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Grape seed proanthocyanidin extract inhibits
glutamate-induced cell death through inhibition
of calcium signals and nitric oxide formation in
cultured rat hippocampal neurons
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Abstract

neuronal cell death.

Background: Proanthocyanidin is a polyphenolic bioflavonoid with known antioxidant activity. Some flavonoids
have a modulatory effect on [Ca’*].. Although proanthocyanidin extract from blueberries reportedly affects Ca®*
buffering capacity, there are no reports on the effects of proanthocyanidin on glutamate-induced [Ca®*]; or cell
death. In the present study, the effects of grape seed proanthocyanidin extract (GSPE) on glutamate-induced
excitotoxicity was investigated through calcium signals and nitric oxide (NO) in cultured rat hippocampal neurons.

Results: Pretreatment with GSPE (0.3-10 ug/ml) for 5 min inhibited the [Ca2+]i increase normally induced by
treatment with glutamate (100 uM) for 1 min, in a concentration-dependent manner. Pretreatment with GSPE (6
ug/ml) for 5 min significantly decreased the [Ca®*]; increase normally induced by two ionotropic glutamate
receptor agonists, N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA).
GSPE further decreased AMPA-induced response in the presence of 1 UM nimodipine. However, GSPE did not
affect the 50 mM K*-induced increase in [Ca*]. GSPE significantly decreased the metabotropic glutamate receptor
agonist (RS)-3,5-Dihydroxyphenylglycine-induced increase in [Ca”]i, but it did not affect caffeine-induced response.
GSPE (0.3-6 pg/ml) significantly inhibited synaptically induced [Ca**]; spikes by 0.1 mM [Mg*'],. In addition,
pretreatment with GSPE (6 pg/ml) for 5 min inhibited 0.1 mM [Mg®*]o- and glutamate-induced formation of NO.
Treatment with GSPE (6 pg/ml) significantly inhibited 0.1 mM [Mg?*],- and oxygen glucose deprivation-induced

Conclusions: All these data suggest that GSPE inhibits 0.1 mM [Mg?*],- and oxygen glucose deprivation-induced
neurotoxicity through inhibition of calcium signals and NO formation in cultured rat hippocampal neurons.

Background

Proanthocyanidins are polymers of flavonoid molecules
that are widely available in fruits, vegetables, nuts, seeds,
flowers, and bark, and especially in grape seeds [1].
These compounds possess a broad spectrum of antioxi-
dative properties that provide potent protection against
free radical-induced diseases, such as ischemia and
reperfusion injury [2-4], aging [5], and carcinogenesis
[6]. Proanthocyanidins are also known to possess
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antibacterial, antiviral, anti-inflammatory, anti-allergic,
and vasodilator properties [1,7].

Glutamate is a major neurotransmitter in the central
nervous system. Glutamate increases intracellular free
Ca®* concentration ([Ca®'];) in neurons by activating
ionotropic and metabotropic glutamate receptors. In
pathological conditions, including epilepsy and ischemia,
a massive glutamate release leads to glutamate neuro-
toxicity [8,9]. The neurotoxicity is mainly due to N-
methyl-D-aspartate (NMDA) receptors, which cause
excessive elevation of intracellular Ca®* concentration
([Ca**];) and subsequent neuronal cell death [10]. Eleva-
tion of [Ca®']; following NMDA receptor activation
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stimulates nitric oxide synthase (NOS), an enzyme that
induces formation of nitric oxide (NO) in neurons [11].
NO reportedly also mediates glutamate neurotoxicity
[12,13].

Some flavonoids have modulatory effects on [Ca®*];.
(-)-Epigallocatechine gallate (EGCG) increase [Ca®']; in
U87 cells [14] and inhibit glutamate-induced [Ca**];
increase in PC12 cells [15] and cultured rat hippocampal
neurons [16]. Quercetin has stimulatory effects on vol-
tage-dependent L-type Ca** channels in GH3 cells and
inhibitory effects on L-type Ca®* channels in NG108-15
cells [17]. In addition, EGCG [15], apigenin [18], and
wogonin [19] have a neuroprotective effect in glutamate
neurotoxicity. Proanthocyanidin extract from blueberries
has reportedly reversed dopamine, AfB,4,, and lipopoly-
saccharide-induced dysregulation of Ca** buffering capa-
city [20]. However, there are no reports on the effect of
proanthocyanidin on glutamate-induced [Ca®*]; or cell
death in cultured rat hippocampal neurons.

The present study determined whether grape seed
proanthocyanidin extract (GSPE) affected glutamate-
induced Ca®* signalling and NO formation in cultured
rat hippocampal neurons. It further examined whether
GSPE protects neurons against neurotoxicity induced by
low extracellular Mg2+ concentration ([Mg2+]o) and oxy-
gen glucose deprivation.

Results

Effect of GSPE on glutamate-induced [Ca®*]; increase
Since elevation of [Ca®']; is one of the major causes of
glutamate excitotoxicity [10], the present study first
examined the effect of GSPE on glutamate-induced [Ca?
]; increase in cultured rat hippocampal neurons. Treat-
ment with glutamate (100 uM) for 1 min caused [Ca**];
increase. Reproducible response could be elicited by
applying glutamate (100 uM) for 1 min at 30-min inter-
vals (peak 2/peak 1 = 97.6 + 2.4%, n = 27) (Figure 1A).
Pretreatment with GSPE (0.3 pg/ml) for 5 min did not
affect the glutamate-induced [Ca®*]; response (peak 2/
peak 1 = 100.8 + 3.8%, n = 15) (Figure 1B). Pretreat-
ment with higher concentrations of GSPE (1-6 pg/ml)
inhibited the glutamate-induced response in a concen-
tration-dependent manner (peak 2/peak 1 = 92.0 + 2.1%
at 1 pg/ml, n = 17; 86.5 £ 3.5% at 3 pg/ml, n = 16; 71.9
+ 2.3% at 6 pg/ml, n = 21). However, pretreatment with
10 pug/ml GSPE did not further inhibit the glutamate-
induced response (peak 2/peak 1 = 72.4 + 3.5% at 10
pg/ml, n = 16) (Figure 1C-G). Therefore, the present
study used 6 pug/ml of GSPE to quantify the inhibition
of agonist-induced [Ca**]; increase. The 6 pg/ml con-
centration of IHEA GSPE used in the present study was
less than or equal to the serum levels of polyphenols
after intake of grape seed proanthocyanidin extract in
humans [21].
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Effect of GSPE on ionotropic glutamate receptor agonist-

induced [Ca®*]; increase

To determine how GSPE inhibits glutamate receptor-
induced [Ca®*]; increase, the present study used two
ionotropic glutamate receptor agonists, alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
and NMDA. Application of AMPA increased [Ca®*]; by
activating AMPA /kainate channels and then voltage-
gated Ca®* channels in neurons. Reproducible increase
in [Ca®*]; was induced by treatment with (S)-AMPA (10
uM) for 1 min at 10-min intervals (peak 2/peak 1 = 93.7
+ 5.4%, n = 20). Pretreatment with GSPE (6 pg/ml) for 5
min significantly inhibited the AMPA-induced [Ca®*];
response (peak 2/peak 1 = 80.8 £+ 2.0%, n = 23, P <
0.05) (Figure 2A1-A3).

Ca®*-permeable AMPA receptors are expressed in
hippocampal neurons early in development [22]. The
present study tested whether proanthocyanin inhibits
Ca®*-permeable AMPA-receptor-mediated Ca®* influx.
Pretreatment with nimodipine (1 pM) for 5 min inhib-
ited the AMPA-induced [Ca®*]; response (peak 2/peak 1
=40.2 + 4.8%, n = 11, P < 0.01). Pretreatment with
GSPE (6 pg/ml) for 5 min further inhibited AMPA-
induced response in the presence of nimodipine (1 pM)
(peak 3/peak 1 = 27.3 + 6.7%, n = 9, P < 0.01) (Figure
2B1-B3).

In addition, reproducible NMDA-induced [Ca**];
increase was induced by treatment with NMDA (100
uM) for 1 min at 20-min intervals (peak 2/peak 1 = 94.9
+ 7.6%, n = 11). Pretreatment with GSPE (6 pg/ml) for 5
min also significantly inhibited NMDA-induced [Ca**];
response (peak 2/peak 1 = 71.1 + 2.6%, n = 15, P <
0.05) (Figure 3).

Effect of GSPE on high K*-induced [Ca®*]; increase
Binding glutamate to its AMPA receptors induced an
influx of Na* (partly Ca**) into neurons and depolarized
the neurons. This depolarization induced secondary acti-
vation of voltage-gated Ca”>* channels [23]. To deter-
mine the effect of GSPE on glutamate-induced
secondary activation of Ca®* channels, the present study
observed whether GSPE affects the depolarization-
induced [Ca®*]; increase by 50 mM K* HEPES-HBSS
(Figure 4). Reproducible [Ca®*]; increase was induced by
treatment for 1 min with 50 mM K* HEPES-HBSS at
30-min intervals (peak 2/peak 1 = 91.2 + 2.7%, n = 22).
Treatment with GSPE (6 pg/ml) for 5 min did not affect
high K*-induced [Ca**]; response (peak 2/peak 1 = 93.2
+ 1.7%, n = 27, P > 0.05) (Figure 4).

Effect of GSPE on metabotropic glutamate receptor
agonist or caffeine-induced [Ca®*]; increase

Group I metabotropic glutamate receptors, composed
of mGluR1 and mGIluR5, are exclusively expressed at
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Figure 1 GSPE inhibits glutamate-induced [Ca?*]; increase in cultured rat hippocampal neurons>. A: Reproducible increase in glutamate-
1 min at 30 min intervals. B-F: Pretreatment with GSPE for 5 min
inhibited glutamate-induced response in a concentration-dependent manner. G: Plot summarizes the inhibition of GSPE on glutamate-induced
pug/ml, n = 17; 3 ug/ml, n = 16; 6 ug/ml, n = 21;
presented as a percentage of initial glutamate-induced response (peak 2/peak 1) for vehicle and GSPE-pretreated cells. Data are expressed as the

10 pg/ml, n = 16). Glutamate-induced response is

postsynaptic sites in the hippocampus [24]. They are
linked to phosphatidylinositol metabolism and the for-
mation of inositol 1,4,5-trisphosphate (IP3) and diacyl-
glycerol. Binding of IP3 to the IP; receptors initiates
release of Ca”* from intracellular stores [25]. The pre-
sent study examined whether GSPE affects the

metabotropic glutamate receptor agonist response to
DHPG-induced [Ca®*]; increase. Reproducible [Ca®*];
increase was induced by treatment with DHPG (100
uM) for 1 min at 30-min intervals (peak 2/peak 1 =
105.9 + 1.3%, n = 31). Pretreatment with GSPE (6 pg/
ml) for 5 min significantly inhibited DHPG-induced
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Figure 2 GSPE inhibits AMPA-induced [Ca®*]; increase in the absence (A) or presence (B) of nimodipine. A1: Reproducible AMPA-induced
[Ca®"]; increase was induced by treatment with 10 uM (S)-AMPA for T min at 10 min intervals. A2: Pretreatment with GSPE (6 pug/ml) for 5 min
decreased the AMPA-induced response. A3: The graph summarizes the effect of GSPE on AMPA-induced response (control, n = 20; GSPE, n =
23). B1: Pretreatment with 1 pM nimodipine for 5 min inhibited AMPA-induced [Ca*"]; response. B2: Pretreatment with GSPE (6 pug/ml) for 5 min
further decreased AMPA-induced response in the presence of 1 uM nimodipine. B3: The graph summarizes the effect of GSPE on AMPA-induced
response in the presence of nimodipine (control, n = 11; GSPE, n = 9). Data are expressed as the mean + SEM. *P < 0.05 relative to the
respective control (unpaired Student’s t-test).
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Figure 3 Effect of GSPE on NMDA-induced [Ca®*]; response. Figure 4 Effect of GSPE on 50 mM K*-induced [Ca**]; response.
Reproducible [Ca']; increase was induced by treatment for 1 min Reproducible [Ca®']; increase was induced by treatment for 1 min
with 100 uM NMDA at 20-min intervals (control, n = 11). with 50 mM K* HEPES-HBSS at 30-min intervals (control, n = 22).
Pretreatment with GSPE (6 pug/ml) for 5 min decreased the NMDA- Pretreatment with GSPE (6 ug/ml) for 5 min did not affect the high
induced response (GSPE, n = 15). Data are expressed as the mean + K*-induced [Ca”*]; response (GSPE, n = 27). Data are expressed as
SEM. *P < 0.05 relative to NMDA (unpaired Student's t-test). the mean + SEM.
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[Ca®*]; response (peak 2/peak 1 = 68.9 + 1.8%, n = 29,
P < 0.05) (Figure 5).

In addition to IPj3 receptors, ryanodine receptors can
mobilize intracellular Ca®* stores [26]. Reproducible
[Ca®']; increase was induced by treatment with caffeine
(10 mM) for 2 min at 10-min intervals (peak 2/peak 1 =
98.8 + 1.0% of control response, n = 14). Pretreatment
with GSPE (6 pg/ml) for 5 min did not significantly
affect caffeine-induced [Ca®*]; response (92.5 + 2.4% of
control response, n = 9, P > 0.05) (Figure 5).

Effect of GSPE on 0.1 mM [Mg**],-induced [Ca®*]; spikes
The next study determined whether GSPE affects synap-
tically mediated [Ca®*]; spikes. Previous studies have
shown that reducing [Mg2+]0 to 0.1 mM can elicit
intense [Ca”*]; spikes (Figure 6A) which depend on
synaptic transmission [27]. [Ca®*]; spikes were induced
by 0.1 mM [Mg>*], in the cultured rat hippocampal
neurons 13 days after plating. The low [Mg**],-induced
[Ca*"]; spikes gradually disappeared after treatment with
GSPE (6 pg/ml). At 10 min after exposure to GSPE, the
frequency of [Ca®*]; spikes was 12.8 + 8.7% of the initial
frequency (Figure 6B &6C).

Effect of GSPE on 0.1 mM [Mg>*],-and glutamate-induced
NO formation

NO is important for glutamate-induced neurotoxicity
[12]. The present study determined whether GSPE
affects low [Mg2+]o—induced NO formation using the

DHPG * £
GSPE GSPE

Figure 5 Effects of GSPE on DHPG- or caffeine-induced [Ca?);
response. Reproducible [Ca’']; increase was induced by treatment
for 1 min with DHPG (100 uM) at 30-min intervals (DHPG, n = 31).
Pretreatment with GSPE (6 pg/ml) for 5 min decreased the DHPG-
induced response (+ GSPE, n = 29). Reproducible caffeine-induced
[Ca®"]; increase was induced by treatment for 2 min with DHPG
(100 uM) at 10-min intervals (caffeine, n = 14). However, GSPE did
not affect caffeine-induced [Ca®']; increase (+ GSPE, n = 9). Data are
expressed as the mean + SEM. *P < 0.05 relative to DHPG (unpaired
Student’s t-test).

caffeine
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Figure 6 GSPE inhibits synaptically-mediated [Ca®*]; spikes
induced by treatment with 0.1 mM [Mg>*],. A: Reduction of
[Mgz*]o to 0.1 mM induced [Ca*"]; spikes. B: Pretreatment with GSPE
(6 pg/ml) inhibited 0.1 MM [Mg?*],-induced [Ca’*]; spikes. C: The
plot summarizes the inhibition of GSPE on 0.1 mM [l\/lgz*]o—mduced
response (control, n = 8; 6 ug/ml, n = 7). The frequency of [Ca”"s
spikes was calculated from data collected during a 5 min window
before GSPE application for control, and during a 5 min window 5-
10 min after application of the drug for GSPE-treated samples. Data
are expressed as the mean + SEM. *P < 0.05 relative to control
(unpaired Student's t-test).
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NO indicator DAF-2DA. Treatment with glutamate (100
uM) or low [Mng']0 for 1 h significantly increased DAF-
2T fluorescence. While the 0.1 mM [Mg**],-induced
increase in NO formation was markedly inhibited by
pretreatment with GSPE (6 pg/ml) for 5 min, and the
glutamate-induced NO formation was slowly inhibited
at a later phase (Figure 7A &7B).

GSPE protects neuronal cells against 0.1 mM [Mg>*],- and
oxygen glucose deprivation-induced cell death

Reduction of [Mg2+]0 in the solution used to bathe cul-
tured CNS neurons elicits an intense pattern of excita-
tory activity and [Ca®*]; spikes and causes neuronal cell
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Figure 7 GSPE decreases glutamate- and 0.1 mM [Mg
induced NO formation. Cells were preincubated with 20 uM DAF-
2 DA for 60 min. NO formation was shown as a percentage of the
initial intensity of DAF-2T. Treatment with glutamate (100 uM) or 0.1
mM [Mg?*], for 1 h significantly increased DAF-2T fluorescence. A:
Pretreatment with GSPE (6 ug/ml) decreased the 100 uM glutamate-
induced NO formation 65 min after 100 uM glutamate treatment
(control, n =9; 100 uM glutamate, n = 13; 100 UM glutamate + 6
pg/ml GSPE, n = 12). *P < 0.05 relative to 100 uM glutamate
(unpaired Student's t-test). B: Pretreatment with GSPE (6 pg/ml)
decreased the 0.1 mM [Mg”]ofinduced NO formation 15 min after
0.1 mM [Mg”*], treatment (control, n = 10; 0.1 mM [Mg”*1o, n = 14;
0.1 mM [l\/Igz*]O + 6 pyg/ml GSPE, n = 9). Data are expressed as the
mean + SEM. *P < 0.05 relative to 0.1 mM [Mg”*], (unpaired
Student’s t-test).
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death [28-30]. The present study was an examination of
whether GSPE protects cells against cell death induced
by low [Mg**],. Cell viability was determined by count-
ing the number of viable neurons before and 20-24 h
after treatment (Figure 8 & Figure 9A). In the control
cells, cell survival was decreased slightly (Figure 8, data
shown in Methods section). Reduction of [Mg**], mark-
edly decreased neuronal cell survival (52.6 £ 0.9% of the
control) (Figure 8 & Figure 9A). A similar proportion of
the GSPE-treated cells died relative to the control cells
(Figure 8 & Figure 9A). However, a 0.1 mM [Mgz*]o—
induced decrease in cell survival was markedly inhibited
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by 6 pg/ml GSPE (78.6 + 9.9% of control) (Figure 8 &
Figure 9A). The effect of GSPE on oxygen glucose
deprivation-induced cell death was examined further
(Figure 9B). The cells in glucose-free BSS, with and
without GSPE (6 pg/ml), were gassed with 85% N,, 10%
H,, and 5% CO, for 90 min, and then were regrown in
DMEM supplemented with 10% horse serum and peni-
cillin/streptomycin in a CO, incubator for 24 h. Oxygen
glucose deprivation decreased neuronal cell survival to
57.8 + 2.2% of the control. However, treatment with
GSPE (6 pg/ml) increased cell survival to 81.3 + 7.3% of
the control.

Discussion

The present study used an in vitro rat hippocampal cul-
ture model to determine the inhibitory mechanisms of
GSPE in low [Mg**], or oxygen glucose deprivation-
induced neuronal cell death. GSPE reduced the gluta-
mate-induced [Ca*']; increase by inhibiting the AMPA,
NMDA, and DHPG-induced [Ca®*]; increase in hippo-
campal neurons. Synaptically mediated low [Mg>*],-
induced [Ca®*]; spikes were also inhibited by GSPE.
GSPE inhibited low [Mg**], or oxygen glucose depriva-
tion-induced neuronal cell death by inhibition of both
[Ca®*]; increase and Ca®*-dependent NO formation.

Glutamate depolarizes membranes by an influx of Na*
(partly Ca**) through non-NMDA receptors, which sec-
ondarily activate voltage-gated Ca®* channels and induce
Ca?* influx [23]. Glutamate also induces Ca’* influx
directly through NMDA receptor channels and Ca*
“-permeable non-NMDA AMPA receptor channels. In
the present study, GSPE inhibited glutamate, AMPA,
and NMDA-induced [Ca®*]; increase, but it did not
affect the depolarization-induced [Ca®*]; increase from
50 mM K" HEPES-HBSS, suggesting that GSPE inhibits
AMPA-induced [Ca®*]; increase by inhibiting Ca®*
influx directly through Ca**-permeable AMPA recep-
tors. In fact, Ca®*-permeable AMPA receptors are
strongly expressed in hippocampal neurons, especially
early in development [22]. All these data suggested that
GSPE inhibited Ca®* influx through Ca®*-permeable
AMPA channels and NMDA channels. This data are
indirectly supported by other reports that flavonoids
such as baicalin, baicalein, and EGCG, decreased gluta-
mate or NMDA-induced [Ca®*]; increase [15,31].

The group I metabotropic glutamate receptor agonist,
DHPG, induces a release of Ca®* from IP;-sensitive
stores by activating PLC [25,32]. In the present study,
GSPE inhibited DHPG-induced [Ca®*]; increase.
Although the working mechanism of GSPE is not
obvious, GSPE may inhibit DHPG-induced Ca®* release
from IP;-sensitive stores or DHPG-induced activation of
PLC. Therefore, further research is needed to determine
whether proanthocyanidin inhibits release of Ca®* from
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Figure 8 GSPE protects cells against 0.1 mM [Mg?>*],-induced neurotoxicity. Phase-contrast photomicrographs showed the same field of
cultured rat hippocampal neurons before treatment (left, D14) and 20-24 h after treatment (right, D15). The cells were treated with normal
medium (control), GSPE (6 pg/ml), 0.1 mM [Mg®*], and 0.1 mM [Mg?®*], plus GSPE (+ GSPE)-containing medium at 14 days in culture.
Hippocampal neurons (identified by a light halo around the soma and long fine processes) grew on a bed of non-neuronal cells that formed a
mosaic beneath them.
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Figure 9 Effect of GSPE on 0.1 mM [Mg?*], and oxygen
glucose deprivation-induced neurotoxicity. A: Hippocampal
neurons were exposed to normal medium or 0.1 mM [Mg**],
containing medium with or without GSPE (6 pg/ml, n = 8) for 20-24
h. B: Hippocampal neurons were exposed to normal or oxygen
glucose deprived conditions without GSPE (OGD, n = 8) or with
GSPE (6 pg/ml, n = 8) for 90 min. After 20-24 h, the same fields of
cells were recounted. Data are expressed as the mean + SEM. *P <
0,001 relative to the control, # P < 0.05 relative to 0.1 mM [Mg®*],
or OGD (ANOVA with Bonferroni's test).

IP;-sensitive stores or metabotropic glutamate receptor-
induced activation of PLC.

In the present study, GSPE inhibited glutamate-
induced [Ca®']; increase by inhibiting AMPA, NMDA,
and metabotropic glutamate receptor-induced [Ca**];
increase. Reduction of [Mg“]o in cultured central ner-
vous system neurons to 0.1 mM elicited [Ca%*]; spikes
that depend on glutaminergic synaptic transmission
[27,29,33]. In the present study, GSPE inhibited low [Mg2
*]o-induced [Ca**]; spikes. All these data suggest a possi-
bility that proanthocyanidin can inhibit glutaminergic
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synaptic transmission in hippocampal neurons. In the
present study, GSPE did not affect the depolarization-
induced [Ca®*]; increase induced by high K*, which is
involved in neurotransmitter release in the synaptic term-
inal. Thus, it is not clear whether proanthocyanidin
inhibited synaptic transmission by decreasing glutamate
release in presynaptic sites.

In the present study, GSPE completely inhibited low
[Mg**],-induced NO formation, and it slightly inhibited
glutamate-induced formation. GSPE reportedly has
potent inhibitory action on NO production presumably
through of the inhibition of Ca®*-dependent nitric oxide
synthase [34]. In neuronal cells, NO was synthesized
from Ca®*-dependent enzymes, neuronal nitric oxide
synthase [35,36]. Therefore, the inhibition of excessive
Ca*" influx or Ca** release from intracellular stores and
formation of NO by glutamate in the present study sug-
gest that proanthocyanidin inhibits NO formation by
inhibiting glutamate or low [Mg>*],-induced [Ca**];
increase.

Previous investigations have reported that proantho-
cyanidin protects multiple target organs from drug- and
chemical-induced toxicity. GSPE protects cells against
acetaminophen-induced hepato- and nephrotoxicity,
amiodarone-induced lung toxicity, doxorubicin-induced
cardiotoxicity, and dimethylnitrosamine-induced splee-
notoxicity [37]. GSPE inhibited 12-O-tetradecanoylphor-
bol-13-acetate and O-ethyl-S,S-dipropyl
phosphorodithioate-induced brain neurotoxicity [2,37].
Grape seed extract has also been reported to reduce
brain ischemic injury in gerbils [4,38] and rats [39], sug-
gesting that the neuroprotective effects of proanthocya-
nidin are mediated by its antioxidant effects and
antiapoptotic effects, respectively. However, there have
been no reports on the underlying roles of calcium sig-
nalling or NO formation in proanthocyanidin-induced
neuroprotection. GSPE inhibited low [Mg2+]0— and oxy-
gen glucose deprivation-induced neuronal cell death as
well as both [Ca®*]; increase and Ca**-dependent NO
formation. Ischemic insults have reportedly induced
[Ca®*]; increase and formation of NO in neurons
[10,12,40,41]. In addition, proanthocyanidin blueberry
extract is reported to have reversed dopamine, AP,
and lipopolysaccharide-induced dysregulation of Ca**
buffering capacity, thereby inducing neuroprotection in
hippocampal neurons [20]. These results suggest that
proanthocyanidin might inhibit ischemia-induced neuro-
nal cell death by inhibiting glutamate-induced [Ca®'];
signalling and NO formation as well as antioxidant
effects and antiapoptotic effects.

The daily intake of proanthocyanidins may vary from
tens to several hundred mg/day depending on diet [42].
Proanthocyanidins, especially oligomeric proanthocyani-
dins, are more easily absorbed and are present in blood
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after oral intake [21,43]. Catechin and epicatechin are
reportedly bioavailable to the brain after ingestion of oligo-
meric proanthocyanidin [43], which suggests that oligo-
meric proanthocyanidins can cross the blood-brain barrier
and affect neuronal cells. In fact, the IH636 grape seed
proanthocyanidin extract (GSPE) used in the present
study was composed of more than 73% oligomeric poly-
phenolic compounds including monomeric, dimeric, tri-
meric, and tetrameric proanthocyanidin [44]. Although
the biological efficacy of GSPE has been studied previously
in humans [37,44], the bioavailablity of GSPE used in the
present study remains unknown. However, it should be
noted that this particular concentration of grape seed
proanthocyanidin extract (GSPE) was less than or equal to
the serum concentration in humans following intake of
200 mg/kg proanthocyanidins or oligomeric proanthocya-
nidins [21]. These data suggest a possibility that [H636
grape seed proanthocyanidin extract (GSPE) can induce
neuroprotection after intake of oligomeric proanthocyani-
din in humans as well as animals.

Conclusions

The results of the present study showed that IH636
grape seed proanthocyanidin extract protected neuronal
cells against the low [Mg**],- and oxygen glucose depri-
vation-induced neurotoxicity in cultured rat hippocam-
pal neurons. The neuroprotective effects of
proanthocyanidin might have been mediated by inhibi-
tion of glutamate-induced calcium signalling and NO
formation. These results demonstrated that proantho-
cyanidin, and especially oligomeric polyphenolic com-
pounds, may have future utility as neuroprotective
agents or as supplements against glutamate excitotoxi-
city-related neurologic disorders such as epilepsy, trau-
matic brain injury, and ischemia.

Methods

Materials

Materials were purchased from the following companies:
IH636 grape seed proanthocyanidin extract (GSPE) from
InterHealth Nutraceuticals (Benicia, CA, USA); Dulbec-
co’s modified Eagle’s medium (DMEM) and fetal bovine
serum (FBS) from Invitrogen (Carlsbad, CA, USA); fura-
2 acetoxymethyl ester (AM) from Molecular Probes
(Eugene, OR, USA); 4,5-diaminofluorescein diacetate
(DAF-2DA) from A.G. Scientific (San Diego, CA, USA);
N-methyl-D-aspartate (NMDA), alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA),
(S)-3,5-dihydroxyphenylglycine (DHPG) and all other
reagents from Sigma (St. Louis, MO, USA).

Primary rat hippocampal cell culture
Rat hippocampal neurons were grown in primary cul-
ture as previously described [45] with minor
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modifications. Adult maternal Sprague-Dawley rats
(250-300 g) were used in the present study. All experi-
mental procedures performed on the animals were con-
ducted with the approval of the Catholic Ethics
Committee of the Catholic University of Korea and were
in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals
(revised 1996). Fetuses were removed on embryonic day
17 from maternal rats anesthetized with urethane (1.3 g/
kg b.w., i.p.). Hippocampi were dissected and placed in
Ca®*" and Mg**-free Hank’s balanced salt solution, pH
7.4. Cells were dissociated by trituration through a 5-ml
pipette and then a flame-narrowed Pasteur pipette. Cells
were pelleted and resuspended in Dulbecco’s modified
Eagle’s medium (DMEM) without glutamine and supple-
mented with 10% fetal bovine serum and penicillin/
streptomycin (100 U/ml and 100 pug/ml, respectively).
Dissociated cells were then plated at a density of 50,000
cells/well onto 25-mm-round cover glasses that were
coated with poly-L-lysine (0.1 mg/ml) and washed with
H,0. The cells were grown in a humidified atmosphere
of 10% C0O,-90% air (pH 7.4) at 37°C. The medium was
replaced 72-90 h after plating with DMEM supplemen-
ted with 10% horse serum and penicillin/streptomycin
and fed every 7 days by exchange of 25% of the med-
ium. The cells were cultured without mitotic inhibitors
for a minimum of 12 days. The cells were used after 14-
15 days in culture. During this period, neurons devel-
oped extensive neuritic networks, and formed functional
synapses.

Digital [Ca®*]; imaging

To measure [Ca>'];, hippocampal cells were incubated in
4 uM fura-2 AM in HEPES-buffered Hank’s salt solution
(HHSS: 20 mM HEPES, 137 mM NaCl, 1.3 mM CaCl,,
0.4 mM MgSO,, 0.5 mM MgCl,, 0.4 mM KH,PO,, 0.6
mM Na,H,PO,, 3.0 mM NaHCOs;, and 5.6 mM glucose)
containing 0.5% bovine serum albumin for 45 min at 37°
C. The cover glass was then mounted in a flow-through
chamber that was superfused at a rate of 1.5 ml/min.
Digital calcium imaging was performed as described by
Rhie et al. [46]. The chamber containing the fura-2-
loaded cells was mounted on the stage of an inverted
microscope (Nikon TE300, Tokyo, Japan), and alter-
nately excited at 340 nm and 380 nm by rapidly switch-
ing optical filters (10 nm band pass) mounted on a
computer-controlled wheel (Lambda 10-2, Sutter Instru-
ments Inc., Novato, CA, USA) placed between a 100 W
Xe arc lamp and the epifluorescence port of the micro-
scope. Excitation light was reflected from a dichroic
mirror (400 nm for fura-2) through a 20x objective
(Nikon; N.A. 0.5). Digital fluorescence images (510 nm,
40 nm band-pass) were collected with a computer-con-
trolled, cooled, charge-coupled device camera (1280 x
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1035 binned to 256 x 207 pixels, Quantix, Photometrics,
Tucson, AZ., USA). Image pairs were collected every 2-
20 s using an Axon Imaging Work Bench 2.2 (Axon
Instruments, Inc., Forster City, CA., USA); exposure to
excitation light was 120 ms per image. [Ca®*]; was cal-
culated from the ratio of the background-subtracted
digital images. Cells were delimited by producing a
mask that contained pixel values above a certain thresh-
old applied to the 380 nm image. Background images
were collected at the beginning of each experiment after
removing cells from another area to the coverslip. Auto-
fluorescence from cells not loaded with the dye was less
than 5% and thus not corrected. Ratio values were con-
verted to free [Ca®*]; by the equation [Ca®']; = KB (R-
Rimin)/(Rmax-R), in which R was the 340/380 nm fluores-
cence emission ratio and K; = 224 nM was the dissocia-
tion constant for fura-2. R, Rpnax, and B was
determined in ionomycin-permeabilized cells in cal-
cium-free and saturated solutions (R;,= 0.325, R 0x=
9.23, B = 7.61).

[Ca®*]; measurement using fura-2-based-photometry
[Ca®*]; spikes were measured using fura-2-based-micro-
fluorimetry [45]. The chamber containing the fura-2-
loaded cells was mounted on an inverted microscope
(Nikon S-100F, Nikon, Tokyo, Japan). For the excitation
of fura-2, light from a 75 W Xe arc lamp (LPS-220,
Photon Technology International, NJ, USA) was passed
through band-pass filters (340/20 and 380/20 nm,
respectively). Excitation light was reflected sequentially
from a dichroic mirror (400 nm) through a 40x phase
contrast oil immersion objective (Nikon, Tokyo, Japan).
Emitted light was reflected through a 510 nm filter to a
photomultiplier tube (Model 710, Photon Technology
International, NJ, USA) operating in photon-counting
mode. Recordings were defined spatially with a rectan-
gular diaphragm (D-104C, Photon Technology Interna-
tional, NJ, USA). [Ca**]; spikes were induced by HHSS
containing 0.1 mM MgCl, and 10 uM glycine. [Ca®*];
was calibrated by the same method that was used for
the digital [Ca®*]; imaging. Ruin, Rmax, and p were 0.86,
14.89, and 7.42, respectively.

Measurement of nitric oxide (NO)

To measure the formation of NO, the cells were incu-
bated in an NO indicator DAF-2DA (20 uM) in HHSS
without BSA for 60 min at 37°C. After DAF-2DA load-
ing, the cells were rinsed with HHSS for 10 min and
placed in a flow-through chamber. DAF-2T (the fluores-
cent triazolofluorescein produced by NO and DAF-2
reaction) images were obtained through excitation at
480 nm and emission at 535 nm/25 nm (DM 505 nm)
[47] after treatment with or without GSPE.
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Toxicity

For toxicity experiments, cells were plated on micro-
etched coverslips (Belco Biotechnology, Vineland, NJ,
USA) and at least 100 neurons were counted. In 0.1
mM Mg?>* medium-induced excitotoxicity experiments,
coverslips were exposed for 24 h to the 0.1 mM Mg**
medium with or without GSPE at 14 days in culture.
After 20-24 h, the same fields of cells were recounted.
In oxygen glucose deprivation-induced excitotoxicity
experiments) [48], cultures were washed 3 times with a
balanced salt solution (BSS: 116 mM NaCl, 5.4 mM
KCI, 0.8 mM MgSO,, 1.0 mM NaH,PO,, 26.2 mM
NaHCOs3, 1.8 mM CaCl,, and 10 mg/L phenol red) lack-
ing glucose and were aerated with an anaerobic gas mix
(95% N,/5% CO,) for 10 min to remove residual oxygen,
then were transferred to an anaerobic chamber (1025/
1029 Anaerobic System, ThermoForma, Ohio, USA)
containing a gas mixture of 5% CO,, 10% H,, and 85%
N, for 90 min. To terminate the oxygen glucose depri-
vation, cells were removed from the anaerobic chamber
and then carefully washed with DMEM supplemented
with 10% horse serum and penicillin/streptomycin. After
20-24 h, the same fields of cells were recounted.

Viable neurons were identified based on morphologi-
cal criteria; they were phase-bright, had rounded somata,
and extended long fine processes. Cell death was deter-
mined by comparing the number of viable neurons
before and after treatment [30,49]. Viable neurons
obtained were normalized and expressed as a percentage
of sham-treated sister cultures (defined as 100%). Con-
trol experiments showed that the loss of viable neurons
assessed in this manner was proportional to the number
of neurons damaged. In control cells (medium exchange
only), 28.4 + 1.5% of the cells in the 0.1 mM Mg>*
experiment (Figure 8) and 27.3 + 1.2% of the cells in the
OGD experiment died.

Statistical analysis

Data are expressed as the mean + SEM. Significance was
determined using a Student’s ¢-test or one-way analysis
of variance (ANOVA) followed by a Bonferroni test.
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