD 67-GFP expressing interneurons of ventral hippocampus section from a GAD 67-GFP knock-in mouse
display green florescence (Ab). Representative phase contrast (Ac) and green florescence images of interneuron (Ad) acutely dissociated from the
GAD 67-GFP knock-in mouse ventral hippocampal CA1 area. Scale bar = 250 μm in Aa-b and 10 μm in Ac-d. B. Effects of 1 nM Aβ on choline-
induced whole-cell currents in acutely dissociated hippocampal interneurons from GAD67-GFP knock-in mouse. Typical traces illustrate the effects
of 1 nM scrambled Aβ (blue traces) or oligomeric Aβ (red traces) on 10 mM choline-induced currents recorded from hippocampal interneurons.
The membrane potential was held at −60 mV for these recordings. C: Summary of results of experiments as shown in B. Each symbol was
averaged from 5 or 6 cells tested. The vertical bars indicate Mean ± SE. *p < 0.05, **p < 0.01, t-test.
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in hippocampal GABAergic interneurons are sensitive to
nanomolar level of oligomeric Aβ.

Discussion
Principle findings
The α7-nAChR is traditionally thought as a homomeric
receptor [32]. However, we have previously demon-
strated the existence of a novel, heteromeric α7β2-
nAChR in basal forebrain cholinergic neurons, and the
α7β2-nAChRs exhibit high sensitivity to acute Aβ expo-
sure [17]. In this study, we asked whether the hetero-
meric α7β2-nAChRs are also expressed in hippocampal
GABAergic interneurons and whether these receptors
are sensitive to pathological levels of Aβ. We found that
hippocampal GABAergic interneurons natively express
functional α7β2-nAChRs that are highly sensitive to
pathologically-relevant concentrations of Aβ. These fin-
dings suggest that Aβ could disrupt cholinergic input to
hippocampal interneurons to impair neuronal network,
which suggests a profound role of these α7β2-nAChRs
expressed in hippocampus.

α7*-nAChRs are predominantly expressed in hippocampal
interneurons
There are long-standing disagreements and contro-
versy about the expression profiles of α7-nAChRs in
hippocampal neurons. For example, some groups found
expression and function of α7-nAChRs in CA1 pyramidal
neurons from acutely or organotypically cultured hip-
pocampal slices [33-36], whereas others reported that
interneurons, rather than pyramidal neurons, in acute hip-
pocampal slices preferentially express functional nAChRs
[37-40]. In the current study, we utilized enzyme dissoci-
ation approach to isolate individual neurons from hippo-
campus CA1 region. After enzyme dissociation, we found
that most interneurons express functional α7-nAChRs
(79 of 86 neurons tested), however only a small population
of pyramidal neurons express functional α7-nAChRs with
less discernable choline-induced whole-cell currents (6 of
43 neurons tested). Consistent with above findings [33-40],
our data suggest that functional α7-nAChRs are preferen-
tially expressed in CA1 interneurons. Thus, the use of
acutely dissociated interneurons to evaluate the alteration
of α7-nAChR function after acute Aβ exposure in the
present study is appropriate.

Aβ interacts with α7*-nAChRs in hippocampal
interneurons
Aβ accumulation and aggregation in neuritic or senile pla-
ques and severe, selective cholinergic neuronal deficits are
two characteristic hallmarks of AD [1]. Many previous fin-
dings suggest direct and functionally-relevant interactions
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of Aβ with α7*-nAChRs [9,13,14,41,42]. Studies of Aβ
effects on α7-nAChR function have been seemingly contra-
dictory, perhaps due to differences in experimental proto-
cols used in Aβ studies and variables such as peptide
concentrations and forms. Many recent studies show that
Aβ directly modulates α7-nAChR function [9,13,17,18,41],
and most of these findings, including ours, suggest that
acute Aβ exposure directly inhibits α7-nAChR function.
Oligomeric Aβ modulates neuronal function more dramat-
ically than monomeric Aβ [43] and has more toxic effects
[44]. In the present study, we utilized AFM to monitor the
Aβ morphology during its aggregation. Combined with
AFM, electrophoresis was used to examine what exact
forms of Aβ peptides were present in our samples. We
found that after 2 hr aggregation of Aβ, if dissolved with
water, the major form was 9-mers in our samples. Nano-
molar Aβ concentrations (1–100 nM) are thought to be
most pathologically relevant based on levels found in AD
patients and in animal models of disease [45]. Aβ oligomers
(1 nM equivalent of Aβ monomers) were used in the
present study and this concentration is relevant to patho-
logical levels of Aβ in AD brains. The current findings are
consistent with our previous observations that functional
α7β2-nAChRs are expressed on native neurons and they
are sensitive to 1 nM Aβ (equivalent of Aβ monomers)
[17], while the similar concentration of Aβ likely does not
affect homomeric α7-nAChR function in VTA DA neu-
rons. Together, these results suggest that α7β2-nAChRs are
sensitive targets of effects of Aβ exposure.

Roles of α7-nAChRs in AD pathogenesis and therapy
Significant loss of radioligand binding sites corresponding
to nAChRs has been consistently observed at autopsy in a
number of neocortical areas and the hippocampus of
patients with AD [46,47]. Losses in α7-like-nAChR radi-
oligand binding sites have been reported in several brain
regions of AD patients [46]. Decreases in numbers of
radioligand binding sites corresponding to α7-nAChRs are
among the earliest events detected in AD, preceding cho-
linergic marker and neuronal loss [46]. Anti-cholinergic
signaling is known to impair memory, and nicotine expo-
sure improves cognitive function in AD patients [48], sup-
porting crucial roles for cholinergic signaling and nAChRs
in cognitive function. Activation of nAChRs moderates
Aβ toxicity, for instance, stimulating nAChRs inhibits
amyloid plaque formation in vitro and in vivo [49], acti-
vates α-secretase cleavage of amyloid precursor protein
(APP) [50], increases ACh release, facilitates Aβ inter-
nalization [51], inhibits activity of the MAPK/NF-κB/
c-myc pathway [6], reduces A production and attenu-
ates tau phosphorylation [52]. These findings suggest
that signaling through nAChRs not only is involved in
cognitive function, but also involved in the pathogenic
processes in AD.
Hippocampal interneurons have a crucial role in regu-
lating the complex interactions between pyramidal cells
and represent a key to the understanding of network
operations [53]. Hippocampal interneurons have been
reported to highly express α7-nAChRs [28,54], implying
an important role played by α7-nAChR in hippocampal
function. Aβ and α7-nAChR are both detected in hippo-
campus in AD patients and amyloid precursor protein
(APP) transgenic mice [55-59], accompanied with preva-
lent loss of hippocampal neurons [60]. Previous findings
suggest that acute exposure of hippocampal neurons to
high concentrations of Aβ (high nanomolar to low
micromolar) inhibits α7-nAChR function [9,13]. In the
present study, we found that exposure with physiologic-
ally relevant concentrations (e.g., 1 nM) of Aβ oligomers
can significantly inhibit α7-nAChR-mediated currents.
We think that use of the single neuron preparation and
Aβ1-42 oligomers may cause this difference of sensitivity.
Recent evidence demonstrates that neuronal circuits in
hippocampus exhibit hyper-excitation rather than hypo-
excitation in both AD patients and APP transgenic
animals [21-26]. Palop et al. reported an aberrant neu-
ronal hyper-excitation in APP over-expressing mice
models [23,24,27]. It has been reported that the activa-
tion of α7-nAChRs expressed on CA1 interneurons
enhances inhibitory postsynaptic currents (IPSCs) in the
postsynaptic CA1 pyramidal neurons and that these in-
hibitory responses were blocked by the α7-nAChRs-
selective antagonist MLA [29]. Furthermore, the activation
of α7-nAChRs expressed on CA1 interneurons produced
GABAergic inhibition in nearby pyramidal neurons
[33,61,62]. Thus, blockade of α7-nAChRs expressed on
CA1 interneurons may lead to disinhibition of pyra-
midal neurons, while reduced or impaired cholinergic
innervations will tune down GABAergic inhibition from
GABAergic interneurons to pyramidal neurons [63].
Thus, disruption of cholinergic input to hippocampal
GABAergic interneurons might cause disinhibition of
pyramidal neurons in hippocampus and then lead to
neuronal network hyperexcitation with further deficit
in AD.

Conclusion
Taken together, our findings suggest that functional
α7β2-nAChRs are expressed in hippocampal GABAergic
interneurons, and these receptors are sensitive to nano-
molar concentrations of oligomeric Aβ. The inhibition
of α7β2-nAChRs in GABAergic neurons by pathological
levels of Aβ may cause acute disruption of cholinergic
signaling on interneurons, disinhibition of principal cell
types (e.g., pyramidal cells), and ultimately deficits of
learning and memory abilities [64]. Moreover, the inhi-
bition of α7β2-nAChR function in interneurons by oligo-
meric Aβ could also lead to a loss of trophic support for
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these neurons and accelerate the progression of AD.
Drugs targeting α7β2-nAChRs to protect them against
Aβ effects or restoration of α7β2-nAChR function may
be a new therapeutic strategy for AD treatment.

Methods
Animals
Three types of male (PND 14–21) mice (wild-type
C57BL/6 mice, nAChR β2 subunit knockout mice on a
C57BL/6 background and the glutamate decarboxylase-67
(GAD67)-green fluorescent protein (GFP) knock-in mice
on a CD-1 background [65] were used in this study.
Experiments were approved by the Institutional Animal
Care and Use Committee at the Barrow Neurological
Institute, St. Joseph's Hospital and Medical Center. Mice
were group-housed in plexiglas shoebox-style cages with
ad libitum access to food and water. PCR genotyping was
performed to confirm the genetic status of these mice.
Genomic DNA from mice newly born to heterozygotic,
nAChR β2 subunit knock-out parents was extracted from
mouse tail tips by using the QIAgen DNeasy Blood &
Tissue Kit following the manufacture's protocol. PCR
amplification of the nAChR β2 subunit or lac-Z (an indi-
cator for the knock-out) was performed and PCR products
were then resolved on 1% agarose gels and stained for
visualization as described previously [17]. Phenotyping of
GAD67-GFP knock-in mice was achieved by examining
the heads of the mice during postnatal 1–5 days, and these
GAD67-GFP knock-in mice exhibited a striking green
fluorescence in the brain that can be visualized through
the skull at this age, as described previously [66].

Immunofluorescence staining
Cells were injected with biocytin (5 mg/ml included in the
intracellular solution) during patch-clamp recordings for
immunostaining in 35 mm culture dishes. After recor-
dings, cells were fixed in 4% paraformaldehyde for 10 min
and washed with PBS 3 times at room temperature. Then
a PBS-based blocking solution containing 5% normal goat
serum and 0.3% Triton X-100 was then applied for 1 hr.
After incubations at 4°C overnight with the primary GAD
67 antibody (1:100 dilution; Santa Cruz Biotechnology,
Santa Cruz, CA), the cultures were then washed with PBS
three times. Thereafter, Avidin (AF488) and GAD 67 sec-
ondary antibody (Alexa 555-conjugated, anti-goat) were ap-
plied in the blocking solution for 2 hr at room temperature
(all used at 1:1000 dilutions; all from Invitrogen, Carlsbad,
CA). Cells were then finally washed three times for 5 min
with PBS.

Acutely dissociated neurons from hippocampus and
patch-clamp whole-cell current recordings
Neuron dissociation and patch-clamp recordings were
performed as described by Wu et al. [17,30,67]. Briefly,
postnatal 2 to 4-week-old mice were anesthetized using
isoflurane, and the brain was rapidly removed. Several
400 μm coronal slices, which contained the dorsal CA1
region of the hippocampus were cut using a vibratome
(Vibratome 1000 plus; Jed Pella Inc., Redding, CA) in
cold (2–4°C) artificial cerebrospinal fluid (ACSF) con-
taining (in mM): NaCl, 119; KCl, 2.5; NaHCO3, 26;
MgSO2, 1.3; NaH2PO4, 1.0; CaCl2, 2.5 and glucose, 11,
pH = 7.4. The ACSF was continuously bubbled with 95%
O2 - 5% CO2. The slices were then incubated in a cham-
ber (Warner Instruments, Hamden, CT) and allowed to
recover for 2 hr at room temperature in oxygenated
ACSF. Thereafter, the slices were treated with pronase
(1 mg/ml) at 31°C for 30 min and subsequently treated
with protease (1 mg/ml) for another 30 min. The ventral
CA1 region was extracted by punching slices using a
well-polished needle. The punched tissue was then disso-
ciated mechanically by using several fire-polished micro-
Pasteur pipettes in a 35 mm culture dish filled with
oxygenated standard external solution [in mm: 150 NaCl,
5 KCl, 1 MgCl2, 2 CaCl2, 10 glucose, and 10 HEPES; pH
7.4 (with Tris-base)]. Perforated-patch whole-cell recor-
dings coupled with a three-barrel drug application system
were used (Warner Instruments, Hamden, CT). To pre-
pare for perforated-patch whole-cell recording, glass
microelectrodes (GC-1.5; Narishige) were fashioned on a
two-stage vertical pipette puller (P-830; Narishige, NY,
USA), and the resistance of the electrode was 4–6 MΩ
when filled with the internal solution. A tight seal (>2 GΩ)
was formed between the electrode tip and the cell surface,
which was followed by a transition from on-cell to whole-
cell recording mode due to the partitioning of amphotericin
B (200 μg/ml, Sigma, St. Louis, MO) into the membrane
underlying the patch. After whole-cell, an access resistance
lower than 60 MΩ was acceptable for perforated-patch
recordings under voltage-clamp mode. The series resistance
was not compensated in the experiments using dissociated
neurons. Data were acquired by Axopatch 200B amplifier
at 5 kHz with pClamp 9.2 software (Molecular Devices,
Sunnyvale, CA) and analyzed with Clampfit 9.2 software
(Molecular Devices, Sunnyvale, CA).

Drugs and Aβ preparation
Drugs used in this study were choline, methyllycaconitine
(MLA), dihydro-β-erythroidine (DHβE) (Sigma, St. Louis,
MO), brefeldin A (Calbiochem, San Diego, CA), scramble
Aβ1-42, and Aβ1-42 (rPeptide, Athens, GA). Aβ1–42 was
reconstituted in distilled water to a concentration of 100
μM and stored at −80°C as previously described [17]. Aβ
was used within 7 days after reconstitution. Aliquots
diluted in standard extracellular solution yielded a pre-
dominantly oligomeric form. AFM was used to monitor
aggregation forms of Aβ. For each use, Aβ stock (100 μM)
was then diluted into desired concentrations. In this study,
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1 nM Aβ within 4 hr after preparation mostly forms smal-
ler oligomers. In all experiments within this study, Aβ was
used within 4 hr before discarded each time.

Atomic force microscope (AFM) imaging
AFM was used to monitor the morphology of the Aβ
aggregates before experiments. Aliquots were removed
from Aβ samples, and then immediately spotted on freshly
cleaved mica. After 2 min the mica was washed with 1 ml
of de-ionized water, and then dried with compressed
nitrogen. Topographic AFM images were obtained in air
at room temperature using a Tapping Mode AFM with a
Nanoscope IIIa controller (Veeco, Santa Barbara, CA).
Images were acquired using oxide sharpened Si3N4 AFM
tips (k = 40 N/m, fo ~ 300kHz) (Model: OTESPA, Veeco,
Santa Barbara, CA) at scan rates of 2–3 Hz and at scan
resolution of 512 samples per line. Images were subjected
to 2nd order polynomial flattening as needed to reduce the
effects of image bowing and tilt. AFM images were
analyzed with the Scanning Probe Imaging Processor
(SPIP) software (Image Metrology, www.imagemet.com) to
generate height distribution histograms for each sample.

Immunoprecipitation and electrophoresis
Tissues were Dounce homogenized (10 strokes) in ice-
cold lysis buffer [1% (v/v) Triton X-100, 150 mm EDTA,
10% (v/v) glycerol, 50 mm Tris–HCl, pH 8.0] containing
1× general protease inhibitor cocktails (Sigma-Aldrich, St.
Louis, MO). The lysates were transferred to microcentri-
fuge tubes and further solubilized for 30 min at 4°C. The
detergent extracts (supernatants) were collected by centri-
fugation at 15,000 × g for 15 min at 4°C, and protein
concentration was determined for sample aliquots using
bicinchoninic acid (BCA) protein assay reagents (Pierce
Chemical, Rockford, IL). The detergent extracts were
then precleared with 50 μl of mixed slurry of protein
A-Sepharose and protein G-Sepharose (1:1) (Amersham
Biosciences, NJ) twice, each for 30 min at 4°C. Detergent
extracts were mixed with 1 μg of rabbit anti-α7 antiserum
(H302, Santa Cruz Biotechnology, Santa Cruz, CA) and
incubated at 4°C overnight with continuous agitation.
Protein A-Sepharose and protein G-Sepharose mixtures
(50 μl) were added and incubated at 4°C for 1 hr. The
beads were washed four times with ice-cold lysis buffer
containing protease inhibitors. Laemmli sample buffer
eluates were resolved by SDS-PAGE. Proteins were trans-
ferred onto Hybond ECL nitrocellular membranes
(Amersham Biosciences, NJ). The membranes were
blocked with TBST buffer [20 mm Tris–HCl, pH 7.6,
150 mm NaCl, and 0.1% (v/v) Tween 20 containing 2%
(w/v) nonfat dry milk for at least 2 hr and incubated
with rat monoclonal anti-β2 antibody (mAb270; Santa
Cruz) or rabbit anti-α7 antiserum (H302), respectively,
at 4°C overnight. After three washes in TBST, the
membranes were incubated with goat anti-rat or goat anti-
rabbit secondary antibodies (1:10,000) (Pierce Chemical,
Rockford, IL) for 1 hr and washed. The bound antibodies
were detected with SuperSignal chemiluminescent sub-
strate (Pierce Chemical, Rockford, IL).
Aβ 1–42 peptides were analyzed with electrophoresis to

test the exact form of oligomer during aggregation state.
Pre-cast 10-20% SDS-polyacrylamide Tris-Tricine gels
(Bio-Rad, Hercules, CA) or 16% Tris-Tricine gels in the
presence or absence of SDS or Urea 8M were used. 100 μg
of Aβ1-42 per sample was resuspended with 4X Tricine
loading buffer. Aβ1-42 samples dissolved with water or
DMSO were aggregated for 2 hr before loaded.

Statistical analysis
All data were presented as mean ± standard error (SE).
Statistical comparisons using Student’s t-test (indepen-
dent or paired) were performed with Origin 5.0 (Micro-
cal Software, Inc., Northampton, MA). p values less than
0.05 were considered statistically significant.
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