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Abstract

Background: Transcranial direct current stimulation (tDCS) is a technique that can systematically modify behaviour
by inducing changes in the underlying brain function. In order to better understand the neuromodulatory effect of
tDCS, the present study examined the impact of tDCS on performance in a working memory (WM) task and its
underlying neural activity. In two experimental sessions, participants performed a letter two-back WM task after
sham and either anodal or cathodal tDCS over the left dorsolateral prefrontal cortex (DLPFC).

Results: Results showed that tDCS modulated WM performance by altering the underlying oscillatory brain activity
in a polarity-specific way. We observed an increase in WM performance and amplified oscillatory power in the
theta and alpha bands after anodal tDCS whereas cathodal tDCS interfered with WM performance and decreased
oscillatory power in the theta and alpha bands under posterior electrode sides.

Conclusions: The present study demonstrates that tDCS can alter WM performance by modulating the underlying
neural oscillations. This result can be considered an important step towards a better understanding of the
mechanisms involved in tDCS-induced modulations of WM performance, which is of particular importance, given
the proposal to use electrical brain stimulation for the therapeutic treatment of memory deficits in clinical settings.

Background

Transcranial direct current stimulation (tDCS) is a tech-
nique that stimulates the cerebral cortex with a weak
constant electric current in a non-invasive and painless
manner [1]. The current flows from an active to a refer-
ence electrode, a part being shunted through the scalp
and the rest being delivered to the brain tissue [2],
thereby inducing diminutions or enhancements of corti-
cal excitability [1]. The direction of the tDCS-induced
effect depends on the current polarity: Anodal tDCS
typically has an excitatory effect on the local cerebral
cortex, while cathodal tDCS decreases the cortical excit-
ability in the region under the electrode [3,4]. The
mechanisms underlying these neuromodulatory effects
are not well understood [5]. Animal studies suggest that
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anodal tDCS, via an extracellular negative sink, causes a
depolarization of the resting-membrane potential and
increases the firing rates of many perpendicularly
oriented cortical neurons in the tissue under the elec-
trode. Cathodal stimulation has the opposite effect,
causing a hyperpolarisation of the resting-membrane
potential and a decrease in firing rates [6,7]. Thus, tDCS
seems to modify spontaneous neural excitability by
tonic de- or hyperpolarization of the resting-membrane
potential [1]. However, the effects of tDCS are not lim-
ited to modulations in cortical excitability during stimu-
lation, and may outlast the stimulation period by several
minutes or even hours [3,4,6,8]. These after effects of
tDCS are associated with a number of different mechan-
isms, including local changes in ionic concentrations
(hydrogen, calcium) and levels of cyclic adenosine
monophosphate (cAMP), alterations in protein synthesis,
and modulation of N-methyl-D-aspartate (NMDA)
receptor efficacy [5,9-14].
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The neuromodulatory changes induced by tDCS have
been associated with modifications of a variety of beha-
vioural brain functions. In animal studies, anodal tDCS
of the cortical surface has been linked with facilitation
of an unconditioned response [15,16] and improved
learning [17]. In humans, the effects of tDCS have been
demonstrated on various motor, visual, and somatosen-
sory cortex functions (see [18] for a recent review). In
particular, previous studies have reported enhancements
in motor [19,20] and visuo-motor learning [21] for ano-
dal tDCS, while impairments in auditory learning have
been observed for cathodal tDCS [22]. Similarly, anodal
tDCS improves language learning [23], picture-naming
[24] as well as implicit grammar learning [25], whereas
cathodal tDCS has been shown to impair verbal learning
abilities [26,27]. Analogous polarity-specific effects of
tDCS have been reported for working memory (WM)
functions, suggesting that anodal but not cathodal tDCS
can improve WM performance [8,28,29]. However, the
nature of the neurophysiological mechanisms underlying
this cognitive enhancement is not yet well understood,
because modifications of WM functions by tDCS have
never been studied in combination with neurophysiolo-
gical methods.

In general, WM refers to a set of basic mental opera-
tions that define the ability to hold an item of informa-
tion transiently in mind, in order to recall, manipulate
and associate this information to incoming new infor-
mation [30]. WM is crucial to many higher-order strate-
gic functions and has been linked to frontal [31,32] and
parietal lobe functioning [33]. A commonly used WM
paradigm is the n-back task which activates a fronto-
parietal network, including the dorsolateral prefrontal
cortex (DLPFC) [34-37], and the posterior parietal cor-
tex [38]. While the DLPFC is involved in the processing
of stimulus information during retention times [39], the
parietal lobe participates in the storage of perceptual
attributes [40]. Furthermore, the prefrontal cortex seems
to be functionally lateralized, with the right hemisphere
being recruited in particular during spatial WM tasks,
and the left hemisphere being crucial for the processing
of non-spatial (i.e., verbal) WM tasks [41]. The critical
role for the left DLPFC in verbal WM performance has
been confirmed by lesion studies and studies using
TMS, showing that focal damage and temporary disrup-
tion of the left but not the right DLPFC is related to
impairments in verbal WM task performance [42,43].

The present study examined the impact of tDCS on
WM performance and the underlying neural activity. In
particular, we explored the effect of tDCS applied over
the left DLPFC on oscillatory brain activity during a let-
ter n-back WM task. Based on previous findings we
hypothesized tDCS-dependent alteration of WM perfor-
mance [8,29]. Furthermore, we predicted tDCS-related
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modifications of the underlying rhythmic neural activity
in the alpha and theta frequency range, given the view
that alpha and theta oscillations play an important role
in memory functions [44]. To our knowledge this is the
first study investigating the modulatory effects of tDCS
on oscillatory brain activity in the context of a WM
task. The better understanding of the neuromodulatory
effects of tDCS is also of clinical interest, since electrical
brain stimulation seems to have potential as a therapeu-
tic tool applied for several neurological and psychiatric
disorders [45-51], and particularly for the treatment of
memory deficits in stroke patients [52], patients with
Parkinson’s disease [28], and patients suffering from
Alzheimer’s disease [53,54].

Results
Behavioural data
Pre-to-post measurements revealed that all participants
improved their performance during the experiment.
Table 1 shows the results of one-sample t-tests sepa-
rately for the tDCS-treated group in each stimulation
condition (delta anodal AA, delta cathodal AC) and for
the control group (delta ACG). The behavioural
improvement from sham to active tDCS was stronger
after anodal than after cathodal stimulation (cf. Figure 1).
This polarity effect was statistically significant for the
comparison of AA-d’ >AC-d’ (¢ ;5 = 2.14, P < 0.05).
Analysis of reaction times (RT) showed that tDCS-trea-
ted participants responded faster after active tDCS com-
pared to sham for Hits, but not for False Alarms (cf.
Table 1). Similarly, pre-to-post measurements for the
control group showed faster RT for Hits but not for
False Alarms. Interestingly, the decrease of RT in the
tDCS-treated group did not differ between anodal and
cathodal stimulation (AA = AC), neither for Hits (t;5 =
0.11, P = 0.9) nor for False Alarms (t,5 = -0.13, P = 0.9).
In order to separate tDCS-induced alterations of WM
performance from repetition-related learning effects, we

Table 1 Improvement in performance

condition measure t df P

AA d 4.748 15 0.000
RT-Hits -5.370 15 0.000
RT-FA -1.210 15 0.244

AC d 2.751 15 0.015
RT-Hits -3.760 15 0.002
RT-FA -0.945 15 0.359

ACG d 3.944 15 0.001
RT-Hits -4.289 15 0.001
RT-FA -0.600 15 0.555

Table lists result of one-sample t-tests for d’, RT-Hits (reaction time for Hits),
and RT-FA (reaction time for False Alarms). Results show a general
improvement in behaviour from pre- to post measurements for anodal (AA)
and cathodal stimulation (AC), and in the separate control group (ACG).
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Figure 1 Behavioural Data: Plots show performance in the WM task after anodal and cathodal tDCS in relation to preceding sham stimulation
as well as the performance of the separate control group. Top: The d increased more after anodal than after cathodal stimulation with an
intermediate effect for the control group, demonstrating a polarity effect of the tDCS-induced behavioural improvement. Bottom: Participants
responded generally faster from sham to tDCS measure and pre-to-post measure in the control group for Hits (left) and False Alarms (right),
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compared the behavioural pre-to-post measurements
between the tDCS-treated group and the control group
(cf. Figure 1). The comparison revealed for the tDCS-
treated group a stronger, but statistically non-significant
d’ increase after anodal stimulation (AA-d’ >ACG-d, 3,
=0.99, P = 0.33), and a weaker d’ increase after cathodal
stimulation (AC-d’ <ACG-d’, t39 = -1.39, P = 0.17) com-
pared to the control group. Analysis of RT showed that
pre to post decreases did not differ between the control
group and the tDCS-treated group for the anodal or
cathodal session, either for Hits (AA = ACG: t3 = 1.29,
P =0.2, AC = ACG: t30 = 1.1, P = 0.3) or for False
Alarms (AA = ACG: t3o = -0.3, P = 0.8, AC = ACG: t30
= -0.14, P = 0.9).

Event-related potentials (ERPs)

Figure 2 illustrates the event-related potential (ERP) data
for anodal, cathodal and the two sham conditions
(shamA, shamC) averaged over 16 subjects for the occi-
pito-parietal region of interest (ROI) and electrode Pz.
Visual stimulation consistently evoked a P1 component
at 118 ms which was followed by the N1 component at
174 ms. A P3 component was elicited consistently in all
tDCS conditions with a mean latency of 336 ms. Paired
t-tests were performed to statistically compare the active

and corresponding sham conditions (anodal vs. shamA,
cathodal vs. shamC), and the anodal and cathodal condi-
tions (shamA vs. shamC, anodal vs. cathodal). Statistical
analyses of ERP amplitudes revealed no significant dif-
ferences between conditions for the P1, N1 and P3 com-
ponents. Regarding latencies, no significant differences
were found between the two sham conditions. However,
N1 latencies were significantly longer for the anodal
than for the cathodal (¢;5 = 2.58, P < 0.05) and for the
anodal compared to the shamA condition (t;5 = -2.28,
P < 0.05), and P3 latencies were significantly shorter for
the cathodal compared to the shamC condition (¢;5 =
2.24, P < 0.05).

Event-related spectral perturbation (ERSP)

Figure 3 shows the event-related spectral perturbation
(ERSP) time-frequency plots for the sham conditions
(shamA, shamC) and the active stimulation conditions
(anodal, cathodal), plus the corresponding differences at
the occipito-parietal ROI. Statistical comparison of
ERSPs between the shamC and cathodal stimulation
condition revealed a decrease in the theta and alpha
band (5 - 15 Hz), at the latency range of 14 - 710 ms
(15 = 2.13, P < 0.05). Anodal tDCS as compared to
cathodal tDCS increased the total power in the theta,
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Figure 2 Event-related potentials: Grand average event-related
potentials (ERPs) are shown for each condition at the occipito-
parietal ROI (above) and at channel Pz (below). Topographies of
overall grand averages (computed across all participants and
conditions) are shown at P1, N1, and P3 latencies.

alpha, and lower beta band (7-24 Hz) at the latency
range of -72 - 380 ms (¢;5 = 2.13, P < 0.05). Finally, a
significant cluster (¢,5 > 2.13, P < 0.05) was found for
the overall differences between sham and stimulation
conditions ((anodal - shamA) vs. (cathodal - shamC)).
This cluster had a latency range of -34 - 710 ms and
revealed a significant increase in the theta, alpha, and
lower beta band (6 - 19 Hz) for the anodal (anodal -
shamA) compared to the cathodal session (cathodal -
shamC).

Discussion

We assessed the impact of transcranial direct current
stimulation (tDCS) on working memory (WM) perfor-
mance and the underlying neural activity. In two experi-
mental sessions participants performed a letter two-back
WM task after sham and either anodal or cathodal
tDCS. The results showed that WM performance was
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generally enhanced from the sham to the active stimula-
tion condition, indicating a repetition-related learning
effect on WM task performance. Importantly, this regu-
lar improvement in WM performance was influenced by
active tDCS in a polarity-specific way. The improvement
in WM performance was significantly stronger after the
application of anodal than after cathodal tDCS over
the left dorsolateral prefrontal cortex (DLPFC), while
the WM improvement was intermediate when partici-
pants received no electrical stimulation. Thus, anodal
tDCS improved the regular repetition-related increase in
WM performance, whereas cathodal tDCS interfered
with this effect. These tDCS-induced effects were
reflected in the neural oscillatory activity, showing
polarity-specific alterations as a function of tDCS. Ano-
dal tDCS increased whereas cathodal tDCS decreased
the event-related oscillatory power in the theta and
alpha range. Our results suggest that tDCS altered WM
performance by modulating the underlying oscillatory
brain activity in the theta and alpha frequency bands.
These results we consider an important step towards a
better understanding of the mechanisms involved in the
tDCS-induced modulations of WM performance, which
is particularly relevant as electrical brain stimulation has
been proposed as a useful therapeutic modality for the
treatment of memory deficits in a clinical context
[28,52]. More specifically, the present results of tDCS-
induced modulations of neural oscillations in specific
frequency bands suggests that the combination of tDCS
and EEG might provide a useful approach for the inves-
tigation of the functional significance of several oscilla-
tory bands in human cognition. Furthermore, our
results may provide additional explanations for tDCS-
related therapeutic effects in patients suffering from Par-
kinson’s disease or Alzheimer’ disease. Based on our
findings we predict that beneficial effects of tDCS in
these patients may be associated with modulations in
oscillatory brain activity, in particular in the alpha and
theta frequency range. In addition, our results may
inspire future research on tDCS-related therapeutic
applications, in particular with respect to pathologies
that have been associated with alterations of oscillatory
brain activity in specific frequency bands.

Behavioural effects of tDCS

The effect of tDCS on WM performance is consistent
with recent findings on the modulatory effects of tDCS
on WM functions [8,28,29,52]. Similar to our results,
anodal but not cathodal stimulation over the left DLPFC
has been shown to increase performance in a sequen-
tial-letter WM task [8,29]. Likewise, a beneficial effect of
anodal tDCS over the left DLPFC on WM has been
observed in patients with Parkinson’s disease [28], and
in patients suffering from stroke [52]. Our study further
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differences between the two sham conditions.

Figure 3 DC stimulation effect on oscillatory brain activity: Event-related spectral perturbation (ERSP) time-frequency plots are given
separately for the two sham conditions (A: sham anodal; D: sham cathodal) preceding the two active stimulation conditions (B: anodal, E:
cathodal). Differences between the conditions were computed by subtracting the sham ERSPs from the ERSPs of the active conditions (C: active
anodal - sham anodal; F: active cathodal - sham cathodal) and by subtracting the cathodal ERSPs from anodal ERSPs (G: sham anodal - sham
cathodal; H: active anodal - active cathodal). Subplot J illustrates the overall contrast between the differences obtained for the anodal and
cathodal conditions (subplot C - subplot F) and for the active and sham conditions (subplot G - subplot H). White contours indicate significant
differences between the conditions (P < 0.05, corrected for multiple comparisons). Note that the statistical analyses revealed no significant

revealed that the general decrease in response time (RT)
from sham to active tDCS did not vary with tDCS polar-
ity. Similar RT insensitivity to tDCS has been previously
reported [8,28,29,52], although one former study has
observed increased RT after both anodal and cathodal
stimulation over fronto-cortical regions [55]. This dis-
crepancy between behavioural findings might be
explained by the fact that the latter study evaluated the
effects of bilateral and intermittent tDCS, while our
study investigated unilateral and continuous tDCS.
Furthermore, the difference in results between the stu-
dies may be a consequence of differences in electrode
size, position and applied current intensities, and dura-
tion of the washout period between the active tDCS

sessions. Computational approaches using spherical
[2,56] and realistic finite element head models [57] have
demonstrated that the size, location and shape of the
stimulating electrode can influence the electric field in
the underlying brain, thereby affecting the level of mod-
ulation of tDCS. Overall, our behavioural results, even
though not novel per se, provide further evidence for a
modulatory capability of tDCS on WM performance.
Our results confirm previous findings by showing that
tDCS can reliably induce alterations in WM perfor-
mance in a polarity-dependent manner. More specifi-
cally, our results suggest that repetition-related
improvement in WM performance is elevated by anodal
tDCS, but diminished by cathodal tDCS.
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Electrophysiological correlates of tDCS effects

In this study we assessed oscillatory brain activity during
the WM task in order to investigate the underlying
neural mechanisms mediating the tDCS-induced beha-
vioural effects. To date, reports of electrophysiological
correlates of tDCS effects are sparse. Using visual event-
related potentials (ERPs), a previous study has demon-
strated that the amplitude of the N70 ERP component
is increased by anodal tDCS, while it is decreased by
cathodal tDCS [58]. The opposite effect has been
reported for the visual P100, showing reduced ampli-
tudes for anodal and increased amplitudes for cathodal
stimulation [59]. Polarity-specific changes have also
been observed for ERPs in the somatosensory modality
[60-62], and for motor cortex excitability [63]. Further-
more, previous studies have shown that cathodal tDCS
over the visual cortex decreases beta and gamma activity
in response to visual stimulation [64], whereas cathodal
tDCS over the motor cortex increases resting state theta
and delta oscillation [5]. However, the study of oscilla-
tory brain activity in the context of tDCS-induced WM
alterations addresses a research question that has been
under-investigated so far. Given that electrical brain sti-
mulation can be a useful therapeutic tool for the treat-
ment of cognitive deficits [65], a better understanding of
tDCS-induced effects on the underlying brain activity
seems to be of clinical relevance. In the present study
we show that tDCS over the left DLPFC modulates
theta and alpha band activity during WM performance
in a polarity-specific way. Oscillatory power in the theta
and alpha range was increased after anodal stimulation,
while it was decreased after cathodal tDCS.

Oscillatory brain activity in the context of a WM task

Changes in oscillatory brain activity play an important
role in the formation of perception and memory and
thus are essential for higher cognitive functions [66,67].
Accordingly, WM representations seem to be sustained
by oscillatory brain activity [68,69]. Indeed, WM opera-
tions have been related to oscillatory brain activity in
multiple frequency bands, including the theta (4-8 Hz),
alpha (8-12 Hz), and beta (12-30 Hz) range [44]. In par-
ticular the performance in visual n-back tasks has been
specifically associated with alterations in event-related
theta and alpha band activity [70]. In this regard alpha
band activity is assumed to reflect a general inhibition
of non-task relevant areas [71,72] and may index the
degree of inhibition necessary during internally, as
opposed to externally, directed attention [73]. In con-
trast, theta band activity has been associated with mem-
ory encoding and retrieval [74-77] and may thus be
particularly related to the function of the central execu-
tive of the WM system [78-80]. In the context of a WM
task, theta band activity seems to reflect the continuous
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maintenance and manipulation of information required
during the performance of an n-back task [70]. Interest-
ingly, a power increase has been previously shown for
both the alpha and theta band as a function of practice
in a WM task [81].

In sum, previous studies have shown that alterations
of rhythmic activity, specifically in the theta and alpha
range, are associated with proper WM performance.
These oscillations increase with behavioural enhance-
ment. In the present study we show that tDCS over the
left DLPFC induces altered WM performance by modu-
lating its underlying theta and alpha activity. This result
further highlights the importance of the left DLPFC and
the specific role of theta and alpha activity during WM
performance. Even though this interpretation implies
that the modulatory effects of tDCS on WM are specifi-
cally related to the responsiveness of the left DLPFC, it
may be assumed that altered local cortical excitability in
one part of the responsible network influences the
whole neural network associated with WM functions
beyond the site of stimulation. Indeed, widespread
tDCS-induced changes in cortical activity have been
demonstrated by a previous neuroimaging study [82].
Thus, it is likely that by influencing one component of
the WM network, the electrical stimulation of the left
DLPFC had an influence on the functioning of the
entire WM system.

Conclusions

The present investigation studied the impact of anodal,
cathodal or sham tDCS over the left DLPFC on the
oscillatory brain activity associated with higher-order
cognitive processing. Our results show that tDCS can
change the organized cortical activity associated with
WM in concert with systematic alterations of WM per-
formance. To our knowledge, this is the first study
investigating the effects of tDCS on oscillatory brain
activity in the context of a WM task. The results of the
study will provide a better understanding of the neuro-
modulatory effects of tDCS and demonstrate its poten-
tial both at fostering knowledge on the functional
significance of brain oscillations and for therapeutic
application.

Methods

Participants

Sixteen university students (10 females, mean age 25 + 2
years) participated in the tDCS study. All participants
were consistent right-handers [83] and had no metallic
implant and no history of neurological or psychiatric ill-
ness. An intelligence test [84] showed that IQ levels of
all the participants were in or above the range of
the norm (mean 115 + 13). Each participant gave writ-
ten, informed consent prior to the experiment. All
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procedures in the study were approved by the ethics
committee of the University of Zurich. In an additional
control experiment a separate sample of 16 participants
(12 females, mean age 24 + 4 years) was investigated to
measure the repetition effect on WM task performance
without tDCS. This control group undertook one
experimental session and performed the same behavioral
task twice but without receiving any tDCS-treatment
during the 15 min break in between. Experimental set-
ting as well as instruction to the participants of the con-
trol group was identical to the stimulation group, except
that no tDCS was applied and no EEG data were
recorded. IQ levels of the participants in the control
group were similar to those in the stimulated group
(mean 117 + 14).

Transcranial direct current stimulation (tDCS)

The participants were seated comfortably in a recliner in
front of a personal computer screen in an electromagne-
tically shielded room. TDCS was delivered by a battery-
driven constant current stimulator (Eldith, NeuroCon
GmbH, Germany) using a pair of rubber electrodes in a
5 x 7 cm saline-soaked synthetic sponge. For stimula-
tion of the left DLPFC the active electrode (to which
the term anodal/cathodal stimulation refers) was placed
over F3 according to the International 10-20 system for
electroencephalography (EEG) electrode placement [85].
The use of EEG electrode positions for DLPFC localisa-
tion has been applied before in studies using tDCS
[8,26,29,52,86] and transcranial magnetic stimulation
(TMS) [87]. Since both the left and right prefrontal cor-
tex have been shown to subserve the WM system
[41,88], and the left hemisphere seems to be particularly
crucial for the processing of verbal WM tasks [42,43],
we used an ipsilateral reference electrode over the left
mastoid in order to avoid confounding biases arising
from tDCS effects over the right hemisphere. In using
this ipsilateral stimulation, we accepted the possibility
that this mounting might reduce the tDCS-related
effects on the underlying cortex, since it could cause
current to be shunted to a greater degree through skin
and cerebrospinal fluid. A constant current of 1.0 mA
was applied for 15 min, with a linear fade in/fade out of
10 s. Each participant performed one anodal and one
cathodal tDCS session separated by at least one day.
The session order was counterbalanced across partici-
pants. Within each session, participants underwent one
sham condition and one stimulation (i.e., anodal/catho-
dal) condition, and the sham condition always preceded
the stimulation condition to avoid carry-over effects of
tDCS (cf. Figure 4, top row). For the sham condition,
the same electrode placement was used as in the stimu-
lation condition, but the current was applied for 30 s,
and was then ramped down without the subject’s
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Figure 4 Experimental design. Top: After mounting EEG and tDCS
electrodes, the experiment started with a 15-minute Sham-tDCS. For
the next 10 minutes, participants performed a letter two-back
working memory (WM) task while EEG was recorded. Subsequently,
a 15 minute active-tDCS (anodal or cathodal) was applied, followed
by a further 10-minute WM task. EEG recording was stopped during
the stimulation periods. Each participant performed one anodal and
one cathodal tDCS session separated by at least one day. The
session order was counterbalanced across participants. An additional
control group underwent one experimental session performing the
similar WM task twice but without receiving a treatment during the
15 minute break in between. Bottom: Schematic description of the
letter two-back working memory task.

awareness. This procedure ensured that in both the
sham and stimulation condition, participants experi-
enced the initial itching that recedes over the first sec-
onds of tDCS [89]. Accordingly, none of the participants
was able to determine whether or not they received real
or sham stimulation.

Working memory assessment

After each sham and stimulation condition, participants
performed a two-back letter working memory (WM)
task with concurrent EEG recording. Stimulus presenta-
tion was controlled by the Presentation software (Neuro-
behavioral Systems, USA). Participants were stimulated
with a sequence of white letters (A, B, C, D, E) which
were presented on a black background in the centre of
the screen. Each letter was presented for 500 ms with
an interstimulus interval of 2 s. Each letter was followed
by a white fixation cross that remained until the next
letter was presented. A target letter was any letter
repeated after one intervening letter. Participants were
asked to respond to each letter as quickly and accurately
as possible and to indicate whether the currently pre-
sented letter matched (left button) or did not match
(right button) the letter which was presented two trials
before (cf. Figure 4, bottom row). A brief practice
sequence of 100 trials was given before the actual test.
The test sequence consisted of 300 letters, with 77
matching letters (targets) and 223 non-matching letters
(rejections).
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EEG recording and preprocessing

During the WM task, EEG was recorded continuously
with thirty-two electrodes (Fpl, Fp2, F7, F3, Fz, F4, F8,
FT7, EC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP9,
TP7, CP3, CPz, CP4, TPS8, TP10, P7, P3, Pz, P4, P8, O1,
Oz, 02) located according to the International 10-20
system [85]. The electro-oculogram was recorded from
two bipolar electrode pairs placed above and below the
left eye, and on the outer canthi of each eye, respec-
tively. A QuickAmp amplifier system (BrainProducts,
Munich, Germany) was used for EEG recording. EEG
data were recorded against the grand average reference
and sampled at 500 Hz, and impedances were kept
below 10 k Q. EEG preprocessing and data analysis
were carried out in Brain Vision Analyzer 2.0 (BrainPro-
ducts, Munich, Germany), EEGLAB 6.01 [90] and Field-
Trip http://fieldtrip.fcdonders.nl/. EEG data were off-line
treated with a 24 dB zero-phase Butterworth filter from
0.1 to 30 Hz and were segmented into epochs from
-312 to 712 ms relative to stimulus onset. After baseline
correction (-312 to 0 ms), epochs were automatically
screened for unique and non-stereotyped artifacts using
a probability function built into EEGLAB [91]. With this
procedure, epochs that contained signal values exceed-
ing three standard deviations were removed. Indepen-
dent component analysis (ICA) was then applied to
remove ocular artifacts [92,93]. After artifact removal,
averages were computed for all remaining correct target
responses (i.e., hits) for each of the four conditions (ano-
dal, cathodal, sham preceding anodal (shamA), sham
preceding cathodal (shamC)). In order to avoid multiple
comparisons between neighbouring electrodes and to
increase the signal-to-noise ratio, data from selected
electrode sites (Pz, P3, P4, Oz, O1, O2) were pooled
into an occipito-parietal ROL

Data Analysis

Behavioural data

To evaluate performance in the context of signal detec-
tion theory, d’ was analyzed. As recently demonstrated,
d’ has the advantage to capture executive skills needed
to perform n-back WM tasks without being influenced
by demographic variables or IQ [94]. Values for d’ were
estimated for each subject by dividing the difference of
Z(false alarms) and Z(hits) by the root mean square
of 2. The discriminability measure d’ captures the ability
of the participant to discriminate between the two sti-
mulus types, here the two-back target letters and the
non-target letters. Additionally, reaction times (RT) for
Hits and False Alarms (FA) were analyzed. To evaluate
the impact of tDCS on the repetition-related increase in
WM performance, we analyzed the pre-to-post measure-
ments by computing the difference between the beha-
vioural values assessed after active stimulation (anodal/
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cathodal) and the preceding sham stimulation (shamA/
shamC), separately for the anodal (delta anodal, AA)
and cathodal session (delta cathodal, AC). We compared
these pre-to-post measurements, AA and AC, for each
behavioural parameter using paired t-tests. Prior to this
calculation, we evaluated the equality of the two sham
conditions using paired t-test. This statistical analysis
revealed no significant difference between the two sham
conditions for d’ (¢;5 = -0.34, P = 0.7). Similarly, RTs for
Hits (t;5 = 0.74, P = 0.5) and False Alarms (t;5 = 0.27, P
= 0.9) were not significantly different between the two
sham conditions. To determine tDCS-induced modula-
tions on the repetition-related increase in WM perfor-
mance, we compared the pre-post differences (AA and
AC) of the tDCS-treated group with pre-post measure-
ments of a separate control group (ACG) that also per-
formed the WM task twice but without receiving a
tDCS treatment during the break in between (AA vs.
ACG, and AC vs. ACG). Again, prior to this calculation,
we evaluated the equality of the two experimental sham
conditions of the tDCS-treated group and the pre-mea-
surement (i.e., first repetition of the WM task) in the
control group by means of independent-samples t-tests.
This statistical analysis revealed no significant differ-
ences between the sham conditions of the tDCS-treated
group and the pre-measurement of the control group
(cf. Table 2).

Analysis of event-related potentials

Event-related potentials (ERPs) were measured relative
to the pre-stimulus baseline (-312 - 0 ms) for each con-
dition (anodal, cathodal, sham preceding anodal
(shamA), sham preceding cathodal (shamC)). Peak
detection was performed for the occipito-parietal ROI
(P1, N1 component) and for the Pz electrode (P3 com-
ponent). This procedure entailed the detection of the
most positive (P1, P3 component) or negative (N1 com-
ponent) peaks within specific latency bands (P1: 80-140
ms; N1: 120-250 ms; P3: 230-500 ms). The time

Table 2 Comparison of pre-measurements

condition measure t df P
sham A vs. CG
d 0.687 30 0.500
RT-Hits -0910 30 0.371
RT-FA -0.528 30 0.602
sham C vs. CG
d 1.080 0.290
RT-Hits -1.484 30 0.148
RT-FA -0.694 30 0493

Table shows results of independent t-tests comparing the pre-measurements
for d’, RT-Hits (reaction time for Hits), and RT-FA (reaction time for False
Alarms). Results show equivalence of pre-measures between the two
experimental groups (shamA: sham condition preceding the anodal tDCS,
shamC: sham condition preceding the cathodal tDCS) and control group (CG).
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windows for peak analysis were defined on the basis of
the global field power.

Analysis of event-related spectral perturbation

For each subject and each channel, event-related spec-
tral perturbation (ERSP) was calculated using a wavelet-
based analysis implemented in Brain Vision Analyzer 2.0
software. We used a continuous wavelet transform (WT)
with complex Morlet wavelets (morlet parameter ¢ 3.8;
30 frequency steps from 1 to 30 Hz) to examine the fre-
quency composition of single-trial epochs. The magni-
tudes of the WTs of single-trial epochs were then
averaged to compute the total power of activity, which
contains signal components that are phase-locked and
non-phase-locked to the stimulus event. For each scale
of the WT a baseline correction was applied by sub-
tracting the mean amplitude within the -200 to -100 ms
time window from each data point after stimulus onset.
Similar to the procedures used in the ERP analysis, the
data were subsequently pooled into an occipito-parietal
ROI by averaging the ERSPs across different electrode
sites (Pz, P3, P4, Oz, O1, O2).

TDCS effects on oscillatory brain activity were ana-
lyzed by computing ERSP differences between the sepa-
rate conditions. For statistical comparisons, we used a
nonparametric cluster-based randomization approach
built into FieldTrip. This procedure defined clusters on
the basis of the actual distribution of the data and tested
the statistical significance of these clusters using a
Monte-Carlo randomization method with correction for
multiple comparisons [95]. The clustering used 500 ran-
domizations and was performed in time and frequency
simultaneously. The t-statistic of paired t-tests was cal-
culated on a cluster-level by taking the sum of the t-
values within the respective cluster.
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