
Ström et al. BMC Neuroscience 2012, 13:146
http://www.biomedcentral.com/1471-2202/13/146
RESEARCH ARTICLE Open Access
Disruption of the alox5ap gene ameliorates focal
ischemic stroke: possible consequence of
impaired leukotriene biosynthesis
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Abstract

Background: Leukotrienes are potent inflammatory mediators, which in a number of studies have been found to
be associated with ischemic stroke pathology: gene variants affecting leukotriene synthesis, including the FLAP
(ALOX5AP) gene, have in human studies shown correlation to stroke incidence, and animal studies have
demonstrated protective properties of various leukotriene-disrupting drugs. However, no study has hitherto
described a significant effect of a genetic manipulation of the leukotriene system on ischemic stroke. Therefore, we
decided to compare the damage from focal cerebral ischemia between wild type and FLAP knockout mice.
Damage was evaluated by infarct staining and a functional test after middle cerebral artery occlusion in 20 wild
type and 20 knockout male mice.

Results: Mortality-adjusted median infarct size was 18.4 (3.2-76.7) mm3 in the knockout group, compared to 72.0
(16.7-174.0) mm3 in the wild type group (p < 0.0005). There was also a tendency of improved functional score in
the knockout group (p = 0.068). Analysis of bone marrow cells confirmed that knockout animals had lost their ability
to form leukotrienes.

Conclusions: Since the local inflammatory reaction after ischemic stroke is known to contribute to the brain tissue
damage, the group difference seen in the current study could be a consequence of a milder inflammatory reaction
in the knockout group. Our results add evidence to the notion that leukotrienes are important in ischemic stroke,
and that blocked leukotriene production ameliorates cerebral damage.
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Background
Ischemic stroke is one of the leading causes of death and
long-term disability in the world. Despite the allocation
of huge research efforts in recent years, treatment
options for ischemic stroke remain few. Therefore,
investigations into the pathophysiological intricacies of
the disease are crucial to provide new drug targets.
Inflammation is a prominent feature of stroke patho-

physiology, and has attracted substantial research inter-
est. The massive cell death in the infarct area triggers an
acute and prolonged inflammatory process in the brain,
characterized by activation of microglia, production of
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inflammatory cytokines and infiltration of various in-
flammatory cells, including neutrophils, T-cells and
monocytes/macrophages, into the damaged tissue. In-
flammation contributes to tissue damage, and especially
the early inflammatory cell infiltration and cytokine pro-
duction seem to be predominantly deleterious [1].
Mounting evidence indicates that leukotrienes (LTs), a

group of potent inflammatory mediators [2], have an im-
portant role in cerebral ischemia, and that components
involved in the LT cascade may be attractive drug
targets. LTs are formed from arachidonic acid (AA) by
5-lipoxygenase (5-LO) upon immunological or inflam-
matory challenge. 5-LO activating protein (FLAP) is an
integral membrane protein localized to the nuclear enve-
lope and endoplasmic reticulum. Both 5-LO and FLAP
are required for formation of LTA4 from endogenous
AA [3-8], and LTA4, is the precursor of all AA-derived
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effector LTs. The expression of 5-LO [9] and LT recep-
tors [10-13] is affected by cerebral ischemia, and the
importance of eicosanoids has been proposed from the
observation that AA concentrations are highest in ische-
mic brain regions most sensitive to stroke [14]. Human
genetic studies have demonstrated a significant correl-
ation between stroke risk and polymorphisms in several
of the LT-associated genes, e.g. ALOX5AP encoding
FLAP [15-17], as well as genes encoding LTC4 synthase
[16,18] and cysteinyl (Cys) LT receptors [16]. Also, a
large Swedish epidemiologic study recently showed that
intake of montelukast, a CysLT1R antagonist, was asso-
ciated with a decreased risk of recurrent stroke [19].
Furthermore, animal studies have demonstrated that
drugs interfering with components of the LT pathway,
such as 5-LO [20-22] and LT receptors [23-28], amelior-
ate cerebral ischemic damage. Effects mediated by both
of the established CysLT receptors, CysLT1R [13,24,26-
28] and CysLT2R [10], appear to be involved in ischemic
brain injury. Furthermore, the proposed CysLT receptor
GPR17 was found to be up-regulated in damaged tissues,
and knockout of the GPR17 gene reduced neuronal in-
jury after ischemia [29,30].
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Figure 1 Leukotriene formation was blocked in FLAP knockout mice.
animals were incubated with 50 μM AA and 20 μM calcium ionophore A23
methanol and supernatants were analyzed by RP-HPLC as described in Ma
absorbance at 360 nm, was recorded versus time. Retention times in minu
panel: analysis of synthetic LTB4 and LTC4. Middle panel: LTB4 was formed b
(lower panel).
The use of genetically modified animals is an import-
ant tool in the elucidation of biological mechanisms.
However, in the case of LT effects on stroke, such stud-
ies remain scarce. The only one we are aware of investi-
gated the effect of disrupting the 5-LO gene in mice, but
no significant effects on focal cerebral ischemia were
seen [31]. Because of the suggested importance of FLAP
in human stroke studies, we decided to investigate the
effect of FLAP gene knockout in a rodent middle cere-
bral artery occlusion (MCAo) model. The hypothesis
was that the decreased LT production in the genetically
modified mice would ameliorate the damage from ische-
mic stroke.

Results
FLAP knockout mice do not produce leukotrienes
LTA4 is an obligatory intermediate in the biosynthesis of
LTB4 and LTC4 [32]. It is unstable and thus difficult to
measure by direct methods. Therefore, we measured its
downstream product LTB4 which is efficiently formed
from LTA4 by the widely expressed enzyme LTA4 hydro-
lase. Bone marrow cells from wild type and knockout
mice were incubated without cysteine with AA and
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calcium ionophore A23187. The lack of cysteine pre-
vents formation of LTC4 [33,34] whereas formation of
LTB4 proceeds normally. RP-HPLC analyses showed that
LTB4 was formed by wild type, but not by FLAP knock-
out, bone marrow cells (Figure 1).

FLAP knockout decreased mortality-adjusted infarct size
In the wild type group, two of the included animals died
within 24 h after MCAo, while no included animals died
in the FLAP knockout group. Mortality-adjusted median
infarct size was 18.4 (3.2-76.7) mm3 in the knockout
group, compared to 72.0 (16.7-174.0) mm3 in the wild
type group (p < 0.0005; Figure 2).

FLAP knockout had no significant effect on mortality-
adjusted tail swing test performance
Before MCAo, the wild type and knockout groups
scored close to the theoretical baseline index of 0.50
(equal number of swings to the left and right), with tail
swing indices (proportion of right-sided swings) of 0.50
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Figure 2 Infarct sizes were decreased in FLAP knockout mice. In
terms of mortality-adjusted median infarct size, the knockout
animals were protected from focal cerebral ischemia in comparison
to their wild type counterparts (p < 0.0005). Infarct size is presented
in mm3. The segments of the box plots depict the 10th, 25th, 50th,
75th and 90th percentile. The boxes above the box plots represent
the mortality in the two groups. WT =Wild type group, KO = FLAP
knockout group.
(0.40-0.60) and 0.65 (0.53-0.70), respectively. The mice
in both groups were severely affected by the ischemic
stroke, and as much as 91% of the wild type and 60% of
the knockout animals scored maximally (1.00 = 100% of
swings to the right) in the tail swing test, thus decreasing
the test sensitivity. Despite this, a trend of better out-
come, which however did not reach statistical signifi-
cance (p = 0.068), was seen in the knockout group.
Mortality-adjusted median tail swing index (proportion
of right side swings) was 1.00 (1.00-1.00) in the wild type
group, compared to 1.00 (0.90-1.00) in the knockout
group (Figure 3).

Perioperative physiological monitoring
The physiological variables monitored during MCAo
were similar between the two groups, as presented in
Table 1, indicating that they responded similarly to the
anesthesia.
WT KO
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Figure 3 Tendency of improved functional outcome in FLAP
knockout mice. No significant effect of the genotype difference
was found in the mortality-adjusted tail swing test, although a trend
of better performance in the knockout group was seen (p = 0.068).
The proportion of right sided swings is plotted on the Y-axis. The
segments of the box plots depict the 10th, 25th, 50th, 75th and 90th

percentile. The boxes above the box plots represent the mortality in
the two groups. WT =Wild type group, KO = FLAP knockout group.



Table 1 Perioperatively monitored physiological variables

Group O2 Saturation [%] Heart rate [bpm] Pulse distention [μm] Breath rate [bpm] Breath distention [μm]

Wild type 94.6 (91.1-97.4) 549.0 (523.9-568.6) 25.9 (18.2-36.3) 53.7 (44.7-76.1) 23.8 (19.0-33.1)

Knockout 95.2 (89.5-96.2) 531.5 (491.3-566.5) 17.7 (13.1-24.2) 57.9 (45.6-67.7) 20.6 (19.0-21.9)

All values are presented as median (1st quartile, 3rd quartile).
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Exclusions
In total, 7/20 (35%) animals in the wild type group and
5/20 (25%) animals in the knockout group were
excluded. All exclusions were due to criterion #1; death
during MCAo (Table 2).

Cerebrovascular anatomy
Cerebrovascular anatomy was analyzed in 10 separate
animals by carbon black perfusion and quantitative
image analysis. The analyzed vessels (right and left
MCA, anterior cerebral artery (ACA), posterior cerebral
artery (PCA) and posterior communicating artery
(Pcom)), were observed in all animals. Neither multiple
T-tests nor two-way ANOVA (with the factors [geno-
type], p = 0.204, and [vessel]) revealed any significant dif-
ferences between knockout and wild type animals
regarding vessel outer diameter (Figure 4, Table 3).

Discussion
Knockout of the FLAP gene was associated with ceased
LT production and amelioration of stroke damage in
terms of mortality-adjusted infarct size. Furthermore,
there was a clear trend of improved mortality-adjusted
functional test performance in the knockout group.
Activation of LT synthesis involves translocation to the

nuclear envelope and endoplasmic reticulum of cytosolic
phospholipase A2 (cPLA2) and of 5-LO from the cytosol
and nuclear matrix. cPLA2 subsequently releases AA
from membrane phospholipids [3,5,35]. FLAP resides at
these locations as an integral membrane protein [3-6,8]
and facilitates the transfer of AA from cPLA2 to 5-LO
[36]. The labile intermediate LTA4, formed by 5-LO, is
converted to LTB4 by LTA4 hydrolase or to LTC4 by
LTC4 synthase. LTC4 is exported from the cell and meta-
bolized to two other cysteinyl (Cys) LTs, LTD4 and LTE4.
Both 5-LO and FLAP are required for LTA4 synthesis
from endogenous AA [7], and both FLAP knockout mice
and 5-LO knockout mice lack detectable LT production
[37]. This was confirmed for the FLAP knockout mice in
the current study by stimulating WT and KO bone mar-
row cells under conditions which allow LTB4 formation,
Table 2 Number of animals excluded according to respective

Group Criterion #1: Death before
the end of MCAo surgery [n]

Criterion #2: Failu
filament at least

Wild type 7

Knockout 5
but not LTC4 formation to occur due to lack of cysteine
in the incubation mixture [33,34]. Thus LTB4 represents
the total production of LTs from LTA4. LTB4 is a potent
chemoattractant, which recruits inflammatory cells to
sites of inflammation [38-40]. It also contributes to
leukocyte accumulation by attenuation of leukocyte
apoptosis [41,42]. CysLTs cause wide-spread plasma
leakage by increasing vascular permeability and attract
subsets of T-cells [43-45]. They also activate dendritic
cells and their cytokine release [46,47] as well as mast
cell cytokine production [48], which may also influence
the inflammatory state. Hence, alterations in the LT
pathway affect the inflammatory response, and such
alterations could in turn have an impact on cerebral
ischemia.
It should be noted, however, that inflammation is not

only an important feature in the specific infarct process,
but also in the pathology of atherosclerosis. As men-
tioned above, several genetic studies on human popula-
tions have linked LT-related genes to altered stroke
incidence [15-18]. Such studies, however, do not confer
firm evidence regarding the mechanisms of the effects.
This emphasizes the importance of animal studies, since
they are sin qua non for investigating biological mechan-
isms. As already mentioned, several reports, using mod-
els similar to those in the current study, have
demonstrated protection against stroke by drugs block-
ing LT effects, such as montelukast [23,24] and pranlu-
kast [27,28], strongly suggesting LT-related effects on
the specific infarct pathophysiology. Experiments using
drugs and those employing genetically modified animals
are important complements to each other. The study
using a 5-LO knockout mouse strain, mentioned above,
showed no effects on infarct size after transient MCAo.
That study, however, only included 6 mice per transient
MCAo group, and with infarct size coefficient of vari-
ation (standard deviation divided by mean value) of
around 42% and α = 0.05, the chance (statistical power)
of detecting for example a 30% difference was 45.1%. In
other words, the study was underpowered in this specific
respect, thus not substantiating negative conclusions
criteria in the two groups

re to insert silicone coated
12 mm into the CCA [n]

Criterion #3: Signs of pathology
prior to MCAo surgery [n]

0 0

0 0



Figure 4 Cerebrovascular anatomy in wild type and knockout mice. No cerebrovascular differences between wild type and knockout
animals were found. Brains from carbon black perfused wild type and FLAP knockout animals are depicted. Anterior cerebral artery (ACA), middle
cerebral artery (MCA), posterior cerebral artery (PCA) and posterior communicating artery (Pcom) are pointed out in the figure.
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[31]. To the best of our knowledge, the current study is
the first to show that a genetic distortion of the LT system
ameliorates the detrimental effects of cerebral ischemia.
It should be noted that altered inflammatory response

is not the only possible mechanism for the decreased
infarct volumes in the knockout group in the current
experiment. Even though the cerebrovascular anatomy
was similar between the groups, the lack of leukotriene
production may theoretically have affected the blood
flow to the brain, which in turn could decrease the
infarct size. For example, exogenous LTD4 increases the
blood pressure in rats [49] and the FLAP inhibitor
MK886 ameliorates hypertension in L-NAME treated
rats [50].
It is a well-known problem that MCAo studies often

suffer from high random variability regarding infarct
size, and numerous attempts have been made to address
this [51-54]. The source of this variability can be a con-
sequence of for example inconsistency in the filament
insertion procedure and to subtle, individual variations
Table 3 Vessel outer diameter in the two groups

Vessel Wild type [mm]
(mean ± SD)

Knockout [mm]
(mean ± SD)

T-test
p-value

MCA right 0.14 ± 0.012 0.16 ± 0.031 0.15

MCA left 0.14 ± 0.011 0.14 ± 0.015 0.73

ACA right 0.16 ± 0.041 0.17 ± 0.028 0.84

ACA left 0.17 ± 0.033 0.16 ± 0.031 0.61

PCA right 0.18 ± 0.030 0.18 ± 0.036 0.88

PCA left 0.17 ± 0.017 0.17 ± 0.027 0.63

Pcom right 0.12 ± 0.016 0.15 ± 0.033 0.07

Pcom left 0.13 ± 0.007 0.13 ± 0.022 0.88
in cerebral vasculature as well as in peroperative hydra-
tion status and body temperature. In the current study,
efforts to minimize random variability included a strictly
standardized operation procedure performed by one sin-
gle surgeon, peroperative surveillance of physiological
parameters and the use of an inbred mouse strain, min-
imizing inter-individual differences.
Strengths and weaknesses of the current study
A frequent problem in animal stroke studies is that mor-
tality is neglected, and not included in the final analysis.
A strength of the current study is that this was
addressed by combining mortality with infarct size and
functional score, respectively, in two mortality-adjusted
non-parametrical models. The advantage of this ap-
proach is that the importance of the extreme outcome
of death is acknowledged. A theoretical drawback is that
if mortality was very high in one of the groups, that fac-
tor itself could contribute with so much group difference
that any other variable combined with the mortality rate
would seem significant. In the current study, with only 2
included cases of death, this was not a concern.
Even though 2,3,5-triphenyltetrazolium chloride (TTC)

staining is a well-used and validated method for infarct
size assessment, other staining procedures could have
provided differentiated information regarding the mode
of cell death. It should be noted that any eventual differ-
ences between the groups regarding mode of cell death
remain undisclosed in the current experimental setup.
Such differences may potentially contribute to explaining
the mechanism of the reduced infarct sizes in the knock-
out group, and merit attention in future studies.
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In a preceding pilot study, different MCA occlusion
times were tested with the result that for this specific
mouse type, 120 minutes was needed to ensure a rela-
tively consistent infarction. This however caused quite
high mortality if longer convalescence periods were
adopted, which was why we settled for 24 h even though
longer survival times could be beneficial. Theoretically,
the infarct evolution may merely have been delayed in
the knockout group.

Conclusions and future perspectives
We conclude that disruption of the FLAP gene decreases
mortality-adjusted infarct size following MCAo in mice.
It merits emphasis that we do not draw conclusions
regarding the effects on infarct sizes or mortality in sep-
arate, but regarding a combination of the two, which in
our opinion is more relevant. An interesting avenue for
future research would be to study effects of combina-
tions of genetic modifications and LT inhibiting drugs,
to be able to further elucidate the exact mechanisms
involved. Future studies using the FLAP knockout model
on other kinds of brain inflammation might provide im-
portant new information concerning the pathogenesis of
such diseases.

Methods
Animals
A FLAP-knockout mouse strain [37], generously pro-
vided as frozen embryos by Dr. Beverly H. Koller, was
bred at an animal facility in Linköping, Sweden. The ani-
mals were housed in 12 h/12 h light/dark cycles (lights
on at 7 AM). Food (801730, Special Diets Service, Essex,
England) and tap water were provided ad libitum. The
strain was maintained by breeding against 129SvEv mice
(Taconic, Tornbjerg, Denmark) and 5 generations of
backcrossing were made before the stroke experiments.
All procedures were conducted in accordance with the
National Committee for Animal Research in Sweden
and Principles of Laboratory Animal Care (NIH publica-
tion no. 86–23, revised 1985). The protocol was
approved by the Local Ethics Committee for Animal
Care and Use in Linköping.

Experimental procedures
Forty male mice (age: 126 (94–151) days, weight: 28.4
(27.8-29) g) were used for MCAo. Twenty homozygous
FLAP−/− mice were consecutively selected for the knock-
out group, while 20 consecutively selected FLAP+/+ mice
served as controls. The experimenter responsible for
performing the MCAo and infarct assessments (JOS)
was blinded to the genotype of all mice from the start of
experiments and until after infarct size analyses. The
mice were operated in random order.
MCAo was performed using the intraluminal filament
method [55,56]. The mice were anesthetized with iso-
flurane (4.5% for induction, 1.8% for maintenance; Fore-
neW, Abbott Scandinavia AB, Solna, Sweden) in an
oxygen/nitrous oxide 30%/70% mixture, and laid in su-
pine position on a thermostatic heating pad connected
to an anal thermometer (50–7061, Harvard Apparatus,
Holliston, MA, USA). Eye gel (Lubrithal™, VetXX,
Uldum, Denmark) was utilized to protect the eyes dur-
ing anesthesia, and before surgery, animals received
1 mL saline subcutaneously for fluid replenishment. The
throat of the mouse was shaved and washed with Iodo-
pax (Jodopax vetW; Pharmaxim AB, Helsingborg, Swe-
den) prior to incision. During MCAo anesthesia, O2

saturation, heart rate, pulse distention, breath rate and
breath distention were monitored by pulse oximetry
(SLS-MO-00404, MouseOx, Allison Park, PA, USA). A
2 cm midline incision was made over the trachea, and
the left common (CCA), external (ECA) and internal ca-
rotid arteries (ICA) were freed from surrounding tissue.
After ligating (6–0 silk suture, Johnson & Johnson, New
Brunswick, NJ, USA) the left CCA and ECA, a suture
was prepared around the left ICA, and the ICA was tem-
porarily clipped (8 mm artery clip, Rebstock Instruments
Gmbh, Dürbheim, Germany). A small incision was sub-
sequently made in CCA, just proximal to the bifurcation,
and a silicon-coated filament (502756, Doccol, Redlands,
CA, USA) was inserted until a slight resistance indicated
correct placement. The intraluminal filament was
secured by a knot, the wound was closed by sutures, and
the mouse was allowed to wake up. After two hours of
occlusion, the animal was reanesthetized, the filament
withdrawn, and the wound closed anew. Topical lidocain
gel (Xylocain 2%, AstraZeneca AB, Södertälje, Sweden)
was used for postoperative analgesia.

Postoperative care
After surgery, the mice were housed solitarily, without
nesting material, in a heated (25-26°C) environment
until sacrifice 24 h later. Food pellets, soaked in water,
were placed on a Petri dish at the cage floor to promote
eating.

Physiological testing
Before MCAo, and one day postoperatively, the mice
were tested for right-left asymmetry by means of the tail
swing test [57]. The animal was held in the tail above
the cage, and the directions of the first 20 lateral
attempts to reach the experimenter’s hand holding the
tail were recorded. A right-left index was subsequently
calculated by dividing the number of right side swings
by the total number of swings. An index of 0.5 therefore
means that the animal swinged an equal number of
times to the right as to the left.
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Lesion measurements
The animals were lightly anesthetized in isoflurane 24 h
after MCAo and decapitated in a small animal guillotine.
The brains were dissected, immersed in cold water for
two minutes, and cut in 1 mm slices in a mouse brain
matrix (BSMAS001-1, Zivic Instruments, Pittsburgh, PA,
USA). The slices were soaked in TTC (Sigma-Aldrich,
CAS# 298-96-4) in PBS (pH 7.4) for 15 minutes in a
small Petri dish maintained at 37°C. The slices were
scanned (ScanJet 2c, Hewlett-Packard) and infarct areas
were calculated as described by Goldlust [58], using an
automatic 40% green spectrum threshold (SigmaScan
Pro version 5, Systat Software Inc., San Jose, CA, USA).
When infarct areas in each slice had been established,
the lesion volume was calculated by multiplying the
average infarct area of two adjacent slices with the thick-
ness of the tissue in between, which was then summed
up to a total infarct size. Infarct volume is expressed as
mm3, and corrected for edema with the assumption that
the edema in the infarcted hemisphere is not restricted
to the infarct, but also affects surrounding tissue.

Exclusion criteria
Exclusion criteria were established prior to the start of
the experiments:

1. Death before the end of MCAo surgery
2. Failure to insert silicone coated filament at least
12 mm into the CCA

3. Signs of pathology prior to MCAo surgery

Analysis of cerebrovascular anatomy
For analysis of cerebrovascular anatomy, 5 knockout and
5 control mice were perfused with carbon black ink
(Schribtol, drawing ink for calligraphy, Pelikan,
Hannover, Germany) into the left heart ventricle. The
brain was subsequently dissected, and care was taken
not to damage the vasculature. The ventral aspect of the
brain was photographed (Ixus 85 IS, Canon, Tokyo,
Japan) through an operating microscope. The outer dia-
meters of the right and left MCA, ACA, PCA and Pcom
were measured using Sigmascan.

Analysis of leukotriene production
Bone marrow cells were collected from femurs and tibias
of euthanized knockout (FLAP−/−) and control (FLAP
+/+) mice. Equal numbers of cells were incubated for
20 min at 37°C in PBS containing 50 μM AA and 20 μM
calcium ionophore A23187. Reactions were stopped by
addition of ice-cold methanol. Supernatants were col-
lected, cleared from cell debris, evaporated and the resi-
dues were dissolved in methanol and analyzed by RP-
HPLC using a Poroshell 120 EC-C18 column (particle
size 2.7 μm, internal diameter 3 mm, length 50 mm), a
1200 series HPLC, and a model 1290 diode array de-
tector (all from Agilent Technologies). LTs were eluted
using methanol/water 7:3 (v/v) plus 0.1% acetic acid,
adjusted to pH 5.7 by ammonium hydroxide (phase A)
for 3 min followed by a linear gradient up to 30% metha-
nol in phase A for 5 min, and finally a linear gradient up
to 100% methanol for 1 min, all at a flow rate of 0.5 ml
per min.
Statistics
For the infarct experiments, an a priori power calcula-
tion based on an expected group difference of 40% and
an expected coefficient of variation of 40%, yielded (1-β)
= 0.869 for n = 20 mice in each group. Mortality after
MCAo was combined with lesion size and tail swing test
performance, respectively, in a non-parametric model in
which death was considered the worst possible outcome.
Wilcoxon’s rank-sum test, with α = 0.05, was used for
these analyses (Systat version 11, Systat Software, Inc.
CA, USA). Infarct and test performance data are pre-
sented as median (1st quartile-3rd quartile) throughout.
Cerebrovascular anatomy was compared by t-tests for

each vessel, and by two-way ANOVA with the factors
[genotype] and [vessel] (SPSS, Version 20, IBM Corpor-
ation, Armonk, NY, USA). For the t-tests, N = 5 in each
group rendered an observed power of 0.816 to discover
a 30% vessel diameter difference between the groups,
given an α = 0.05 (Systat version 11, Systat Software, Inc.
CA, USA). Vessel diameter data are presented as mean
± standard deviation throughout.
ARRIVE and STAIR
The experiment design and manuscript conform to the
ARRIVE-guidelines of 2011 [59]. Of the 8 STAIR-criteria
[60], developed for preclinical stroke experiments, 4 (ex-
tensive physiological monitoring, randomization and
blinding, more than one effect measure, [intention to]
publish in a peer-review journal) were fulfilled.

Competing interests
The authors declare that there are no competing interests.

Authors’ contributions
JOS contributed to designing the study, performed the infarct surgeries,
outcome assessments, infarct result analyses and drafted the manuscript. TS
contributed to designing the study, handled the breeding, leukotriene
analyses and revised the manuscript. SH conceived and contributed to
designing the study and revised the manuscript. All authors read and
approved the final manuscript version before submission.

Acknowledgements
The support of Elvar and Annette Theodorsson is gratefully acknowledged.
Frozen FLAP−/− mouse embryos were generously supplied by Dr. Beverly H.
Koller, University of North Carolina at Chapel Hill. This work was supported
by grants from Märta Lundqvists stiftelse and the County Council of
Östergötland.



Ström et al. BMC Neuroscience 2012, 13:146 Page 8 of 9
http://www.biomedcentral.com/1471-2202/13/146
Author details
1Division of Clinical Chemistry, Department of Clinical and Experimental
Medicine, Faculty of Health Sciences, Linköping University, Linköping,
Sweden. 2Division of Cell Biology, Department of Clinical and Experimental
Medicine, Faculty of Health Sciences, Linköping University, Linköping,
Sweden.

Received: 17 July 2012 Accepted: 26 November 2012
Published: 30 November 2012
References
1. Jin R, Yang G, Li G: Inflammatory mechanisms in ischemic stroke: role of

inflammatory cells. J Leukoc Biol 2010, 87(5):779–789.
2. Samuelsson B, Hammarström S: Leukotrienes: a novel group of

biologically active compounds. Vitam Horm 1982, 39:1–30.
3. Woods JW, Coffey MJ, Brock TG, Singer II, Peters-Golden M: 5-Lipoxygenase

is located in the euchromatin of the nucleus in resting human alveolar
macrophages and translocates to the nuclear envelope upon cell
activation. J Clin Invest 1995, 95(5):2035–2046.

4. Peters-Golden M, McNish RW: Redistribution of 5-lipoxygenase and
cytosolic phospholipase A2 to the nuclear fraction upon macrophage
activation. Biochem Biophys Res Commun 1993, 196(1):147–153.

5. Woods JW, Evans JF, Ethier D, Scott S, Vickers PJ, Hearn L, Heibein JA,
Charleson S, Singer II: 5-lipoxygenase and 5-lipoxygenase-activating
protein are localized in the nuclear envelope of activated human
leukocytes. J Exp Med 1993, 178(6):1935–1946.

6. Pouliot M, McDonald PP, Krump E, Mancini JA, McColl SR, Weech PK,
Borgeat P: Colocalization of cytosolic phospholipase A2, 5-lipoxygenase,
and 5-lipoxygenase-activating protein at the nuclear membrane of
A23187-stimulated human neutrophils. Eur J Biochem / FEBS 1996,
238(1):250–258.

7. Dixon RA, Diehl RE, Opas E, Rands E, Vickers PJ, Evans JF, Gillard JW,
Miller DK: Requirement of a 5-lipoxygenase-activating protein for
leukotriene synthesis. Nature 1990, 343(6255):282–284.

8. Brock TG, McNish RW, Peters-Golden M: Translocation and leukotriene
synthetic capacity of nuclear 5-lipoxygenase in rat basophilic leukemia
cells and alveolar macrophages. J Biol Chem 1995, 270(37):21652–21658.

9. Zhou Y, Wei EQ, Fang SH, Chu LS, Wang ML, Zhang WP, Yu GL, Ye YL, Lin
SC, Chen Z: Spatio-temporal properties of 5-lipoxygenase expression and
activation in the brain after focal cerebral ischemia in rats. Life Sci 2006,
79(17):1645–1656.

10. Zhao CZ, Zhao B, Zhang XY, Huang XQ, Shi WZ, Liu HL, Fang SH, Lu YB,
Zhang WP, Tang FD, et al: Cysteinyl leukotriene receptor 2 is
spatiotemporally involved in neuron injury, astrocytosis and microgliosis
after focal cerebral ischemia in rats. Neuroscience 2011, 189:1–11.

11. Fang SH, Zhou Y, Chu LS, Zhang WP, Wang ML, Yu GL, Peng F, Wei EQ:
Spatio-temporal expression of cysteinyl leukotriene receptor-2 mRNA in
rat brain after focal cerebral ischemia. Neurosci Lett 2007, 412(1):78–83.

12. Zhang YJ, Zhang L, Ye YL, Fang SH, Zhou Y, Zhang WP, Lu YB, Wei EQ:
Cysteinyl leukotriene receptors CysLT1 and CysLT2 are upregulated in
acute neuronal injury after focal cerebral ischemia in mice. Acta
Pharmacol Sin 2006, 27(12):1553–1560.

13. Fang SH, Wei EQ, Zhou Y, Wang ML, Zhang WP, Yu GL, Chu LS, Chen Z:
Increased expression of cysteinyl leukotriene receptor-1 in the brain
mediates neuronal damage and astrogliosis after focal cerebral ischemia
in rats. Neuroscience 2006, 140(3):969–979.

14. Westerberg E, Deshpande JK, Wieloch T: Regional differences in
arachidonic acid release in rat hippocampal CA1 and CA3 regions during
cerebral ischemia. J Cerebral Blood Flow Metab 1987, 7(2):189–192.

15. Ji R, Jia J, Ma X, Wu J, Zhang Y, Xu L: Genetic variants in the promoter
region of the ALOX5AP gene and susceptibility of ischemic stroke.
Cerebrovasc Dis 2011, 32(3):261–268.

16. Bevan S, Dichgans M, Wiechmann HE, Gschwendtner A, Meitinger T,
Markus HS: Genetic variation in members of the leukotriene biosynthesis
pathway confer an increased risk of ischemic stroke: a replication study
in two independent populations. Stroke 2008, 39(4):1109–1114.

17. Helgadottir A, Manolescu A, Thorleifsson G, Gretarsdottir S, Jonsdottir H,
Thorsteinsdottir U, Samani NJ, Gudmundsson G, Grant SF, Thorgeirsson G,
et al: The gene encoding 5-lipoxygenase activating protein confers risk
of myocardial infarction and stroke. Nat Genet 2004, 36(3):233–239.
18. Freiberg JJ, Tybjaerg-Hansen A, Nordestgaard BG: Novel mutations in
leukotriene C4 synthase and risk of cardiovascular disease based
on genotypes from 50,000 individuals. J Thromb Haemost 2010,
8(8):1694–1701.

19. Ingelsson E, Yin L, Back M: Nationwide cohort study of the leukotriene
receptor antagonist montelukast and incident or recurrent
cardiovascular disease. J Allergy Clin Immunol 2012, 129(3):702–707. e702.

20. Chu LS, Fang SH, Zhou Y, Yu GL, Wang ML, Zhang WP, Wei EQ: Minocycline
inhibits 5-lipoxygenase activation and brain inflammation after focal
cerebral ischemia in rats. Acta Pharmacol Sin 2007, 28(6):763–772.

21. Jatana M, Giri S, Ansari MA, Elango C, Singh AK, Singh I, Khan M: Inhibition
of NF-κB activation by 5-lipoxygenase inhibitors protects brain against
injury in a rat model of focal cerebral ischemia. J Neuroinflammation 2006,
3:12.

22. Rao AM, Hatcher JF, Kindy MS, Dempsey RJ: Arachidonic acid and
leukotriene C4: role in transient cerebral ischemia of gerbils. Neurochem
Res 1999, 24(10):1225–1232.

23. Yu GL, Wei EQ, Zhang SH, Xu HM, Chu LS, Zhang WP, Zhang Q, Chen Z,
Mei RH, Zhao MH: Montelukast, a cysteinyl leukotriene receptor-1
antagonist, dose- and time-dependently protects against focal cerebral
ischemia in mice. Pharmacology 2005, 73(1):31–40.

24. Zhao R, Shi WZ, Zhang YM, Fang SH, Wei EQ: Montelukast, a cysteinyl
leukotriene receptor-1 antagonist, attenuates chronic brain injury after
focal cerebral ischaemia in mice and rats. J Pharm Pharmacol 2011,
63(4):550–557.

25. Zhang SH, Wei EQ, Zhu CY, Chen Z, Zhang SF: [Protective effect of
ONO-1078, a leukotriene receptor antagonist, on focal cerebral
ischemia induced by endothelin-1 in rats]. Yao Xue Xue Bao 2004,
39(1):1–4.

26. Zhang WP, Wei EQ, Mei RH, Zhu CY, Zhao MH: Neuroprotective effect of
ONO-1078, a leukotriene receptor antagonist, on focal cerebral ischemia
in rats. Acta Pharmacol Sin 2002, 23(10):871–877.

27. Chu LS, Wei EQ, Yu GL, Fang SH, Zhou Y, Wang ML, Zhang WP: Pranlukast
reduces neutrophil but not macrophage/microglial accumulation in
brain after focal cerebral ischemia in mice. Acta Pharmacol Sin 2006,
27(3):282–288.

28. Yu GL, Wei EQ, Wang ML, Zhang WP, Zhang SH, Weng JQ, Chu LS, Fang SH,
Zhou Y, Chen Z, et al: Pranlukast, a cysteinyl leukotriene receptor-1
antagonist, protects against chronic ischemic brain injury and inhibits
the glial scar formation in mice. Brain Res 2005, 1053(1–2):116–125.

29. Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M, Villa G,
Verderio C, Grumelli C, Guerrini U, et al: The recently identified P2Y-like
receptor GPR17 is a sensor of brain damage and a new target for brain
repair. PLoS One 2008, 3(10):e3579.

30. Zhao B, Zhao CZ, Zhang XY, Huang XQ, Shi WZ, Fang SH, Lu YB, Zhang WP,
Xia Q, Wei EQ: The new P2Y-like receptor G protein-coupled receptor 17
mediates acute neuronal injury and late microgliosis after focal cerebral
ischemia in rats. Neuroscience 2012, 202:42–57.

31. Kitagawa K, Matsumoto M, Hori M: Cerebral ischemia in 5-lipoxygenase
knockout mice. Brain Res 2004, 1004(1–2):198–202.

32. Hammarström S, Samuelsson B: Detection of leukotriene A4 as an
intermediate in the biosynthesis of leukotrienes C4 and D4. FEBS Lett
1980, 122(1):83–86.

33. Murphy RC, Hammarström S, Samuelsson B: Leukotriene C: a slow-reacting
substance from murine mastocytoma cells. Proc Natl Acad Sci U S A 1979,
76(9):4275–4279.

34. Hammarström S, Murphy RC, Samuelsson B, Clark DA, Mioskowski C,
Corey EJ: Structure of leukotriene C. Identification of the amino acid part.
Biochem Biophys Res Commun 1979, 91(4):1266–1272.

35. Dixon RA, Jones RE, Diehl RE, Bennett CD, Kargman S, Rouzer CA: Cloning
of the cDNA for human 5-lipoxygenase. Proc Natl Acad Sci U S A 1988,
85(2):416–420.

36. Abramovitz M, Wong E, Cox ME, Richardson CD, Li C, Vickers PJ: 5-
lipoxygenase-activating protein stimulates the utilization of arachidonic
acid by 5-lipoxygenase. Eur J Biochem / FEBS 1993, 215(1):105–111.

37. Byrum RS, Goulet JL, Griffiths RJ, Koller BH: Role of the 5-lipoxygenase-
activating protein (FLAP) in murine acute inflammatory responses. J Exp
Med 1997, 185(6):1065–1075.

38. Ford-Hutchinson AW, Bray MA, Doig MV, Shipley ME, Smith MJ: Leukotriene
B, a potent chemokinetic and aggregating substance released from
polymorphonuclear leukocytes. Nature 1980, 286(5770):264–265.



Ström et al. BMC Neuroscience 2012, 13:146 Page 9 of 9
http://www.biomedcentral.com/1471-2202/13/146
39. Kim ND, Chou RC, Seung E, Tager AM, Luster AD: A unique requirement
for the leukotriene B4 receptor BLT1 for neutrophil recruitment in
inflammatory arthritis. J Exp Med 2006, 203(4):829–835.

40. Matsukawa A, Hogaboam CM, Lukacs NW, Lincoln PM, Strieter RM,
Kunkel SL: Endogenous monocyte chemoattractant protein-1 (MCP-1)
protects mice in a model of acute septic peritonitis: cross-talk between
MCP-1 and leukotriene B4. J Immunol 1999, 163(11):6148–6154.

41. Hebert MJ, Takano T, Holthofer H, Brady HR: Sequential morphologic
events during apoptosis of human neutrophils. Modulation by
lipoxygenase-derived eicosanoids. J Immunol 1996, 157(7):3105–3115.

42. Lee E, Robertson T, Smith J, Kilfeather S: Leukotriene receptor antagonists
and synthesis inhibitors reverse survival in eosinophils of asthmatic
individuals. Am J Respir Crit Care Med 2000, 161(6):1881–1886.

43. Drazen JM, Austen KF, Lewis RA, Clark DA, Goto G, Marfat A, Corey EJ:
Comparative airway and vascular activities of leukotrienes C-1 and D
in vivo and in vitro. Proc Natl Acad Sci U S A 1980, 77(7):4354–4358.

44. Dahlen SE, Björk J, Hedqvist P, Arfors KE, Hammarström S, Lindgren JÅ,
Samuelsson B: Leukotrienes promote plasma leakage and leukocyte
adhesion in postcapillary venules: in vivo effects with relevance to
the acute inflammatory response. Proc Natl Acad Sci U S A 1981,
78(6):3887–3891.

45. Prinz I, Gregoire C, Mollenkopf H, Aguado E, Wang Y, Malissen M,
Kaufmann SH, Malissen B: The type 1 cysteinyl leukotriene receptor
triggers calcium influx and chemotaxis in mouse alpha beta- and
gamma delta effector T cells. J Immunol 2005, 175(2):713–719.

46. Okunishi K, Dohi M, Nakagome K, Tanaka R, Yamamoto K: A novel role of
cysteinyl leukotrienes to promote dendritic cell activation in the
antigen-induced immune responses in the lung. J Immunol 2004,
173(10):6393–6402.

47. Alvarez C, Amaral MM, Langellotti C, Vermeulen M: Leukotriene C(4)
prevents the complete maturation of murine dendritic cells and
modifies interleukin-12/interleukin-23 balance. Immunology 2011,
134(2):185–197.

48. Mellor EA, Austen KF, Boyce JA: Cysteinyl leukotrienes and uridine
diphosphate induce cytokine generation by human mast cells through
an interleukin 4-regulated pathway that is inhibited by leukotriene
receptor antagonists. J Exp Med 2002, 195(5):583–592.

49. Zukowska-Grojec Z, Bayorh MA, Kopin IJ, Feuerstein G: Overall and regional
hemodynamic effects of leukotriene D4 in spontaneously hypertensive
rats. Hypertension 1985, 7(4):507–513.

50. Stanke-Labesque F, Hardy G, Caron F, Cracowski JL, Bessard G: Inhibition of
leukotriene synthesis with MK-886 prevents a rise in blood pressure
and reduces noradrenaline-evoked contraction in L-NAME-treated rats.
Br J Pharmacol 2003, 140(1):186–194.

51. Barone FC, Price WJ, White RF, Willette RN, Feuerstein GZ: Genetic
hypertension and increased susceptibility to cerebral ischemia. Neurosci
Biobehav Rev 1992, 16(2):219–233.

52. Gerriets T, Li F, Silva MD, Meng X, Brevard M, Sotak CH, Fisher M: The
macrosphere model: evaluation of a new stroke model for permanent
middle cerebral artery occlusion in rats. J Neurosci Methods 2003,
122(2):201–211.

53. Boyko M, Zlotnik A, Gruenbaum BF, Gruenbaum SE, Ohayon S, Goldsmith T,
Kotz R, Leibowitz A, Sheiner E, Shapira Y, et al: An experimental model of
focal ischemia using an internal carotid artery approach. J Neurosci
Methods 2010, 193(2):246–253.

54. Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen HJ:
A critical reevaluation of the intraluminal thread model of focal cerebral
ischemia: evidence of inadvertent premature reperfusion and
subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke
1998, 29(10):2162–2170.

55. Longa EZ, Weinstein PR, Carlson S, Cummins R: Reversible middle cerebral
artery occlusion without craniectomy in rats. Stroke 1989, 20(1):84–91.

56. Engel O, Kolodziej S, Dirnagl U, Prinz V: Modeling stroke in mice - middle
cerebral artery occlusion with the filament model. J Vis Exp 2011, (47).
doi:10.3791/2423. pii: 2423.

57. Borlongan CV, Hida H, Nishino H: Early assessment of motor dysfunctions
aids in successful occlusion of the middle cerebral artery. Neuroreport
1998, 9(16):3615–3621.

58. Goldlust EJ, Paczynski RP, He YY, Hsu CY, Goldberg MP: Automated
measurement of infarct size with scanned images of
triphenyltetrazolium chloride-stained rat brains. Stroke 1996,
27(9):1657–1662.

59. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG: Animal research:
reporting in vivo experiments–the ARRIVE guidelines. J Cereb Blood Flow
Metab 2011, 31(4):991–993.

60. Recommendations for standards regarding preclinical neuroprotective
and restorative drug development. Stroke 1999, 30(12):2752–2758.

doi:10.1186/1471-2202-13-146
Cite this article as: Ström et al.: Disruption of the alox5ap gene
ameliorates focal ischemic stroke: possible consequence of impaired
leukotriene biosynthesis. BMC Neuroscience 2012 13:146.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://dx.doi.org/10.3791/2423

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	FLAP knockout mice do not produce leukotrienes
	FLAP knockout decreased mortality-adjusted infarct size
	FLAP knockout had no significant effect on mortality-adjusted tail swing test performance
	Perioperative physiological monitoring
	Exclusions
	Cerebrovascular anatomy

	Discussion
	Strengths and weaknesses of the current study

	Conclusions and future perspectives
	Methods
	Animals
	Experimental procedures
	Postoperative care
	Physiological testing
	Lesion measurements

	Exclusion criteria
	Analysis of cerebrovascular anatomy
	Analysis of leukotriene production
	Statistics
	ARRIVE and STAIR

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

