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Abstract

Background: The aim of this study was to investigate whether serotonin (5-hydroxytryptamine, 5-HT) can
modulate Na*/K* pump in rat hippocampal CA1 pyramidal neurons.

Results: 5-HT (0.1, 1 mM) showed Na™/K" pump current (Ip) densities of 0.40 + 0.04, 0.34 + 0.03 pA/pF contrast to
0.63 + 0.04 pA/pF of the control of 0.5 mM strophanthidin (Str), demonstrating 5-HT-induced inhibition of Ip in a
dose-dependent manner in hippocampal CAT pyramidal neurons. The effect was partly attenuated by ondasetron,
a 5-HT3 receptor (5-HT3R) antagonist, not by WAY 100635, a 5-HT; 4R antagonist, while 1-(3-Chlorophenyl) biguanide

benefit these patients with cognitive disorder.

hydrochloride (m-CPBG), a 5-HT3R specific agonist, mimicked the effect of 5-HT on Ip.

Conclusion: 5-HT inhibits neuronal Na*/K* pump activity via 5-HT5R in rat hippocampal CA1 pyramidal neurons.
This discloses novel mechanisms for the function of 5-HT in learning and memory, which may be a useful target to

Background

5-HT, as a neurotransmitter or neuromodulator in the
central nervous system, plays a critical role in the con-
trol of blood pressure, body temperature, sleep, depres-
sion, anxiety, epilepsy [1-4]. Additionally, the
modulation of the serotonergic system affects long-term
potentiation (LTP) and long-term depression (LTD), the
likely neurophysiologic derivates of learning and mem-
ory formation, which has been involved in the treatment
of Alzheimer’s disease [5-8]. Some studies demonstrate
that 5-HT; sR-knockout animals show a deficit in hippo-
campal-dependent learning and memory, such as the
hidden platform (spatial) version of the Morris water
maze and the delayed version of the Y maze [9], while
the stimulation of 5-HT;,R mediates enhancement of
LTP [10] and prevents the impairment of learning and
memory [11,12]. Therefore, the stimulation of 5-HT 4R
may be useful in the symptomatic treatment of human
memory disturbances. However, accumulated clinical
reports support that the injection of 5-HT3R antagonists
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facilitates the induction of LTP, and enhances the reten-
tion and consolidation of memory in hippocampal
dependent tasks [13-15]. These clinical application of 5-
HT3R antagonists have been found to improve memory
in schizophrenic or Alzheimer demented patients
[16,17]. Therefore, 5-HT3R also plays a critical role in
cognitive function.

In addition to increasing neuronal excitability [18],
inhibition of Na*/K" pump activity can induce LTD
whereas depotentiate LTP [19], and then cause impair-
ment of learning and memory and amnesia [20,21].
Herein, in the present study, we investigate if a relation-
ship occurs between 5-HT and Na*/K* pump in hippo-
campal CA1 pyramidal neurons, which may provide
new insights in the mechanisms responsible for the 5-
HT-mediated modulation of learning and memory.

Results and discussion

5-HT-mediated inhibition of Ip in rat hippocampal CA1
pyramidal neurons

0.5 mM Str often did not recover completely in hippo-
campal CA1 slices even after prolonged washout in the
present study, consistent with the previous study that
Na*/K" pump inhibition by Str was effectively
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irreversible [22]. Furthermore, 10 puM Str did not
recover completely in rat ventral midbrain slices [23].
Therefore, Str perfusion was applied one time in one
brain slice.

In the present study, Ip densities affected by 5-HT
(0.1, 1 mM) were 0.40 + 0.04, 0.34 + 0.03 pA/pF con-
trast to 0.63 + 0.04 pA/pF of the control of 0.5 mM Str
(Figure 1), demonstrating 5-HT inhibits Na*/K" pump
activity in hippocampal CA1 pyramidal neurons. Some
studies have reported that 5-HT inhibits Na*/K* pump
in T sensory neurons of the leech [24] and kidney [25],
then depresses the after-hyperpolarization. However,
other studies have showed that 5-HT activates glial Na
"/K" pump activity in rat cerebral cortex and hippocam-
pus [26,27]. 5-HT stimulated synaptic membrane Na*/K
" pump from the rabbit cerebrum, but did not influence
the activity of this enzyme in the other brain regions
[28]. These studies suggested that the regulation of 5-
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Figure 1 5-HT-mediated inhibiton of Ip in rat hippocampal CA1
pyramidal neurons. (A) The representative tracings of 5-HT (0.01-1
mM)-mediated effect of Ip contrast with the control of Str-mediated
Ip. (B) 5-HT at 0.1 and 1 mM significantly mediated concentration-
dependent suppression of Ip contrast with the control of Str (0.5
mM) (**P < 0.01). The number of all cells tested is indicated in each
column.
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HT-induced Na'/K" pump activity may be attributable
to tissue and cell specificity.

Furthermore, some studies reported that the applica-
tion of 1 uM 5-HT prevented depotentiation but not
LTP induced by high-frequency stimulation, whereas
bath application of 100 uM 5-HT blocked the induction
of tetanus-induced LTP [29], consistent with the pre-
vious study that 5-HT (30 puM) prevented LTP induced
by a primed burst in rat hippocampal CA1 region [30].
Accordingly, different concentrations of 5-HT may have
different modulation of learning and memory. Moreover,
the inhibition of Na*/K" pump activity can induce LTD
whereas depotentiate LTP [19], and then cause impair-
ment of learning and memory and amnesia [20,21].
Herein, in the present study, 5-HT-mediated inhibition
of Na"/K" pump activity may disclose novel mechanisms
in learning and memory. Further studies should be done
to explore the mechanism.

5-HT mediated inhibiton of Ip via 5-HT3R not 5-HT;,R

To identify the specific 5-HTR involved in the regulation
of Ip, we focused on the 5-HT 4R and 5-HT3R that are
abundant in all hippocampal layers and subregions
[31-33]. In the present study, “WAY1000635 (a 5-HT 4R
antagonist) + 5-HT + Str” treatment yielded the similar
result as “5-HT + Str” treatment (Figure 2), i.e., the appli-
cation of the antagonist for 5-HT; AR had no effect on 5-
HT-mediated inhibition of Ip, suggesting that 5-HT 4R
was not involved in 5-HT-mediated inhibition of Ip. Some
studies have reported that 5-HT; 4R mediates enhance-
ment of LTP in hippocampal dentate gyrus [10] and pre-
vents the impairment of learning and memory [11,12],
whereas inhibits LTP in the hippocampal CA1 field and
visual cortex [34,35], demonstrating the different effects of
5-HT ;4R on synaptic transmission in different tissues.
Therefore, there still are some arguments about 5-HT AR-
induced-modulation of LTP. In the present study, 5-
HT; AR did not antagonize 5-HT-mediated inhibition of
Ip, demonstrating that Na"/K* pump may be not involved
in 5-HT; AR-mediated modulation of memory.

In the presence of ondasetron, a 5-HT3R antagonist,
5-HT-mediated inhibition of Ip was blocked from 0.40
+ 0.04 to 0.61 + 0.04 pA/pF (Figure 2), while m-CPBG,
a 5-HT3R specific agonist, mimicked the effect of 5-HT
on Ip (Figure 2). These results show, for the first time,
that the inhibition of 5-HT-mediated Ip is primarily
mediated by 5-HT3R in hippocampal CA1 pyramidal
neurons. On the subcellular level, both presynaptic and
postsynaptic 5-HT3R can be found. Presynaptic 5-HT3R
is involved in mediating or modulating neurotransmitter
release. Postsynaptic 5-HT3R is preferentially expressed
on interneurons [36,37], and there is also 5-HT3R in
postsynaptic pyramidal neurons [38-42]. For example,
electrophysiological studies in postsynaptic pyramidal
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Figure 2 5-HT-mediated inhibiton of Ip is mediated by 5-HT3R, but not by 5-HT;,R in hippocampus. (A) The representative tracing of 0.5
mM Str- mediated Ip in the control. (B) The representative tracing of 5-HT (0.1 mM) -mediated inhibiton of Ip. WAY100635, a 5-HT; 4R antagonist,
alone did not affect Ip (P > 0.05) (C), and did not block 5-HT-mediated inhibiton of Ip (D). Ondasetron, a 5-HT3R antagonist, alone did not affect
Ip (P > 0.05) (E), whereas attenuated 5-HT-mediated inhibiton of Ip (F). (G) 5-HT-mediated inhibiton of Ip is blocked by ondasetron, but not
WAY100635. (H) The representative tracing of m-CPBG (0.1 mM)-mediated inhibiton of Ip. (I) m-CPBG (0.1 mM) -mediated inhibiton of Ip. Values
significantly different by Student’s t-test from results are indicated as **P < 0.01.
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neurons in the hippocampal CAl region or hippocampal
primary cultures showed the activation of 5-HT3R
[38-42]. Furthermore, 5-HT3R is a unique serotonin
receptor as it acts as a ligand-gated ion channel, whereas
all the other types of serotonin receptors belong to the
G protein-coupled receptor superfamily, which may be
the reason of 5-HT3R, rather than 5-HT R, is the rele-
vant 5-HTR for 5-HT-mediated inhibition of Ip in the
present study. This still deserves further investigations.

Some studies indicate that overexpression of the 5-HT3R
in mouse forebrain results in enhanced hippocampal-
dependent learning and attention involved in fear condi-
tioning [43], whereas most reports show that 5-HT3R
antagonists can facilitate LTP and enhance the retention
and consolidation of memory in hippocampal dependent
tasks [13]. Furthermore, the complete abolishment of 5-
HT innervation in the hippocampus increases LTP in vivo
[44]-which would suggest that, on balance, 5-HT may
exert a negative influence on LTP via 5-HT3R and then
impair learning and memory [14,15]. Clinically application
of 5-HT3R antagonists have been found to improve mem-
ory in schizophrenic or Alzheimer demented patients
[16,17]. It is, however, not clear whether this effect is spe-
cific to LTP, or secondary to other changes.

Some studies reported that inhibition of Na*/K* pump
activity can induce LTD whereas depotentiate LTP [19],
and then cause impairment of learning and memory and
amnesia [19-21,45-47]. Moreover, The initial stationary
phase of the LTP was followed by a decrease in Na*/K"
pump activity of neurons and an augmentation of Na*/K*
pump activity in the glial cells [48]. These studies sup-
ported that there may be some relationship between Na*/K
" pump and LTP. The present results show that 5-HT can
suppress Ip in hippocampal CA1 pyramidal neurons via 5-
HT3R, consistent with the previous study that 5-HT3R
partly mediated the decrease of Na*/K* pump activity
induced by cocaine in neuronal-like cells [49], suggesting
that inhibition of Na*/K* pump activity may be involved in
5-HT3R-induced modulation of learning and memory. This
provides new insights for the possible synaptic role of 5-
HT via 5-HT3R in cognitive function and neuronal devel-
opment through Na*/K* pump, which may be a useful tar-
get to benefit these patients with cognitive disorder.

Conclusion

5-HT inhibits neuronal Na*/K" pump activity via 5-
HT3R in hippocampal CA1 pyramidal neurons, which
may disclose novel mechanisms for the function of 5-
HT in learning and memory.

Methods

Solutions and chemicals

Str, ondasetron and WAY-100635 were purchased from
Sigma (St. Louis, MO, USA). 5-HT and tetrodotoxin
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(TTX) were purchased from Alexis (San Diego, CA,
USA). m-CPBG and other chemicals were purchased
from Alfa Aesar (Ward Hill, MA, USA). Str was dis-
solved in DMSO and further diluted 1: 1000 in artificial
cerebrospinal fluid (ACSF) containing (mM): NaCl 119,
KCl 5.4, MgCl, 1.3, NaH,PO4+2H,0 1, D-Glucose 11,
NaHCO; 26.2, CaCl, 2.5. Control solutions of 1: 1000
DMSO had no effect on membrane current. TTX was
dissolved in dilute acetic acid (PH 4.8-4.9). 5-HT, onda-
setron, m-CPBG and WAY-100635 were dissolved in
sterile water and stored as stock solutions. All stock
solutions were stored as frozen aliquots at -20°C.

Brain hippocampal slice preparation and loading
Sprague-Dawley rats of 12-14 days were deeply anesthe-
tized with sodium pentobarbital (45 mg kg, i.p.) and
then rapidly decapitated. Our experiments were
approved by Animal Care Committee of Hebei Medical
University. Appropriate experimental procedures were
taken to minimize pain or discomfort. The brain was
quickly removed from the skull and transverse hippo-
campal slices (300 pm thick) were obtained by cutting
with a vibroslice MA752 (Campden Instruments, Lough-
borough, UK) in ice-cold ACSF well-saturated with 95%
O, and 5% CO, (PH 7.3-7.4). These slices were pre-
incubated in oxygenated ACSF at room temperature
(22-25°C) for 1 h.

Figure 3 The location visualization and electrophysiological
characteristics of rat hippocampal CA1 pyramidal neurons. A.
Schematic representation of the location of the hippocampal CA1
slice. B. The hippocampal CA1 location as visualized with x10
infrared video microscopy. C. The hippocampal CA1 pyramidal
neurons as visualized with x40 water immersion lens of infrared
video microscopy. Patch pipette is visible during whole-cell
recording from the recorded neuron on right. D. Action potentials
of the hippocampal CA1 pyramidal neuron during a depolarizing
current pulse from the resting potential of -60 mV. Note the spike
frequency adaptation. The whole cell recording under the current
clamp method was used. The amplitude and the time of injected
currents were shown on top of membrane potential trace.
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Figure 4 |-V curve of recorded neurons. A, Schematic representation of the protocol of the recorded neurons; B, Representative current traces
recorded from a typical hippocampal CA1 pyramidal neuron. Cell was held at -60 mV and stepped from -100 mV to +105 mV in 5 mV interval
for 1-s duration, followed by a step to -60 mV once. C and D, |-V plots were constructed from the values of traces.
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Electrophysiological recordings of Na*, K*-pump currents

The hippocampal slice containing CA1 pyramidal neu-
rons was transferred to a submerged recording chamber
and continuously superfused with oxygenated ACSF
(containing 2 mM BaCl,, 0.2 mM CdCl, and 0.5 uM
TTX) at a rate of 2 mlemin" at room temperature [50].
Only one cell was measured from each brain slice. Hip-
pocampal CA1 pyramidal neurons were visualized by
their location [51,52] using infrared differential interfer-
ence contrast video microscopy and a x40 water immer-
sion lens (Zeiss Axioskop), as shown in Figure 3A, B, C.
In addition to the discrimination by the location, we
determined pyramidal neurons by electrophysiological
characteristics. We used current-clamp method to
record the action potentials of hippocampal CA1 pyra-
midal neurons held at 0 pA and elicited the action
potential by current injection for 1 s. Hippocampal CA1
pyramidal neurons, which were recorded with an EPC-
10 amplifier (HEKA Instruments), usually exhibited
spike frequency adaptation in response to a depolarizing
current pulse in whole-cell current-clamp recordings, as
shown in Figure 3D, which is a common characteristic
of pyramidal neurons [53,54]. Patch clamp electrodes
with resistances of 4-6 MQ were made by a horizontal
puller (Model P-97, Suttter Instruments), and they were
filled with the pipette solution containing (mM): Gluco-
natic acid 125, TEACI 10, CsOH 125, MgCl, 2, NaCl 8,
HEPES 10, EGTA 0.2, Na,ATP 3, Na,GTP 0.3 (PH 7.2).
Currents were digitally sampled at 100 ps (10 kHz) and
filtered at 2.9 kHz by a Bessel filter. The layer II/IIT hip-
pocampal CA1 pyramidal neurons in acute hippocampal
slices (300 pm thick) were held at -60 mV, at which
holding potential, the membrane patch was most stable
in the present experimental conditions. The average
resting membrane potential was -65 + 8.6 mV (mean +
SD, n = 105 cells), with the average input resistance of
117.3 + 28.5 MQ (mean + SD, n = 93 cells). The input
resistance of the cell membrane was derived by calculat-
ing the reciprocal of the slope of the I-V curve at the
zero-current potential (Figure 4). To isolate Ip in hippo-
campal CA1 pyramidal neurons during stable record-
ings, Str (0.5 mM) was used to inhibit the Na*/K*
pump, and an inward move of holding current gener-
ated. To detect the effect of 5-HT on Ip, 5-HT was
given for 3-4 min, then Str was co-applied with 5-HT,
and the produced inward current was contrasted with
the control Ip of Str [50].

Statistical analysis

Results were expressed as the mean + S.E.M., and n
indicated the number of slices studied. Statistical com-
parisons were made using the Student’s t-test for
unpaired samples, and significant differences were
defined as having a P-value less than 0.05.
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