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Background: In animal models, the metabolic syndrome elicits a cerebral response characterized by altered
phospholipid and unesterified fatty acid concentrations and increases in pro-apoptotic inflammmatory mediators that
may cause synaptic loss and cognitive impairment. We hypothesized that these changes are associated with
phospholipase (PLA,) enzymes that regulate arachidonic (AA, 20:4n-6) and docosahexaenoic (DHA, 22:6n-6) acid
metabolism, major polyunsaturated fatty acids in brain. Male Wistar rats were fed a control or high-sucrose diet for
8 weeks. Brains were assayed for markers of AA metabolism (calcium-dependent cytosolic cPLA, IVA and
cyclooxygenases), DHA metabolism (calcium-independent iPLA, VIA and lipoxygenases), brain-derived neurotrophic
factor (BDNF), and synaptic integrity (drebrin and synaptophysin). Lipid concentrations were measured in brains

Results: The high-sucrose compared with control diet induced insulin resistance, and increased phosphorylated-
cPLA; protein, cPLA, and iPLA, activity and 12-lipoxygenase mRNA, but decreased BDNF mRNA and protein, and
drebrin mRNA. The concentration of several n-6 fatty acids in ethanolamine glycerophospholipids and
lysophosphatidylcholine was increased, as was unesterified AA concentration. Eicosanoid concentrations
(prostaglandin E,, thromboxane B, and leukotriene B,) did not change.

Conclusion: These findings show upregulated brain AA and DHA metabolism and reduced BDNF and drebrin, but
no changes in eicosanoids, in an animal model of the metabolic syndrome. These changes might contribute to
altered synaptic plasticity and cognitive impairment in rats and humans with the metabolic syndrome.
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Background

The metabolic syndrome is a clinical disorder charac-
terized by obesity, hypertension, dyslipidemia, glucose
intolerance and peripheral inflammation [1-3], and is a
risk factor for cognitive decline and mood disorders
[4-8]. In rodent models of the metabolic syndrome,
behavioral abnormalities have been linked to cerebral
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hypoglycemia [9] and increased cytokine production [10],
and changes in brain lipid metabolism [11,12].

The brain is highly enriched with the polyunsaturated
fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and
docosahexaenoic acid (DHA, 22:6n-3) [13-15], which
mostly are esterified in the stereospecifically numbered-2
position of membrane phospholipids. AA and DHA are
essential for mediating neuroreceptor signaling, while
excessive AA is released during neuroinflammation and
excitotoxicity [16-19]. Stimulation of AA signaling by
glutamatergic, serotonergic, cholinergic or dopaminergic
neuroreceptors, among others, triggers AA release by
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AA-selective Ca**-dependent cytosolic phospholipase A,
(cPLA, IVA) (reviewed in [19]). Unesterified AA is a
precursor of prostaglandins, thromboxanes, leukotrienes,
and related compounds that have important roles in
regulating the brain’s neuroinflammatory response [13-
15,20-25]. Stimulation of DHA release from membrane
phospholipid via DHA-selective calcium-independent
iPLA, type VIA is thought to be neuroprotective,
and shows anti-inflammatory effects based on in vitro
and in vivo studies [17,26-30]. Disturbed brain AA and
DHA metabolism has been linked to a number of neurode-
generative diseases, including Alzheimer’s disease and bi-
polar disorder [31-33], which are more common in
individuals with the metabolic syndrome [4-8].

Brain lipid metabolism is altered in the metabolic
syndrome. In a rat model of intracerebroventricular
streptozotocin-induced brain insulin resistance and hypo-
glycemia, cerebral cortex concentrations of ethanola-
mine glycerophospholipid (EtnGpl) and phosphatidylserine
(PtdSer) were decreased, while concentrations of unesteri-
fied palmitate, stearate and AA were increased, suggesting
increased PLA,-mediated membrane degradation [11,12].
Brain phospholipid concentration was reported reduced
in a genetic mouse model of diabetes [34]. An increased
hippocampal malonaldehyde concentration, a marker of
PUFA oxidative degradation, was reported in the hippo-
campus of genetically obese and hypertensive rats [35].
Taken together, these studies suggest an effect of the
metabolic syndrome on the enzymes that regulate brain
PUFA metabolism, such as AA-selective cPLA, IVA and
iPLA, VIA, which prefers DHA but also can release AA
[36,37].

Unesterified AA can be converted to pro-inflammatory
and pro-apoptotic secondary mediators, such as prostaglan-
din E2 (PGE2), thromboxane B2 (TXB2) 82 and leukotriene
B4 (LXB4), via cyclooxygenase-2 (COX-2) or 5, 12 and 15
lipoxygenase (LOX) [17,38]. These eicosanoids can cause
synaptic-dendritic injury by reducing brain levels of
trophic factors, such as brain-derived neurotrophic factor
(BDNF) [39,40]. In this regard, studies reported decreased
BDNF and synaptic loss [41-43] in association with cog-
nitive impairment and behavioral changes, in animal
models of the metabolic syndrome [10,41,44]. Although
iPLA, VIA can regulate peripheral glucose-stimulated
insulin secretion, apoptosis and mitochondrial fatty acid
oxidation [45,46], its involvement in modulating brain
lipid metabolism in the metabolic syndrome is not
known [38].

In view of the reported changes in brain concentrations
of phospholipids and PUFAs, and of neuronal loss in ani-
mal models of the metabolic syndrome [41-43], we
hypothesized correlated disturbances in brain cPLA,
IVA and iPLA, VIA expression, fatty acid concentra-
tions, synaptic loss, BDNF, and PGE,, TXB, and LXB,
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concentrations. Such changes have been reported in
animal models of neuroinflammation [47-49].

To test this hypothesis, we induced early-stage meta-
bolic syndrome by feeding rats a high-sucrose diet for 8
weeks. In this model, feeding a high-sucrose diet induces
time-dependent changes in insulin-resistance and in other
markers of the metabolic syndrome after 8 weeks [50],
without causing diabetic pathology, fatty liver or weight
gain [50-52], which may independently alter brain lipid
metabolism [53]. Insulin resistance can be induced in this
model without changing the fat composition of the diet,
thereby eliminating confounding effects of diet on brain
fatty acid composition [53]. In sucrose and control diet
fed rats maintained for 8 weeks, we examined brain 1)
expression of enzymes involved in AA and DHA metabol-
ism (i.e., mRNA, protein and / or activity of cPLA,, iPLA,
COX-1, COX-2 and 5-, 12- and 15-LOX); 2) concentra-
tions of PGE,, TXB, and LXB,; 3) mRNA levels of glial-
fibrillary acidic protein (GFAP) and tumor-necrosis
factor-a (TNF-a), because of reported changes in these in-
flammatory markers in animal models of the metabolic
syndrome [10]; 4) expression of BDNF, and of synaptophy-
sin and drebrin as markers of synapto-dendritic injury
[54]; and 5) esterified fatty acid concentrations in
phospholipid subclasses, as well as unesterified fatty
acids and lysophosphatidylcholine (lysoPC), as markers
of phospholipid degradation. These measurements were
performed to test whether phospholipase-mediated phos-
pholipid breakdown occurs in this dietary rat model of the
metabolic syndrome, in association with neuroinflamma-
tion and synapto-dendritic injury. These pathways are
physiologically related because cytokine-induced inflam-
mation, if present in the metabolic syndrome, can alter
the expression AA or DHA-selective PLA,’s and their
downstream metabolites (e.g. eicosanoids) that modu-
late synapto-dendritic integrity and BDNF expression
(reviewed in [55]).

Results

Weight gain and food intake

Figure 1 shows body weight (1-A) and food intake (1-B)
over the 8-week course of the study. Two-way repeated
measures analysis of variance revealed a significant main
effect of time on weight and food intake, both of which
increased. No significant effect of diet or interaction be-
tween diet and time was seen. Consistent with the lack of
difference in body weight, weights of brain, liver, adipose
tissue, heart, kidneys and testes, collected at the time of
sacrifice, did not differ significantly between the two
groups (data not shown, p > 0.05 by unpaired ¢-test).

Oral glucose tolerance test
Rats fed the high-sucrose diet showed evidence of
impaired glucose metabolism, measured by an oral glucose
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Figure 1 (A) Body weight and (B) food intake over time in rats fed a control or high- sucrose diet. Data are means + SD (n = 6). Two-way
repeated measures analysis of variance revealed a significant effect of time only on body weight gain and food intake.

tolerance test at 4 and 8 weeks. Two-way repeated
measures analysis of variance showed a significant main
effect of diet and time on whole blood glucose concen-
trations at 4 (Figure 2A) and 8 weeks (Figure 2B). At
4 and 8 weeks, fasting whole blood glucose concentra-
tion was similar between the two groups at baseline.
The glucose concentration was increased after an oral
preload of glucose (5 g/kg) and remained higher than
baseline values by the end of the 2 h test. The rise in
blood glucose concentration was significantly higher for
the high-sucrose compared to control rats, suggesting
reduced glucose tolerance in the sucrose- group.

B-hydroxybutyrate in whole blood

Fasting 3-hydroxybutyrate concentration in whole blood, a
marker of ketosis, was measured at 4 and 8 weeks, before
starting the oral glucose tolerance test (Table 1). There was
a significant effect of time on fasting {3-hydroxybutyrate
concentration, but no effect of treatment or an interaction

between time and diet. §3-hydroxybutyrate concentrations
were significantly reduced for both dietary groups at 8
weeks compared to 4 weeks (p< 0.05).

Plasma insulin, glucose and triglyceride concentrations
Rats on the high-sucrose diet showed insulin resistance
and hypertriglyceridemia at 8 but not 4 weeks (Table 1).
There was a significant interaction between time and
diet (p < 0.05) for fasting plasma, insulin, and triglyceride
concentrations, and the homeostasis model assessment
(HOMA) insulin-resistance index, calculated as previ-
ously described [56]. There was a significant main effect
of diet on plasma glucose and triglyceride concentra-
tions, and on the HOMA index. Time was a significant
factor affecting glucose, insulin and triglyceride concen-
trations, and the HOMA index. Compared to controls,
rats fed the high-sucrose diet had significantly higher
plasma concentrations of glucose and triglycerides and
HOMA index at 8 weeks.
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Figure 2 Oral glucose tolerance test in rats fed a control or
high-sucrose diet. Blood glucose concentrations were measured by
a glucometer after a 10 h fast at 0 and 15, 30, 34, 60, 90 and 120
min following gavage with 5g/kg of an oral glucose preload at (A) 4
weeks and (B) 8 weeks of treatment. Two-way repeated measures
analysis of variance showed a significant main effect of diet and
time on blood glucose concentrations at 4 and 8 weeks.
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cPLA, mRNA and protein

mRNA and protein levels of brain cPLA, IVA did not
differ significantly between rats fed the high sucrose and
the control diet for 8 weeks (Figure 3A and 3B). The
protein level of phosphorylated-cPLA, (phospho-
cPLA,), which represents the active form of cPLA,
[57,58], was increased significantly in the high-sucrose
group compared to the control group (Figure 3C). Con-
sistent with the increase, in phosphorylated-cPLA, activity
of cPLA, was significantly increased in the high-sucrose
group (Figure 3D).

iPLA; and sPLA, mRNA, protein and activity

iPLA, VIA and sPLA, IIA mRNA and protein did not
differ significantly between rats fed the high sucrose and
the control diet for 8 weeks (Figure 4A, B, D, E). The ac-
tivity of iPLA, was significantly increased in the high-
sucrose group (Figure 4C), whereas sPLA, activity did
not differ significantly between the groups (Figure 4F).

PGE,, TXB, and LTB, concentrations
There was no significant difference in PGE,, LTB, or TXB,
concentration between the two groups (Figure 5A-C).

GFAP, TNF-a, COX and LOX mRNA

There was no significant change in GFAP or TNF-a
mRNA (data not shown). mRNA levels of COX-1 and
COX-2 also were not affected by the high-sucrose diet
(data not shown), nor was 5- or 15-LOX mRNA chan-
ged significantly. Brain 12-LOX mRNA was increased
significantly (control, 1.00 + 0.07; high-sucrose, 1.22 +
0.05; p < 0.05 by unpaired t-test).

mRNA and protein levels of BDNF and synaptic markers

Compared with control diet, the high-sucrose diet
decreased significantly mean protein and mRNA levels
of BDNF (Figure 6A and B). mRNA and protein levels of
the pre-synaptic marker synaptophysin did not differ sig-
nificantly between the groups (Figure 6C and D). There
was a significant decrease in mRNA of the post-synaptic

Table 1 Plasma glucose, insulin and triglyceride concentrations, calculated HOMA index and whole blood
B-hydroxybutyrate concentrations at 4 and 8 weeks of feeding control or high-sucrose diet

4 weeks 8 weeks
Parameter Control High-sucrose Control High-sucrose Time Diet Time x Diet
Glucose (mmol/L) 40+ 041 44 +0.1 41+10 6.0 £ 1.8 <0.05 <0.01
Insulin (ng/ml) 06+ 04 03 +0.1 07+03 1.8 £ 09** <0.001 <0.05
HOMAT1 index 23 +191 14+ 041 4.1 +£41 105 + 4.8** <0.001 <0.05 <0.05
Triglycerides (mg/ml) 09+02 0.7 +02 0.7+03 1.5 £ 0.5%* <0.05 <0.05 <0.01
B-hydroxybutyrate (mmol/L) 09+02 09+02 06+02 0.7 £0.11 <0.05

Values are means + SD (n = 8) 'n=7 due to insufficient sample. 'n=7 due to insufficient sample. Data were analyzed by two-way repeated measures ANOVA,
followed by a one-way ANOVA and Bonferroni’s post-hoc test comparing high-sucrose versus controls at 4 and 8 weeks. **p < 0.01; ***p < 0.001 indicates

significant difference compared to 8-week control mean.
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dendritic spine marker [54], drebrin (Figure 6E), but no
significant change in its protein level (Figure 6F).

Brain fatty acid concentrations

There were few significant differences in brain esterified
fatty concentrations (data not shown): a 12-16% increase
in AA (6262 + 459 nmol/g brain wet wt, control, 7234 +
468 nmol/g wet wt, sucrose) and adrenate (22:4n-6;
3321 + 275 nmol/g wet wt, control, 3738 + 158 nmol/g
wet wt, sucrose) in EtnGpl, and a 29% increase in
dihomo-y-linolenic acid (20:3n-6; 7 + 1 nmol/g wt wet,
control, 9 + 1 nmol/g wt wet, sucrose) in lysoPC in rats
on the high-sucrose compared to control diet (p < 0.05).
For unesterified fatty acids, one sample from the high-
sucrose group was excluded from the analysis because
its unesterified AA concentration was 3-fold higher than
the mean, which suggests ischemia caused by incomplete
microwave-fixation [59]. The unesterified AA concentra-
tion was significantly increased (by 20%) in the high-
sucrose diet group, whereas the DHA concentration did
not differ significantly from control (Figure 7). Other
unesterified fatty acid concentrations also did not differ
between the groups (data not shown).

Discussion
Rats fed the high-sucrose diet (60% sucrose) for 8 weeks
did not show obesity or increased food intake, but devel-
oped hypertriglyceridemia and insulin resistance, two
components of the metabolic syndrome, as reported
[50-52]. At 8 weeks, some brain enzymatic markers of
AA and DHA metabolism were increased significantly
in the high sucrose compared with control diet group
(e.g., protein level of phospho-cPLA,, activities of cPLA,
and iPLA,) as was the esterified AA concentration in
EtnGpl and unesterified AA concentration. BDNF mRNA
and protein and drebrin mRNA were reduced, but synap-
tophysin mRNA and protein were not altered. Feeding
the high-sucrose diet for 8 weeks did not change PGE,,
TXB, or LTB, concentration significantly. Because the
8-week high-sucrose feeding paradigm represents early-
stage metabolic syndrome in the absence of pathological
diabetes or obesity [50,51], these findings demonstrate
changes in brain PUFA metabolizing enzymes and com-
position in association with reduced BDNF and drebrin
mRNA at an early disease stage.

The upregulation of brain cPLA, and iPLA, enzyme
activities (Figure 3 and 4) in the high-sucrose fed rats
suggests an increase in brain AA and DHA metabolism.
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In this regard, disturbed saturated brain fatty acid metab-
olism has been reported in humans and rats with the
metabolic syndrome [60,61]. A positron emission tomog-
raphy study demonstrated increased brain uptake of [''C]
palmitate and ['®F]fluoro-6-thia-heptadecanoic acid in
patients with the metabolic syndrome [60]. Hypothalamic
concentrations of long-chain saturated acyl-CoAs were

increased in a high-fat diet animal model of the metabolic
syndrome, also indicating increased metabolism of long-
chain saturated fatty acids [61]. Taken together, the results
suggest non-specific upregulation in brain fatty acid me-
tabolism, including PUFAs, associated with the meta-
bolic syndrome. Upregulated AA or DHA metabolism
could be directly confirmed in this animal model, using
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quantitative autoradiography to image fatty acid uptake
following radiotracer injection, or can be examined in
humans using positron emission tomography [31,38,62].
The released fatty acids may be alternative energy sub-
strates to glucose for brain metabolism, due to cerebral
hypoglycemia caused by insulin-resistance. This is con-
sistent with evidence of increased brain activity of carni-
tine palmitoyltransferase (which regulates fatty acid
entry from the acyl-CoA pool into mitochondria for later
[-oxidation) in an animal model of the metabolic syn-
drome [34]. "*C-palmitate conversion to *C-CO, also

was increased in mitochondrial brain extracts of diabetic
(db/db) mice [34].

Brain cPLA, activity and phospho-cPLA, protein, a
marker of activated cPLA, [57,58], were increased in the
high-sucrose fed rats in the absence of changes in cPLA,
mRNA or protein, suggesting post-translational modifi-
cation and upregulated brain AA metabolism, consist-
ent with the increased unesterified AA concentration
(Figure 7). Increased activation of cPLA, may reflect
excitotoxicity associated with increased influx of extra-
cellular calcium into the cell via ionotropic glutamatergic
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. J

receptors [63]. Since cPLA, also is functionally coupled
via G-proteins to dopaminergic, serotonergic and mus-
carinic neuroreceptors [19], an increase in its activity
suggests disturbed G-protein neuroreceptor signaling in
the metabolic syndrome [64]. Cytokine receptor activa-
tion may also initiate cPLA, activation [65], although our
findings do not suggest an increase in cytokine expres-
sion in rats fed the high-sucrose diet.

iPLA, is insensitive to extracellular calcium influx into
the neuron [24,63], but can be activated by intracellular
calcium (at mM concentrations) released from the endo-
plasmic reticulum by the calcium-releasing ryanodine
receptor [66]. Mobilization of intracellular calcium
stores can be mediated by increased intracellular unes-
terified AA levels, which was reported to activate the
ryanodine receptor in vitro [66]. This is in agreement
with the finding that the unesterified AA concentration
was increased in the high-sucrose diet rats (Figure 7).
Likely, this increase in AA concentration occurred intra-
cellularly, since sPLA,, which releases AA extracellularly,
was not changed significantly (Figure 4).

Concentrations of pro-inflammatory eicosanoids (PGE,,
TXB, and LTB,) did not differ between the groups
(Figure 5). It is possible, however, that changes in eico-
sanoids or cytokines [65] occurred in specific brain
regions such as the hippocampus, as reported in gen-
etically diabetic mice, or that longer administration of
the high-sucrose diet sufficient to initiate diabetes would
increase whole brain cytokine levels [10]. However,
consistent with the lack of significant changes in the
three eicosanoids, we did not find significant changes
in mRNA levels for COX-1, COX-2, 5- or 15-LOX in the
high-sucrose fed rats, nor in TNF-a or GFAP mRNA,
suggesting the absence of neuroinflammation, since
transcription of these molecular markers occurs within
transcriptional circuits related to neuroinflammation
[67-69].

Whole brain BDNF mRNA and protein levels were
reduced in the high-sucrose group (Figure 6), in
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agreement with previous studies that showed reduced
BDNF levels in animal models of the metabolic syn-
drome with behavioral impairment [10,41,42]. Reduced
BDNF expression was not mediated by pro-inflammatory
eicosanoids, which were not changed. One possibility is
that the increased unesterified AA concentration in the
high-sucrose animals decreased BDNF and induced
apoptosis, as reported in cultured spinal cord neurons
[70]. Reduced BDNF expression in the sucrose-fed rats
may have promoted dendritic injury, which was indirectly
suggested by the reduction in drebrin mRNA (Figure 6),
or have altered the cellular dynamics and structural
organization of dendritic spines in the absence of
changes in drebrin protein. Changes in dendritic
morphology and dynamics could be the topic of future
studies. Additionally, more severe changes in synaptic
structure are likely to occur with prolonged exposure to
the high-sucrose diet, since the 8-week feeding paradigm
causes only early-stage metabolic syndrome without
obesity, diabetes or liver damage [41,44,52].

Contrary to reports using other models involving cen-
tral insulin resistance [12,34,42], we did not find evidence
of phospholipid degradation in the brain, since phospho-
lipid mass, derived by the summation of total fatty acids
within each phospholipid class, did not differ between
the dietary groups (Table 1). Also, lysoPC, a marker of
phospholipid breakdown, was not changed (Table 1). The
changes in phospholipid fatty acid concentrations were
relatively minor, and were significant only for a few n-6
PUFAs in EtnGpl (AA and 22:4n-6) and in lysoPC
(20:3n-6).

Conclusion

In summary, brain enzymatic markers of AA and DHA
metabolism were increased in a rat model of early-stage
metabolic syndrome, in association with reduced BDNF
mRNA and protein, and drebrin mRNA. Increases in
cPLA, and iPLA, activities support the notion of
phospholipase-mediated neurodegeneration [11,12,34,35].
The decreases in BDNF and drebrin suggest increased
susceptibility to synapto-dendritic injury.

In the future, an upregulation in brain AA and DHA
metabolism associated with the metabolic syndrome
might be imaged in humans with positron-emitting
tomography using radiolabeled AA or DHA [31,62], as
biomarkers of disease progression [4,5,71]. Therapeutic
strategies aimed at downregulating brain PUFA metabol-
ism, such as the administration of carnitine palmitoyl-
transferase inhibitors [72,73] or PLA, inhibitors (e.g. the
mood stabilizers, lithium and carbamazepine), might be
effective in slowing the progression of brain lipid abnor-
malities identified in this study, the associated changes in
synaptic loss and possibly, cognitive dysfunction in the
metabolic syndrome.
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Methods
Animals
The protocol was approved by the Animal Care and Use
Committee of the Eunice Kennedy Schriver National
Institute of Child Health and Human Development
and followed the National Institutes of Health Guide for
the Care and Use of Laboratory Animals (NIH Publica-
tion No. 80-23). Post-weaning male Wistar rats pur-
chased from Charles River Laboratories (Portage, MI,
USA) were housed in an animal facility with regulated
temperature, humidity, and a 12 h light/12 h dark cycle.
After weaning, pups were divided randomly into control
diet (n = 14) and high sucrose diet (n = 14) groups. The
metabolic syndrome was confirmed in 8 out of 14 rats
per dietary group, by measuring body weight and food
intake weekly, and measuring tail vein plasma glucose,
insulin and triglyceride concentrations at 4 and 8 weeks.
An oral glucose tolerance test was also administered at
4 and 8 weeks to the same rats (n = 8 rats per group) as
described below. After 8 weeks on a chosen diet, half the
rats from each dietary group (n = 8 per group) were
asphyxiated by CO, inhalation, decapitated and their
brains excised rapidly, frozen in 2-methylbutane with
dry ice at -50°C, and stored at —80°C until use. Brain,
testes, adipose tissue, liver and heart were collected,
weighed, frozen in 2-methylbutane and stored at —-80°C.
Brain lipids and eicosanoids (PGE,, TXB, and LTB,)
were measured in the remaining animals (n = 6 per roup)
that had undergone a catheter implantation surgery
followed by a 2-h infusion protocol of [D°]-a-linolenic
acid (17, 17, 18, 18, 18-D°) and [U-'3C]-linoleic acid
(Spectra Stable Isotopes, Columbia, MD, USA) to assess
liver PUFA kinetics (Taha et al.,, unpublished). After the
2 h infusion, the rats were lightly anesthetized with
sodium pentobarbital (50 mg/kg; Abbott Laboratories,
Chicago, IL, USA) and subjected to head-focused micro-
wave irradiation stop brain lipid metabolism (5.5 kW,
4.8 s; Cober Electronics, Stamford, CT, USA) [74]. Brains
were excised, separated sagittally into two halves and
stored at —80°C until analyzed.

Diets

The control and high sucrose diets were obtained from
Dyets Inc. (Bethlehem, PA, USA), and were based on the
AIN-93G formulation [75]. The diets were isocaloric
and identical in macronutrient and micronutrient com-
position, but differed in carbohydrate composition. The
control diet contained cornstarch (150 g/kg diet),
sucrose (100 g/kg), dextrose (200 g/Kg) and maltose dex-
trin (150 g/kg). The high-sucrose diet contained sucrose
(600 g/kg) as the sole carbohydrate source (Table 2). The
fatty acid composition of the diets was identical, and
contained 7.8 pmol/g o-LNA (4.6% total fatty acid),
which is the minimum level of a-LNA for n-3 PUFA
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Table 2 Composition of control diet and high-sucrose
diet

Ingredients Control diet High-sucrose diet
(gram/Kg diet)
Protein 200 200
Casein 200 200
Cornstarch 150 0
Sucrose 100 600
Dextrose 200 0
Maltose Dextrin 150 0
Hydrogenated coconut oil 60 60
Safflower oil 323 323
Flaxseed oil 77 77
Cellulose 50 50
Salts 35 35
Vitamins 10 10
L-Cystine 3 3
Choline bitartrate 25 25
t-Butylhydroquinone 0.02 0.02

adequacy in rodents, 40 pmol/g LA (25% total fatty
acid), 110 umol/g saturated fatty acid (68.5% of total),
and 10 pmol/g monounsaturated fatty acid [76]. Other
PUFAs, including AA and DHA were absent.

Plasma glucose, insulin, and triglyceride measurement
Blood was collected at 4 and 8 weeks from the tail vein
after an overnight 10 h fast (n = 8 per group), and plasma
glucose, insulin and triglyceride concentrations were
determined with a glucose oxidase kit (Sigma), an Insulin
ELISA kit (Alpco Diagnostics, Salem, NH, USA) and a
triglyceride kit (Sigma), respectively. The insulin and
glucose concentrations were used to calculate the
‘homeostasis model assessment’ (HOMA) index of in-
sulin resistance, by multiplying glucose (mmol/L) and in-
sulin (mU/L) concentrations, and dividing by 22.5 [56].

Oral glucose tolerance test and B-hydroxybutyrate
measurement

An oral glucose tolerance test [77,78] was performed
at 4 and 8 weeks post-weaning, 2 days after the tail
vein blood withdrawals described above. For this test,
blood was obtained by tail-prick using a sharp needle.
After an overnight 10 h fast, baseline blood glucose
and 83-hydroxybutyrate concentrations were assayed
using a commercial glucometer (LifeScan, Milpitas,
CA, USA). The rats then were gavaged with 0.375 g
glucose/ml (5 g glucose/kg body wt), and blood glu-
cose concentrations were determined 15, 30, 45, 60,
90, and 120 min later.
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Brain total fatty acid concentration

Brain total lipids were extracted by the Folch method
[79]. An aliquot of the total lipid extract was methylated
with 1% H,SO,-methanol for 3 h at 70°C, or separated
into phospholipid subfractions with thin layer chroma-
tography (TLC) using heptane / diethyl ether / acetic acid
(60:40:3 v/v/v) as a solvent. Unesterified fatty acids were
separated with TLC using chloroform / methanol / acetic
acid / water (60:50:1:4 v/v/v/v). Prior to methylation,
di-17:0 PC was added as an internal standard to total
lipids and phospholipid subfractions. Unesterified 17:0
was added as an internal standard to unesterified fatty
acids. Samples were methylated with 1% H,SO,4-methanol
for 3 h at 70°C. The resulting fatty acid methyl esters
were extracted and analyzed using a gas chromatograph
(6890N, Agilent Technologies, Palo Alto, CA, USA)
equipped with an SP-2330 fused silica capillary column
(30 mx0.25 mm id., 0.25 um film thickness) (Supelco,
Bellefonte, PA, USA) and a flame ionization detector.
Concentrations were calculated by proportional compari-
son of peak areas to the area of the 17:0 internal
standard.

Preparation of cytoplasmic and membrane extracts

Cytoplasmic and membrane extracts for Western blots
were prepared using a compartmental protein extraction
kit according to the manufacturer’s instructions (Millipore,
Temecula, CA, USA). Protein concentrations of cyto-
plasmic and membrane extracts were determined using
Bio-Rad Protein Reagent (Bio-Rad, Hercules, CA, USA).

Western Blot Analysis

Proteins from cytoplasmic (50 pg) and membrane extracts
(50 pg) were separated on 4-20% SDS-polyacrylamide
gels (PAGE) (Bio-Rad). Following SDS-PAGE, the pro-
teins were electrophoretically transferred to a nitrocellu-
lose membrane. Protein blots were incubated overnight
at 4°C in Tris-buffered saline (TBS) buffer, containing 5%
nonfat dried milk and 0.1% Tween-20, with specific pri-
mary antibodies (1:1000 dilution) for the group IVA
cPLA,, phospho-cPLA,, group IIA secretory sPLA,,
group VIA iPLA, (Santa Cruz Biotech, Santa Cruz, CA),
drebrin, synaptophysin (Cell Signaling, Beverly, MA), and
B-actin (Sigma-Aldrich, St. Louis, MO). Protein blots
were incubated with appropriate HRP-conjugated sec-
ondary antibodies (Cell Signaling) and visualized using a
chemiluminescence reaction (Amersham, Piscataway, NJ)
on X-ray film (XAR-5, Kodak, Rochester, NY). Optical
densities of immunoblot bands were measured using
Alpha Innotech Software (Alpha Innotech, San Leandro,
CA) and were normalized to B-actin to correct for un-
equal loading. All experiments were carried out three
times with 8 independent samples per group. Values are
expressed as percent of control.
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BDNF protein levels

BDNF protein levels were measured in brain cytosolic
extracts using an ELISA kit. according to the manufac-
turer’s instructions (Millipore, Temecula, CA). Values
are expressed in pmol/mg protein.

Total RNA isolation and real time RT-PCR

Total RNA was prepared from brain using commercial
kits (RNeasy Lipid Tissue Kit; Qiagen, Valencia, CA).
¢DNA was prepared from total RNA using a high-
capacity ¢cDNA Archive Kit (Applied Biosystems, Foster
City, CA). mRNA levels were measured by real time quan-
titative RT-PCR, using the ABI PRISM 7000 sequence de-
tection system (Applied Biosystems). For specific primers
and probes for target genes, TagMan® gene expression
assays, purchased from Applied Biosystems, consisted of
a 20X mix of unlabeled PCR primers and Tagman minor
groove binder probe (FAM dye-labeled). The fold change
in gene expression was determined using the AACt
method [80]. Data are expressed as the relative level of
the target gene in the high-sucrose animals normalized
to the endogenous control (B-globulin) and relative to
the control rats (calibrator). All experiments were carried
out in duplicates with 8 independent samples per group.

Phospholipase A, activities

Sample preparation

Brain tissue was homogenized with 3 vol of homo-
genization buffer (10 mM HEPES, pH 7.5, containing
1 mM EDTA, 0.34 pM sucrose and protease inhibi-
tor cocktail (Roche, Indianapolis, IN)), using a glass
homogenizer. The homogenized sample was centrifuged
at 100,000 g for 1 h at 4°C, and the supernatant was
used for all PLA, enzyme activity analyses. Supernatants
were kept at —80°C until use. The protein concentration
was analyzed by the Bradford assay (Bio-Rad) [81].

Enzyme assay with radioisotope method

The final incubation volume was 0.5 ml. To measure
cPLA, activity, the cytosolic fraction (0.3 mg protein
in one assay, ~50 pl) was mixed with 100 mM
HEPES, pH 7.5 containing 80 pM Ca**, 2 mM dithio-
threitol and 0.1 mg/ml fatty acid-free bovine serum
albumin (total volume = 450 pl). The enzyme reaction
was started by adding fifty pl of substrate solution
containing 100 pM 1-palmitoyl-2-arachidonoyl-sn-glycerol-
3-phosphorylcholine and phosphatidylinositol 4,5-bispho-
sphate (97:3) (Avanti Polar Lipids, Alabaster, AL, USA), and
approximately 100,000 dpm of 1-palmitoyl-2-[1-'*C] ara-
chidonoyl-sn-glycerol-3-phosphorylcholine (specific ac-
tivity of 60 mCi/mmol, PerkinElmer, Boston, MA) in 400
puM triton X-100 per assay, To measure iPLA, activity,
the cytosolic fraction (0.3 mg protein in one assay)
was mixed with 100 mM HEPES, pH 7.5, 5 mM
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EDTA, 2 mM dithiothreitol, and 1 mM ATP (total
volume = 450 pl). Fifty ul substrate mixture of 100 uM
1-palmitoyl-2-palmitoyl-sn-glycerol-3-phosphorylcholine
containing approximately 100,000 dpm of 1-palmitoyl-2-
[1-'*C] palmitoyl-sn-glycerol-3-phosphorylcholine (specific
activity of 53 mCi/mmol, Buckinghamshire, UK) in
400 pM Triton X-100 was added to start the enzyme
reaction.

Substrate preparation for radioisotope method

Substrates for the iPLA, and cPLA, activity analyses
described above were prepared daily. Appropriate amounts
of cold and radiolabeled phospholipids were added to an
appropriate amount of Triton X-100, and the mixture
was dried with nitrogen gas. Water was added to the resi-
dues to give a 10x lipid mixture (1 mM phospholipid,
1,000,000 dpm, and 4 mM Triton X-100), which was
mixed vigorously.

Enzyme assay

The cytosolic fraction (0.3 mg in one assay) was mixed
with the assay mixture (total volume of 450 pl), and 50 ul
substrate mixture was added to start the enzyme reac-
tion. The reaction mixture was incubated for 30 min at
40°C, and then 2.5 ml of Dole reagent (2-propanol,
heptane: 0.5M H,SO,, 400:100:20, vol/vol/vol) was added
to stop the reaction. One and a half ml of heptane and
1.5 ml H,O were added to the mixture, followed by
vortexing and centrifugation at 3000 rpm for 5 minutes.
The upper phase (about 2 ml) was transferred to a tube
containing 200 mg of silicic acid (200-400 mesh), fol-
lowed by vortexing and centrifugation. The supernatant
(1.5 ml) was transferred to a scintillation vial, and scintil-
lation cocktail was added (Ready Safe™ plus 1% glacial
acetic acid). Radioactivity of the released unesterified
fatty acid from the phospholipid substrate was counted
on a liquid scintillation counter (2200CA, TRI-CARB®,
Packard Instruments, Meriden, CT, USA). iPLA, and
cPLA, activities were expressed as the release rate of
fatty acid from phospholipids.

SPLA; activity

sPLA, activity was measured using an appropriate assay
kit (Cayman, Ann Arbor, MI, USA), according to the
manufacturer’s instructions.

PGE,, TXB,, and LTB, concentration

PGE,, TXB,, and LTB, were extracted according to the
method of Radin [82]. A portion of the extract was dried
under nitrogen and assayed for PGE,, TXB,, and LTB,
using a polyclonal enzyme-linked immunosorbent assay
according to the manufacturer’s instructions (Oxford
Biomedical Research, Oxford, MI).
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Data and statistics

Data are presented as means + SD (n = 8 for each
group). A two-way repeated measured analysis of vari-
ance (ANOVA) was used to test for effects of time and
treatment on body weight, food intake, and insulin,
glucose, B-hydroxybutyrate and triglyceride concentra-
tions, and the response to an oral glucose preload per-
formed at 4 and 8 weeks. An unpaired Student’s ¢-test
was used to compare means, taking p < 0.05 as the cut
off for statistical significance.

Abbreviations

AA: arachidonic acid; ANOVA: analysis of variance; BDNF: brain derived
neurotrophic factor; cPLA,: cytosolic phospholipase A,;

DHA: docosahexaenoic acid; EtnGpl: ethanolamine glycerophospholipids;
HOMA: homeostasis model assessment; iPLA,: calcium-independent PLA,;
i.c.v.: intracerebroventricular; LXB,: leukotriene By;

lysoPC: lysophosphatidylcholine; PAGE: polyacrylamide gels;

PGE,: prostaglandin E,; PtdSer: phosphatidylserine; sPLA,: secretory PLA,;
TXB,: thromboxane B..

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

AYT, FG and SIR conceived and designed the study. AYT and FG carried out
the animal experiments. HWK, AYT, YC, FG and IR were involved in the
analysis. AYT, HWK and SIR were involved in writing and editing the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
This research was supported entirely by the Intramural Research Program of
the National Institute on Aging, NIH.

Received: 17 July 2012 Accepted: 5 October 2012
Published: 30 October 2012

References

1. Alberti KG, Zimmet P, Shaw J: The metabolic syndrome-a new worldwide
definition. Lancet 2005, 366(9491):1059-1062.

2. Eckel RH, Grundy SM, Zimmet PZ: The metabolic syndrome. Lancet 2005,
365(9468):1415-1428.

3. Zimmet PZ, Alberti KG, Shaw JE: Mainstreaming the metabolic syndrome:
a definitive definition. Med J Aust 2005, 183(4):175-176.

4. Dunbar JA, Reddy P, Davis-Lameloise N, Philpot B, Laatikainen T, Kilkkinen A,
Bunker SJ, Best JD, Vartiainen E, Kai Lo S, et al: Depression: an important
comorbidity with metabolic syndrome in a general population. Diabetes
Care 2008, 31(12):2368-2373.

5. Fagiolini A, Frank E, Scott JA, Turkin S, Kupfer DJ: Metabolic syndrome in
bipolar disorder: findings from the Bipolar Disorder Center for
Pennsylvanians. Bipolar Disord 2005, 7(5):424-430.

6. Segura B, Jurado MA, Freixenet N, Albuin C, Muniesa J, Junque C: Mental
slowness and executive dysfunctions in patients with metabolic
syndrome. Neurosci Lett 2009, 462(1):49-53.

7. van den Berg E, Biessels GJ, de Craen AJ, Gussekloo J, Westendorp RG: The
metabolic syndrome is associated with decelerated cognitive decline in
the oldest old. Neurology 2007, 69(10):979-985.

8. Vanhanen M, Koivisto K, Moilanen L, Helkala EL, Hanninen T, Soininen H,
Kervinen K, Kesaniemi YA, Laakso M, Kuusisto J: Association of metabolic
syndrome with Alzheimer disease: a population-based study. Neurology
2006, 67(5):843-847.

9. Winocur G, Greenwood CE, Piroli GG, Grillo CA, Reznikov LR, Reagan LP,
McEwen BS: Memory impairment in obese Zucker rats: an investigation
of cognitive function in an animal model of insulin resistance and
obesity. Behav Neurosci 2005, 119(5):1389-1395.

10.  Dinel AL, Andre C, Aubert A, Ferreira G, Laye S, Castanon N: Cognitive and
emotional alterations are related to hippocampal inflammation in a
mouse model of metabolic syndrome. PLoS One 2011, 6(9):e24325.



Taha et al. BMC Neuroscience 2012, 13:131
http://www.biomedcentral.com/1471-2202/13/131

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

32,

33.

Muller D, Nitsch RM, Wurtman RJ, Hoyer S: Streptozotocin increases free
fatty acids and decreases phospholipids in rat brain. J Neural Transm
1998, 105(10-12):1271-1281.

Plaschke K, Muller D, Hoyer S: Insulin-resistant brain state (IRBS) changes
membrane composition of fatty acids in temporal and entorhinal brain
cortices of rats: relevance to sporadic Alzheimer's disease? J Neural
Transm 2010, 117(12):1419-1422.

Holman RT: Nutritional and functional requirements for essential fatty
acids. Prog Clin Biol Res 1986, 222:211-228.

Innis SM: Essential fatty acids in infant nutrition: lessons and limitations
from animal studies in relation to studies on infant fatty acid
requirements. Am J Clin Nutr 2000, 71(1 Suppl):2385-244S.

Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE: Essential fatty acids in
visual and brain development. Lipids 2001, 36(9):385-895.

Sun AY, Cheng Y, Sun GY: Kainic acid-induced excitotoxicity in neurons
and glial cells. Prog Brain Res 1992, 94:271-280.

Rosenberger TA, Villacreses NE, Hovda JT, Bosetti F, Weerasinghe G, Wine
RN, Harry GJ, Rapoport SI: Rat brain arachidonic acid metabolism is
increased by a 6-day intracerebral ventricular infusion of bacterial
lipopolysaccharide. J Neurochem 2004, 88(5):1168-1178.

Chang YC, Kim HW, Rapoport SI, Rao JS: Chronic NMDA administration
increases neuroinflammatory markers in rat frontal cortex: cross-talk
between excitotoxicity and neuroinflammation. Neurochem Res 2008,
33(11):2318-2323.

Basselin M, Ramadan E, Rapoport SI: Imaging brain signal transduction
and metabolism via arachidonic and docosahexaenoic acid in animals
and humans. Brain Res Bull 2012, 87(2-3):154-171.

Burke JE, Dennis EA: Phospholipase A2 structure/function, mechanism,
and signaling. J Lipid Res 2009, 50(Suppl):5237-5242.

Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL: A
novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent
translocation domain with homology to PKC and GAP. Cell 1991,
65(6):1043-1051.

Farooqui AA, Ong WY, Horrocks LA: Inhibitors of brain phospholipase A2
activity: their neuropharmacological effects and therapeutic importance
for the treatment of neurologic disorders. Pharmacol Rev 2006,
58(3):591-620.

Green JT, Orr SK, Bazinet RP: The emerging role of group VI calcium-
independent phospholipase A2 in releasing docosahexaenoic acid from
brain phospholipids. J Lipid Res 2008, 49(5):939-944.

Strokin M, Sergeeva M, Reiser G: Docosahexaenoic acid and arachidonic
acid release in rat brain astrocytes is mediated by two separate isoforms
of phospholipase A2 and is differently regulated by cyclic AMP and Ca2
+. Br J Pharmacol 2003, 139(5):1014-1022.

Yang HC, Mosior M, Johnson CA, Chen Y, Dennis EA: Group-specific assays
that distinguish between the four major types of mammalian
phospholipase A2. Anal Biochem 1999, 269(2):278-288.

Bazan NG: Neuroprotectin D1 (NPD1): a DHA-derived mediator that
protects brain and retina against cell injury-induced oxidative stress.
Brain Pathol 2005, 15(2):159-166.

Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M,
Gimenez JM, Chiang N, Serhan CN, et a: Novel docosanoids inhibit brain
ischemia-reperfusion-mediated leukocyte infiltration and pro-
inflammatory gene expression. J Biol Chem 2003, 278(44):43807-43817.
Rapoport SI: Arachidonic acid and the brain. J Nutr 2008, 138(12):2515-2520.
Serhan CN: Novel eicosanoid and docosanoid mediators: resolvins,
docosatrienes, and neuroprotectins. Curr Opin Clin Nutr Metab Care 2005,
8(2):115-121.

Serhan CN, Oliw E: Unorthodox routes to prostanoid formation: new
twists in cyclooxygenase-initiated pathways. J Clin Invest 2001,
107(12):1481-1489.

Esposito G, Giovacchini G, Liow JS, Bhattacharjee AK, Greenstein D, Schapiro
M, Hallett M, Herscovitch P, Eckelman WC, Carson RE, et al: Imaging
neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic
acid and PET. J Nucl Med 2008, 49(9):1414-1421.

Kim HW, Rapoport SI, Rao JS: Altered expression of apoptotic factors and
synaptic markers in postmortem brain from bipolar disorder patients.
Neurobiol Dis 2009, 37(3):596-603.

Rao JS, Harry GJ, Rapoport SI, Kim HW: Increased excitotoxicity and
neuroinflammatory markers in postmortem frontal cortex from bipolar
disorder patients. Mol Psychiatry 2010, 15(4):384-392.

34.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Page 12 of 13

Makar TK, Hungund BL, Cook GA, Kashfi K, Cooper AJ: Lipid metabolism
and membrane composition are altered in the brains of type Il diabetic
mice. J Neurochem 1995, 64(5):2159-2168.

Hashimoto M, Kubota Y, Tanaka N, Yamaguchi Y, Fuijii Y, Kagota S, Kawakita E,
Shido O, Kunitomo M, Shinozuka K: Relationship between plasma and
hippocampal lipid peroxidation in obese and hypertensive SHR/NDmcr-cp
rats. Clin Exp Pharmacol Physiol 2004, 31(Suppl 2):562-S64.

Sharma J, Turk J, Mancuso DJ, Sims HF, Gross RW, McHowat J: Activation of
group VI phospholipase A2 isoforms in cardiac endothelial cells. Am J
Physiol Cell Physiol 2011, 300(4).C872-C879.

Sharma J, Turk J, McHowat J: Endothelial cell prostaglandin 1(2) and
platelet-activating factor production are markedly attenuated in the
calcium-independent phospholipase A(2)beta knockout mouse.
Biochemistry 2010, 49(26):5473-5481.

Basselin M, Ramadan E, Igarashi M, Chang L, Chen M, Kraft AD, Harry GJ,
Rapoport SI: Imaging upregulated brain arachidonic acid metabolism in
HIV-1 transgenic rats. J Cereb Blood Flow Metab 2011, 31(2):486-493.
Thirumangalakudi L, Rao HV, Grammas P: Involvement of PGE2 and PGDH
but not COX-2 in thrombin-induced cortical neuron apoptosis. Neurosci
Lett 2009, 452(2):172-175.

Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A,
Squinto SP, Yancopoulos GD, Lindsay RM: A BDNF autocrine loop in adult
sensory neurons prevents cell death. Nature 1995, 374(6521):450-453.
Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM,
Mattson MP: Diet-induced insulin resistance impairs hippocampal
synaptic plasticity and cognition in middle-aged rats. Hippocampus 2008,
18(11):1085-1088.

Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez-Pinilla F: A high-fat,
refined sugar diet reduces hippocampal brain-derived neurotrophic
factor, neuronal plasticity, and learning. Neuroscience 2002, 112(4):803-814.
Li ZG, Zhang W, Sima AA: Alzheimer-like changes in rat models of
spontaneous diabetes. Diabetes 2007, 56(7):1817-1824.

Chepulis LM, Starkey NJ, Waas JR, Molan PC: The effects of long-term
honey, sucrose or sugar-free diets on memory and anxiety in rats.
Physiology & Behavior 2009, 97(3-4):359-368.

Mancuso DJ, Sims HF, Yang K, Kiebish MA, Su X, Jenkins CM, Guan S, Moon
SH, Pietka T, Nassir F, et al: Genetic ablation of calcium-independent
phospholipase A2gamma prevents obesity and insulin resistance during
high fat feeding by mitochondrial uncoupling and increased adipocyte
fatty acid oxidation. J Biol Chem 2010, 285(47):36495-36510.

Han MS, Lim YM, Quan W, Kim JR, Chung KW, Kang M, Kim S, Park SY, Han
JS, Cheon HG, et al: Lysophosphatidylcholine as an effector of fatty acid-
induced insulin resistance. J Lipid Res 2011, 52(6):1234-1246.

Kellom M, Basselin M, Keleshian VL, Chen M, Rapoport SI, Rao JS: Dose-
dependent changes in neuroinflammatory and arachidonic acid cascade
markers with synaptic marker loss in rat lipopolysaccharide infusion
model of neuroinflammation. BMC Neurosci 2012, 13(1):50.

Kim HW, Chang YC, Chen M, Rapoport SI, Rao JS: Chronic NMDA
administration to rats increases brain pro-apoptotic factors while decreasing
anti-Apoptotic factors and causes cell death. BMC Neurosci 2009, 10:123.

Rao JS, Ertley RN, Rapoport SI, Bazinet RP, Lee HJ: Chronic NMDA administration
to rats up-regulates frontal cortex cytosolic phospholipase A2 and its
transcription factor, activator protein-2. J Neurochem 2007, 102(6):1918-1927.
Pagliassotti MJ, Prach PA, Koppenhafer TA, Pan DA: Changes in insulin
action, triglycerides, and lipid composition during sucrose feeding in
rats. Am J Physiol 1996, 271(5 Pt 2)R1319-R1326.

Pagliassotti MJ, Prach PA: Quantity of sucrose alters the tissue pattern
and time course of insulin resistance in young rats. Am J Physiol 1995,
269(3 Pt 2):R641-R646.

Chicco A, D'Alessandro ME, Karabatas L, Pastorale C, Basabe JC, Lombardo
YB: Muscle lipid metabolism and insulin secretion are altered in insulin-
resistant rats fed a high sucrose diet. J Nutrition 2003,

133(1):127-133.

Sharma S, Zhuang Y, Gomez-Pinilla F: High-fat diet transition reduces
brain DHA levels associated with altered brain plasticity and behaviour.
Sci Rep 2012, 2:431.

Hatanpaa K, Isaacs KR, Shirao T, Brady DR, Rapoport SI: Loss of proteins
regulating synaptic plasticity in normal aging of the human brain and in
Alzheimer disease. J Neuropathol Exp Neurol 1999, 58(6):637-643.

Rao JS, Kellom M, Kim HW, Rapoport SI, Reese EA: Neuroinflammation and
synaptic loss. Neurochem Res 2012, 37(5):903-910.



Taha et al. BMC Neuroscience 2012, 13:131
http://www.biomedcentral.com/1471-2202/13/131

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC:
Homeostasis model assessment: insulin resistance and beta-cell function
from fasting plasma glucose and insulin concentrations in man.
Diabetologia 1985, 28(7):412-419.

Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ: cPLA2 is
phosphorylated and activated by MAP kinase. Cell 1993, 72(2):269-278.
Xing M, Insel PA: Protein kinase C-dependent activation of cytosolic
phospholipase A2 and mitogen-activated protein kinase by alpha 1-
adrenergic receptors in Madin-Darby canine kidney cells. J Clin Invest
1996, 97(5):1302-1310.

Deutsch J, Rapoport SI, Purdon AD: Relation between free fatty acid and
acyl-CoA concentrations in rat brain following decapitation. Neurochem
Res 1997, 22(7):759-765.

Karmi A, lozzo P, Vilianen A, Hirvonen J, Fielding BA, Virtanen K, Oikonen V,
Kemppainen J, Viljanen T, Guiducci L, et al: Increased brain fatty acid
uptake in metabolic syndrome. Diabetes 2010, 59(9):2171-2177.

Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A,
Pennathur S, Baskin DG, Heinecke JW, Woods SC, et al: Hypothalamic
proinflammatory lipid accumulation, inflammation, and insulin resistance
in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 2009,
296(5):E1003-E1012.

Umhau JC, Zhou W, Carson RE, Rapoport S, Polozova A, Demar J, Hussein
N, Bhattacharjee AK, Ma K, Esposito G, et al Imaging incorporation of
circulating docosahexaenoic acid into the human brain using positron
emission tomography. J Lipid Res 2009, 50(7):1259-1268.

Ramadan E, Rosa AO, Chang L, Chen M, Rapoport S, Basselin M:
Extracellular-derived calcium does not initiate in vivo neurotransmission
involving docosahexaenoic acid. J Lipid Res 2010, 51(8):2334-2340.
Shonesy BC, Thiruchelvam K, Parameshwaran K, Rahman EA,
Karuppagounder SS, Huggins KW, Pinkert CA, Amin R, Dhanasekaran M,
Suppiramaniam V: Central insulin resistance and synaptic dysfunction in
intracerebroventricular-streptozotocin injected rodents. Neurobiol Aging
2012, 33(2):430 e435-418.

Farooqui AA, Farooqui T, Panza F, Frisardi V: Metabolic syndrome as a risk
factor for neurological disorders. Cell Mol Life Sci: CMLS 2012,
69(5):741-762.

Striggow F, Ehrlich BE: Regulation of intracellular calcium release channel
function by arachidonic acid and leukotriene B4. Biochem Biophys Res
Commun 1997, 237(2):413-418.

Gharib SA, Khalyfa A, Abdelkarim A, Bhushan B, Gozal D: Integrative
miRNA-mRNA Profiling of Adipose Tissue Unravels Transcriptional
Circuits Induced by Sleep Fragmentation. PLoS One 2012, 7(5):e37669.
Kanitz A, Gerber AP: Circuitry of mRNA regulation. Wiley Interdiscip Rev Syst
Biol Med 2010, 2(2):245-251.

McCall CE, El Gazzar M, Liu T, Vachharajani V, Yoza B: Epigenetics,
bioenergetics, and microRNA coordinate gene-specific reprogramming
during acute systemic inflammation. J Leukoc Biol 2011, 90(3):439-446.
Garrido R, Springer JE, Hennig B, Toborek M: Nicotine attenuates arachidonic
acid-induced apoptosis of spinal cord neurons by preventing depletion of
neurotrophic factors. J Neurotrauma 2003, 20(11):1201-1213.

Toalson P, Ahmed S, Hardy T, Kabinoff G: The Metabolic Syndrome in
Patients With Severe Mental llinesses. Primary care companion to the
Journal of clinical psychiatry 2004, 6(4):152-158.

Obici S, Feng Z, Arduini A, Conti R, Rossetti L: Inhibition of hypothalamic
carnitine palmitoyltransferase-1 decreases food intake and glucose
production. Nature medicine 2003, 9(6):756-761.

Mera P, Bentebibel A, Lopez-Vinas E, Cordente AG, Gurunathan C, Sebastian
D, Vazquez |, Herrero L, Ariza X, Gomez-Puertas P, et al: C75 is converted to
C75-CoA in the hypothalamus, where it inhibits carnitine
palmitoyltransferase 1 and decreases food intake and body weight.
Biochem Pharmacol 2009, 77(6):1084-1095.

Farias SE, Basselin M, Chang L, Heidenreich KA, Rapoport SI, Murphy RC:
Formation of eicosanoids, E2/D2 isoprostanes, and docosanoids
following decapitation-induced ischemia, measured in high-energy-
microwaved rat brain. J Lipid Res 2008, 49(9):1990-2000.

Reeves PG, Nielsen FH, Fahey GC Jr: AIN-93 purified diets for laboratory
rodents: final report of the American Institute of Nutrition ad hoc writing
committee on the reformulation of the AIN-76A rodent diet. J Nutrition
1993, 123(11):1939-1951.

Igarashi M, Ma K, Chang L, Bell JM, Rapoport SI: Dietary n-3 PUFA
deprivation for 15 weeks upregulates elongase and desaturase

77.

78.

79.

80.

81.

82.

Page 13 of 13

expression in rat liver but not brain. J Lipid Res 2007,

48(11):2463-2470.

Mariotti F, Hermier D, Sarrat C, Magne J, Fenart E, Evrard J, Tome D, Huneau JF:
Rapeseed protein inhibits the initiation of insulin resistance by a high-
saturated fat, high-sucrose diet in rats. Br J Nutr 2008, 100(5):984-991.

Szeto IM, Aziz A, Das PJ, Taha AY, Okubo N, Reza-Lopez S, Giacca A,
Anderson GH: High multivitamin intake by Wistar rats during pregnancy
results in increased food intake and components of the metabolic
syndrome in male offspring. Am J Physiol Regul Integr Comp Physiol 2008,
295(2):R575-R582.

Folch J, Lees M, Sloane Stanley GH: A simple method for the isolation and
purification of total lipides from animal tissues. J Biol Chem 1957,
226:497-509.

Livak KJ, Schmittgen TD: Analysis of relative gene expression data using
real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods
2001, 25(4):402-408.

Bradford MM: A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding. Anal Biochem 1976, 72:248-254.

Radin NS: Extraction of tissue lipids with a solvent of low toxicity.
Methods Enzymol 1981, 72:5-7.

doi:10.1186/1471-2202-13-131

Cite this article as: Taha et al: Upregulated expression of brain
enzymatic markers of arachidonic and docosahexaenoic

acid metabolism in a rat model of the metabolic syndrome.
BMC Neuroscience 2012 13:131.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Weight gain and food intake
	Oral glucose tolerance test
	ß-hydroxybutyrate in whole blood
	Plasma insulin, glucose and triglyceride concentrations
	cPLA2 mRNA and protein
	iPLA2 and sPLA2 mRNA, protein and activity
	PGE2, TXB2 and LTB4 concentrations
	GFAP, TNF-α, COX and LOX mRNA
	mRNA and protein levels of BDNF and synaptic markers
	Brain fatty acid concentrations

	Discussion
	Conclusion
	Methods
	Animals
	Diets
	Plasma glucose, insulin, and triglyceride measurement
	Oral glucose tolerance test and β-hydroxybutyrate measurement
	Brain total fatty acid concentration
	Preparation of cytoplasmic and membrane extracts
	Western Blot Analysis
	BDNF protein levels
	Total RNA isolation and real time RT-PCR
	Phospholipase A2 activities
	Sample preparation
	Enzyme assay with radioisotope method
	Substrate preparation for radioisotope method
	Enzyme assay
	sPLA2 activity

	PGE2, TXB2, and LTB4 concentration
	Data and statistics

	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

