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Abstract

deeper biochemical investigation.

Background: An ever growing body of evidences is emerging concerning metabolism hormones,
neurotransmitters or stress-related biomarkers as effective modulators of eating behavior and body weight in
mammals. The present study sought at examining the density and affinity of two proteins related to
neurotransmission and cell metabolism, the serotonin transporter SERT and the cholesterol import-benzodiazepine
site TSPO (translocator protein), in a rodent leptin-lacking mutant, the obese ob/ob mouse. Binding studies were
thus carried out in brain or peripheral tissues, blood platelets (SERT) and kidneys (TSPO), of ob/ob and WT mice
supplied with a standard diet, using the selective radiochemical ligands [H]-paroxetine and [*H]-PK11195.

Results: We observed comparable SERT number or affinity in brain and platelets of ob/ob and WT mice, whilst a
significantly higher [*H]-PK11195 density was reported in the brain of ob/ob animals. TSPO binding parameters
were similar in the kidneys of all tested mice. By [’H]-PK11195 autoradiography of coronal hypothalamic-
hippocampal sections, an increased TSPO signal was detected in the dentate gyrus (hippocampus) and choroids
plexus of ob/ob mice, without appreciable changes in the cortex or hypothalamic-thalamic regions.

Conclusions: These findings show that TSPO expression is up-regulated in cerebral regions of ob/ob leptin-
deficient mice, suggesting a role of the translocator protein in leptin-dependent CNS trophism and metabolism.
Unchanged SERT in mutant mice is discussed herein in the context of previous literature as the forerunner to a

Background

The mechanisms of action of appetite hormones and
related networks operating on body weight control have
not been entirely established in mammals; the study of
these pathways in models of mutant rodents, is contri-
buting to elucidate the issue. In particular, the obese 0b/
ob mouse, mutant for the leptin (OB hormone) gene, is
currently used to evaluate the pathogenesis of human
obesity and type 2 diabetes: it lacks the functional leptin,
develops hyperphagia, insulin resistance, hyperglycemia
and hypercholesterolemia together altered immune
response, impaired locomotor activity and fertility [1].
Leptin release from adipose cells is stimulated by insulin
and glucocorticoids while counter-regulatory hormones
inhibit its secretion [2].
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In the hypothalamus, leptin exerts a double action: it
up-regulates the release of anorexigenic neuropeptides
as melanotropic hormone (a-MSH), CART (cocaine/
amphetamine-regulated transcript) and CRH (corticotro-
pin-releasing hormone) while inhibiting secretion of
orexigenic neuropeptide Y (NPY), MCH (melanin-con-
centrating hormone), orexins, and AGRP (agouti-related
peptide), all signals that, at the opposite, increases appe-
tite and reduces energy consumption. Thus, 0b/ob mice
present a significant impairment of leptin-dependent
hypothalamic pathways, accompanied by adrenal hyper-
trophy and increased corticosteroid secretion during
diurnal rhythms [3,4]. The use of 0b/0ob animals has
shown the involvement of catecholamines and serotonin
(5-HT) in the leptin-deficient syndrome: in mutant ani-
mals, dopaminergic agonists reduce food intake and
restrain metabolic dysfunctions, while SSRI antidepres-
sant treatment decreases hyperphagia and hyperglycemia
[1]. Some authors have observed a reduced expression
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of 5-HT transporter (SERT) mRNA in dorsal raphe
nuclei of 0b/ob animals accompanied by an altered loco-
motor activity [5]. Despite all these evidences, to our
knowledge, there are still controversial opinions con-
cerning the existence of interactions between leptin,
5-HT transmission and stress signals.

The aim of this study was therefore to investigate the
expression of two pivotal proteins involved in 5-HT
transmission and metabolism, SERT and the transloca-
tor protein (TSPO), in central and peripheral tissues of
ob/ob mice in comparison with wild-type (WT) animals.
SERT was evaluated given that it modulates the 5-HT
re-uptake inside serotonergic neurons, a key mechanism
permitting the activation/desensitization of 5-HT recep-
tors within the synaptic cleft. SERT is also localized in
periphery where it regulates platelet aggregation, gut
peristalsis and immune response. An altered SERT has
been reported in several complex human disorders, such
as psychiatric diseases, pain and eating disturbances [6].
Density and affinity values of the TSPO protein were
instead investigated as potential markers of stress-
response and cholesterol metabolism in 0b/0b obese
mice. The TSPO protein is in fact the mitochondrial
import of cholesterol with binding sites for benzodiaze-
pines [7,8], also implicated in steroidogenesis [7-9]. The
TSPO molecular complex is prevalently located on the
mitochondrial membrane and is formed by: the main
subunit, the isoquinolinic binding protein (18 KDa,
identified as TSPO), the benzodiazepine binding portion
VDAC (32 KDa, voltage dependent anionic channel)
and the adenine nucleotide translocator ANT, which is
also a target for benzodiazepines. Associated compo-
nents of the complex are StAR (steroidogenesis acute
regulatory) and PAP7 (associated protein 7) proteins,
implicated in the steroidogenesis process [8]. Nonethe-
less, the precise function of TSPO is unknown [10].
TSPO has been indeed related to a variety of biological
functions and processes, such as protection against reac-
tive oxygen species, regulation of cell apoptosis, immu-
nity and porphyrin transport [9]. Moreover, TSPO
expression has been found changed in several diseases
and pathological conditions [9], including psychiatric
diseases and fibromyalgia where altered densities of
both SERT and TSPO have been reported [11-13].

SERT and TSPO proteins were thus appraised by
means of binding assays carried out in either neuronal
or peripheral districts of 0b/0b and WT mice. SERT was
measured through the high-affinity SSRI ligand [*H]-
paroxetine on brain and platelets, whereas TSPO was
assessed by the isoquinilinic compound [*H]-PK11195
on brain and kidney. We also performed autoradio-
graphic studies on limbic-hypothalamic coronal sections
of mouse brain. Some previous works have in fact
shown changes in SERT and 5-HT receptor subtypes at
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the level of the hypothalamus and limbic areas of mice
fatten by a palatable diet [14,15]. Plasma chemical ana-
lyses were carried out in animals to evaluate their meta-
bolic state.

Results

Analysis of blood chemical parameters

As shown in Table 1, 0ob/ob mice had higher levels of
total cholesterol, glucose and High-Density-Lipoprotein
(HDL) in comparison with WT mice. Concerning the
other blood parameters examined, no relevant between-
genotype difference was reported. y-GT enzyme activity
did not exceed 40 U It (0-40 U It™") in ob/ob and
mutant animals, indicating a normal hepatic function in
all mice.

[*H]-paroxetine and [*H]-PK11195 binding parameters
[®H]-paroxetine Scatchard analysis revealed a single
population of high-affinity binding sites in all membrane
preparations. [*H]-paroxetine equilibrium binding
experiments (mean = SD, 4 separate experiments in
duplicate), showed no significant difference in either
SERT density (Bya,, fmol/mg protein) or affinity (Kp,
nM) in both brain and platelets of 0b/0b vs WT animals
(Table 2).

[*H]-PK11195 binding Scatchard analysis also fitted
with a single population of high-affinity sites in brain
and kidneys. As shown in Table 3, no variation of [®H]-
PK11195 binding affinity (Kp, nM) was observed in
brain and kidneys (mean + SD, 4 separate experiments
performed in duplicate) of different animals, whilst a
significant increased B,,,, was observed in the 0b/ob
brain (p < 0.05). Kidney B,,,x resulted unchanged from
comparison analysis of the two genotypes. Figure 1
depicts a representative linear transformation Scatchard,
analysis obtained in brain membranes from ob/0ob and
WT mice, displaying an increased TSPO number in
mutant animals.

Autoradiography of brain coronal sections

Figure 2 depicts [*H]-PK11195 and [*H]-paroxetine
autoradiography on coronal brain sections carried out at
the hypothalamic-hippocampal level. TSPO binding sites

Table 1 Blood chemical parameters® in mice

Chemical parameters ob/ob WT
Glucose 158 + 18 61 +6
Total Cholesterol > 450 226 £ 19
High Density Cholesterol 87 £7 < 50
Triglycerides 27 +2 31+4
Calcium 6.8 + 04 6.1 +03

(a): Data are presented as mean + SD (mg dI”') of measures carried out in
plasma samples separated from n = 3 ob/ob and n = 3 WT animals as
indicated in the Methods section.
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Table 2 [*H]-paroxetine binding parameters® in mouse
membranes

Brain: Kd (nM) Bmax (fmol/mg protein)
ob/ob Mutant 0.1 £ 001 368 £ 17.5

Wild Type 0.09 + 0.01 341 £180
Platelets: Kd (nM) Bmax (fmol/mg protein)
ob/ob Mutant 0.09 + 0.008 18680 + 2278

Wild Type 0.08 + 001 14830 + 1722

(a): Data are presented as mean + SD of n = 4 separate experiments in brain
or platelet membrane preparations carried out in ob/ob and WT animals as
indicated in the Methods section.

labeled by [*H]-PK11195 (Figure 2.a,b) resulted unevenly
distributed in these brain regions, with the highest
expression in the cerebral cortex and hypothalamus.
[H]-PK11195 density signal was found increased in the
dentate gyrus (hippocampus) of 0b/ob mice (Figure 2b),
together a binding raise in correspondence of peri-ven-
tricular areas, at the level of the choroids plexus, espe-
cially that surrounding the dorsal third ventricle.

Figure 2 (c,d) also shows brain sections labeled by
[BH]—paroxetine, These sections differed for about 55
um from the [*H]-PK11195 ones (Figure 2.a,b), display-
ing a quite diffuse SERT labeling in cortex, hippocam-
pus, hypothalamus and thalamus. Despite some
decreased signal in the ob/ob cortex (Figure 2.d) vs. the
WT one (Figure 2.c), these changes were not significant.

Discussion

Since many years, the 0b/0b mouse is conceived as a sui-
table experimental model for studying neuropeptide sub-
strates and metabolic pathways implicated in human
obesity and type 2 diabetes [1]: these rodents bear a non-
sense mutation in the coding region of the leptin gene
causing the lack of secretion of a functional peptide. An
important aspect should be considered when using this
mutant model: human obesity is rarely due to a single
gene mutation [4] and obese humans prevalently present
high circulating levels of leptin [16] together desensitized,
leptin-resistant pathways; by contrast, 0b/ob mice are
defective in leptin production. Differences between these

Table 3 [*H]-PK11195 binding parameters® in mouse
membranes

Brain: Kd (nM) Bmax (fmol/mg protein)
ob/ob Mutant 175+ 03 4035 + 126 (%)
Wild Type 18 +£02 3295 + 160
Kidney: Kd (nM) Bmax (fmol/mg protein)
ob/ob Mutant 19+02 19550 + 1180

Wild Type 20+£03 20260 + 2017

(a): Data are presented as mean + SD of n = 4 separate experiments in brain
and kidney membrane preparations carried out in ob/ob and WT animals as
indicated in the Methods sections. (¥): Student t-test, p < 0.05.
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Figure 1 [*H]-PK11195 binding assay in WT and ob/ob brain
membranes. Scatchard lines are representative of [*HIPK11195
saturation binding of 4 separate experiments carried out in brain
membranes of obese ob/ob (B) and WT (®) mice.

two conditions have not been still elucidated at the bio-
chemical level. The 0b/0b syndrome can be reversed by
exogenous administration of leptin or by leptin gene
transfection [1], proving that leptin receptors and net-
works are functional. On the other side, the study of 0b/
ob mice permits to dissect leptin-dependent neuroendo-
crine loops, involved in appetite control and energy bal-
ance dysfunctions. Indeed, as already mentioned, leptin
pathways, co-modulation or connection with corticotro-
pin releasing factor (CRF), NPY, a.-MSH and neurotrans-
mitter systems have not been fully characterized [2].
Specifically, energy expenditure balance and feeding
behavior are regulated by redundant pathways: monoa-
mines and leptin are both able to modulate food intake
at the hypothalamic levels, but it is not precisely known
if and how these signal molecules interact [17]. Some
authors also consider leptin a signal evolved to prevent
starvation rather than food plenty [18]. Beside alterations
of glucose metabolism, another important feature of the
ob/ob syndrome is the increased blood cholesterol in
mutant animals. Cholesterol is the precursor of steroido-
genesis, being a main, high-affinity ligand for the benzo-
diazepine site-translocator protein TSPO [7,9]. Reduced
cholesterol levels have been evidenced inside macro-
phages of 0b/0ob mice, along with a diminished capacity
in inflammatory response [19], supporting metabolic and
hormonal cross-talks between immune response, inflam-
mation and body weight signals [20,21]. Interestingly,
platelet TSPO and SERT densities have been found
altered in fibromyalgia [12,13], panic disorders [11,22]
and suicide attempters [23,24]. This prompted us to pre-
liminary assess the equilibrium-binding parameters of
SERT and TSPO proteins, either in brain or high expres-
sion peripheral tissues, circulating platelets and kidneys,
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Figure 2 [3H]-PK11195 (a,b) and [3H]-paroxetine (c,d) autoradiography in coronal hypothalamic-hippocampal sections of WT and ob/
ob brain. The increased signal corresponding to [*H]-PK11195 binding in sections of ob/ob mice is indicated by arrows (hippocampal region
and choroids plexus-third ventricle). cc: cerebral cortex; hi: hippocampal region; hy: hypothalamus; th: thalamus.

of ob/ob mice: to our knowledge, this is the first study
that simultaneously evaluates SERT and TSPO expres-
sion in distinct anatomical district of a rodent genetic
model of obesity.

Prior to SERT and TSPO analyses, blood chemical
parameters were determined in 0b/0b and WT animals
to monitor cell metabolism: higher total cholesterol and
glucose concentrations were observed in mutant vs. WT
animals, according to data provided by the commercial
source. Blood levels of the y-GT enzyme were low in
ob/ob and WT mice, indicating the absence of hepatic
alterations. Moreover, ob/ob mice presented similar cir-
culating triglyceride or calcium levels to those measured
in WT animals. Concerning binding results, no difference
of SERT density or affinity was reported in brain and pla-
telets of ob/ob and control mice. Also, [*H]-paroxetine

autoradiographic sections showed no appreciable binding
differences between animals. This finding could signify
that leptin-dependent pathways are altered in 0b/0b mice
without affecting 5-HT transmission. On the other hand,
the fact that 0b/0b mice show no changes in SERT den-
sity or affinity (present results) but a reduced SERT
mRNA [5] is intriguing. Since leptin has been found able
to decrease SERT binding sites in the rat brain [25], the
ob/ob mouse could maintain the capacity at counteract-
ing the decrease of SERT transcripts at the protein level,
in the absence of SERT (or SERT-related) gene muta-
tions. In fact, SERT underlies posttranslational regula-
tion, trafficking or protein inactivation causing a
differential distribution within cell compartments and/or
discrepancies between mRNA and protein expression, as
reported during megakaryoblastic differentiation [26].
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Leptin-lacking mice could present an altered 5-HT
responsiveness together a modified SERT reserve/func-
tion (uptake), without significant differences in binding
sites. A deeper biochemical analysis of SERT should be
therefore carried out, including flow cytofluorimetry,
immunoprecipitation, gene expression, proteomic-
functional (uptake) studies, in the context of 5-HT (or
other monoamine) levels in blood and tissues of these
animals. Concerning TSPO binding results, this protein
was found increased in the 0b/0b mouse brain while
being similar in kidneys of mutant and WT animals. The
[*H]PK11195 autoradiography of hippocampal-hypotha-
lamic sections has revealed an up-regulation of TSPO
density in two brain regions of 0b/0b mice, the dentate
gyrus of hippocampus and choroids plexus, indicating
that TSPO number variations in 0b/0b mouse brain are
region-dependent. These results also underline that lep-
tin chronic deficiency affects brain protein patterns.

The interpretation of our TSPO finding is difficult. In
fact, to date, the precise role of TSPO within CNS is not
understood. A brain region-specific regulatory mechanism
in response to hypercholesterolemia and hyperglycemia
could be active in these animals. Brain TSPO is mainly
localized on glial cells and can be modulated by protein
kinase C signaling [7] and the cAMP-protein kinase A
pathway [9], activated by G-protein coupled receptors,
including, therefore, metabotropic 5-HT receptor sub-
types. In hippocampus and choroids plexus there could be
an unbalance of regulatory signaling cascades, resulting in
the enhancement of TSPO number. This could depend
upon many factors, such as different receptor sub-type
localization and activation: hippocampus and choroids
plexus are brain regions at high expression of 5-HT; and
5-HT,c receptors, respectively, and insulin inhibits chor-
oids plexus 5-HT, receptors [27]. Additional difficulties
in interpreting our result come from the observation that
increased TSPO has been associated with either tissue/
neuronal damage or repair. Some authors have reported
protective effects of TSPO agonists in experimental dia-
betic neuropathy [28], suggesting, hypothetically, repara-
tive actions of brain TSPO in such a disease.

The same as for SERT, a deeper study of TSPO gene
and protein expression together the investigation of its
function and drug activities in 0b/ob animals by means
of different methodologies, including leptin treatment, is
essential to confirm present results as well as to under-
stand leptin-dependent neuronal trophism, metabolism
and transmission. Another variable to consider is the
different age of mutant animals: in our study, 4 month
old mice were examined, when all symptoms of the
“leptin-lacking syndrome” are present [1], but this does
not exclude the diverse SERT and TSPO expression at
other development or aging stages.
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Conclusion

Present results indicate that leptin-lacking mutant mice
have an augmented density of TSPO in the hippocam-
pus and choroids plexus, without changes of SERT pro-
tein number. Central TSPO variations are not paralleled
by changes in periphery (kidney).

Despite limitations due to the small sample of animals
investigated, our study indicates that the obese 0b/0b
mouse can be a challenging animal model to elucidate
the mammalian leptin-dependent neuroendocrine-neu-
rosteroid signaling involved in appetite control.

Methods

Materials

[*H]-paroxetine (specific activity, 24 Ci/mmol) and [®H]-
PK11195 (specific activity, 69.9 Ci/mmol) were pur-
chased from Perkin-Elmer Life Science (Milan, Italy).
Hyperfilm MP were obtained from Amersham-Pharma-
cia (UK). All other reagents were obtained from normal
commercial sources.

Animals

5 ob/ob (C57BL6V—Lep°b) and 5 wild-type (C57BL/6])
adult (age: 15-17 weeks) male mice were obtained from
Harlan (UK) and kept under standard laboratory condi-
tions and feeding: animals were housed two per cage in
saw-dust-lined cages at 22°C under a 12 h light/dark
cycle, with free access to normal diet and tap water. All
experimental procedures were carried out following the
guidelines of the International European ethical stan-
dards for the care and use of laboratory animals (Com-
munity Council Directive 86-609). All protocols were
approved by the Ethical Deontological Committee for
animal experimentation of the University of Pisa.

Sample preparation

Brain and kidney tissues

For experiments, all mice were sacrificed by cervical dis-
location, in the morning, between 8.30-9.30 am, without
modifying diet conditions or access to food. Kidneys
and brains were rapidly removed and treated for mem-
brane preparation and autoradiography. Brains were
taken after removing cerebellum.

Blood collection for plasma chemical analysis

The day of sacrifice, blood was withdrawn by cardiac
puncture of anesthetized mice and collected inside plas-
tic tubes containing lithium-heparin to separate plasma.
Blood was then centrifuged at 2000 g for 3-5 min at
room temperature by means of a Micro-Centrifuge
(Menarini, Italy). Glucose, total cholesterol, High Den-
sity Lipoprotein (HDL), triglycerides, calcium and y-glu-
tamil transpeptidase (yGT) were evaluated by an
automated procedure. Briefly, plasma was automatically
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dispensed on a multi-layered reagent strip, specific for
each dosage, and the resulting colorimetric reaction was
analyzed by the automatic spectrophotometric analyzer
SPOTCHEM SP-4410 (Menarini, Italy).

Blood collection for platelet separation

For separation of platelets used in [*H]-paroxetine bind-
ing assays, blood, withdrawn as above indicated, was kept
in tubes containing 3% ACD (20 mM acid citric,110 mM
sodium citrate, 5 mM dextrose) and centrifuged at 200 g
for 15 min at room temperature. The supernatant, corre-
sponding to platelet-rich plasma (PRP), was further cen-
trifuged at 10,000 g for 10 min. The resulting pellet was
washed by centrifugation in physiological solution at
10,000 g for 10 min and used for membrane preparation
in [®H]-paroxetine binding assays (SERT).

Membrane preparation

Preparation of cerebral membranes

To isolate cerebral membrane fractions, after sacrifice,
brains (obtained as above indicated) from animals of
each genotype (n = 4) were weighted, suspended in ice-
cold 1:10 (w/v) 50 mM Tris-HCIl, pH 7.4 (Tris-HCI buf-
fer), containing 0.32M sucrose and protease inhibitors
(200 pg/ml bacitracine, 160 pg/ml benzamidine, 20 pg/
ml soy bean trypsin inhibitor), disrupted by means of an
ultra-turrax homogenizer and centrifuged at 1000 g for
5 min at 4°C. Supernatants were then re-centrifuged at
48,000 g for 15 min at 4°C. For [*H]-paroxetine binding
assay, resulting pellets were suspended in 1:10 volumes
(w/v) of ice-cold Tris-HCI buffer, containing 120 mM
NaCl, 5 mM KClI, protease inhibitors (as above indi-
cated) and treated as previously described [29]. For
[*H]-PK11195 binding, after the centrifugation step at
48,000 g for 15 min at 4°C, pellets were suspended in
1:10 volumes (w/v) of ice-cold Tris-HCI buffer without
Na/K salts and washed twice in the same buffer by cen-
trifugation at 48,000 g for 15 min at 4°C. Final brain
membrane pellets were stored at -80°C until [*H]-parox-
etine or [*H]-PK11195 binding assay.

Preparation of platelet and kidney membranes

For [®H]-paroxetine binding assay, platelet pellets
(obtained as described previously), were suspended 1:10
(w/v) in 5 mM Tris-HCI buffer containing 5 mM EDTA
and protease inhibitors, homogenized by ultra-turrax
and treated as previously described [30] to obtain mem-
brane-enriched fractions.

Kidney membranes for [*H]-PK11195 binding assays
were prepared following a procedure slightly modified
from Selleri and co-authors [31]. Briefly, tissue samples
were diluted 1:10 (w/v) in ice-cold 50 mM Tris-HCI, pH
7.4, 0.32M sucrose, 1 mM EDTA (buffer A) containing
protease inhibitors. After homogenization, tissue suspen-
sions were centrifuged at 600 g for 10 min at 4°C. Super-
natants (S1) were collected and kept on ice while pellets

Page 6 of 8

were re-suspended in the same buffer and re-centrifuged
again as above indicated. The resulting supernatants (S2)
were mixed to S1 and centrifuged at 6,500 g for 20 min
at 4°C. Pellets were then suspended in 50 mM Tris-HCl,
pH 7.4 (buffer B) homogenized and centrifuged again at
48,000 g for 10 min at 4°C. Final pellets, resulting from
both procedures, were stored at -80°C until assay.

Protein assay

Total protein concentration was determined in brain,
platelet and kidney membrane preparations according to
the method of Bradford (Bio-Rad), using y-globulins as
the standard.

[®H]-paroxetine and [*H]-PK11195 saturation binding
experiments

[*H]-paroxetine binding (SERT) was carried out as fol-
lows [12]: membranes (50-100 pg protein/tube) were
incubated with increasing radioligand concentrations
(0.025-5 nM) in 50 mM Tris-HCI buffer, pH 7.4, con-
taining 120 mM NaCl, 5 mM KClI (final volume, 2 ml).
Non specific binding was assessed in the presence of 10
uM fluoxetine, used as the unlabelled displacer. All sam-
ples were assayed in duplicate and incubated 60 min at
22-25°C. TSPO binding was instead appraised as pre-
viously indicated [32]: brain and kidney membranes (25-
100 pg protein/tube) were incubated with increasing
concentrations of [*H]-PK11195 (0.5-8 nM), in a final
volume of 0.5 ml assay buffer, 50 mM Tris-HCI, pH 7.4.
Non specific binding was assessed in the presence of
1 uM PK11195 as the cold displacer. All samples were
assayed in duplicate and incubated 90 min at 0°C.

In all binding experiments, incubation was halted by
adding 5 ml of cold assay buffer. Samples were immedi-
ately filtered under vacuum through glass fiber GF/C fil-
ters and washed 3 times with 5 ml of assay buffer.
Filters were then placed in pony vials with 4 ml of scin-
tillation cocktail, and radioactivity measured by means
of a B-counter (Packard LS 1600).

[®H]-paroxetine and [*H]-PK11195 autoradiography on
brain coronal sections

After animal sacrifice, the brain of 0b/ob and WT mice
was rapidly removed, placed in an embedding medium
(O.C.T.), frozen in liquid nitrogen and stored at -85°C
until use. Coronal sections (15 um) at the hippocampal-
hypothalamus levels obtained by cryostat were mounted
onto gelatin-coated slides and stored at -30°C until
assay. The day of assay, sections were allowed to equili-
brate at room temperature for 10 min and pre-incu-
bated in Tris-HCI buffer (50 mM, pH 7.4) for 15 min at
4°C. Sections were then incubated for: 1) 60 min in
Tris-HCI buffer, containing 120 mM NaCl, 5 mM KClI,
with 0.5 nM [*H]-paroxetine; 2) 90 min at 4°C in Tris-
HCI buffer with 5 nM [*H]-PK11195 (TSPO). After
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incubation, all sections were washed twice with the Tris-
HCI incubation assay buffer at 4°C for 30 sec, then with
distilled water and rapidly dried under a cold air steam.
Non-specific binding was determined by adding to the
incubation solution an excess (10 pM) of unlabelled
fluoxetine (SERT) or PK11195 (TSPO). Autoradiograms
were generated by exposing tissue sections in tritium-
sensitive films for 60 days at -85°C. Films were devel-
oped in Kodak D-19 for 5 min at 15°C and fixed in
Kodak rapid Fix. After film exposure, tissue sections
were fixed in 10% formalin and stained with hematoxy-
lin-eosin for anatomical identification.

Data analysis

Equilibrium-saturation binding data, the maximum
binding capacity (B fmol/mg protein) and the disso-
ciation constant (K4, nM) were analyzed by means of
the iterative curve-fitting computer program EBDA and
LIGAND [33]. Statistical analysis was performed by
means of Student’s ¢ test (Graph pad version 3-4 pro-
gram, San Diego, CA, USA). To improve visualization of
[*H]-paroxetine and [*H]-PK11195 autoradiography, the
gray scale, acquired by a X-ray scanner of autoradio-
graphic films, has been translated into a color scale
using the Image J software (Figure 2).

Acknowledgements
The present work is supported by a grant of “Ministero dell'lstruzione
dell'Universita e della Ricerca” (M.LUR) to Prof. G. Giannaccini.

Author details

'Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology,
University of Pisa, University of Pisa, Via Bonanno 6, 56126 Pisa, [taly.
’Department of Physiological Sciences, University of Pisa, Via delle Piagge 2,
Pisa, 56124, Italy. *Department of Endocrinology and Kidney, University
Hospital of Pisa, Via Paradisa 2, Pisa 56124, Italy.

Authors’ contributions

GG, FS and AL conceived the study, participated in its design and
coordination and helped to draft the manuscript. AIP participated in the
study coordination and manuscript revision. GG, LP, LB, AnP and MM drafted
the manuscript. LB, LS and ML carried out all radioligand binding studies.
AnP carried out autoradiography experiments. LF and CP were responsible
of tissue and blood sampling from animals and carried out blood chemical
analyses. LB and LP elaborated experimental results.

All authors read and approved the final manuscript.

Disclosure
The authors declare that they have no conflicts of interests.

Received: 23 September 2010 Accepted: 7 February 2011
Published: 7 February 2011

References

1. Lindstrom P: The physiology of obese-hyperglycemic mice [ob/ob mice].
The Sci World J 2007, 7:666-685.

2. Myers MG: Leptin receptor signaling and the regulation of mammalian
physiology. Recent Prog Horm Res 2004, 59:287-304.

3. Saito M, Bray GA: Diurnal rhythm for corticosterone in obese (ob/ob)
diabetes (db/db) and goldthioglucose-induced obesity in mice.
Endocrinology 1983, 113:2181-2185.

20.

22.

23.

24.

25.

Page 7 of 8

Beck B: Neuropetides and obesity. Nutrition 2000, 16:916-923.

Collin M, Hakansson-Ovesjo ML, Misane |, Ogren SO, Meister B: Decreased
5-HT transporter mRNA in neurons of the dorsal raphe nucleus and
behavioral depression in the obese leptin-deficient ob/ob mouse. Mo/
Brain Res 2000, 81:51-61.

Murphy DL, Fox MA, Timpano KR, Moya PR, Patterson AM, Holmes A,

Lesch KP, Wendland JR: How the serotonin story is being rewritten by
new gene-based discoveries principally related to SLC6A4, the serotonin
transporter gene, which functions to influence all cellular serotonin
systems. Neuropharmacology 2008, 55:932-960.

Batarseh A, Papadopoulos V: Regulation of translocator protein 18 kDa (TSPO)
expression in health and disease states. Mol Cell Endocrinol 2010, 327:1-12.
Falchi AM, Battetta B, Sanna F, Piludu M, Sogos V, Serra M, Melis M,

Putzolu M, Diaz G: Intracellular cholesterol changes induced by
translocator protein (18 kDa) TSPO/PBR ligands. Neuropharmacology 2007,
53:318-329.

Rone MB, Fan J, Papadopoulos V: Cholesterol transport in steroid
biosynthesis: role of protein-protein interactions and implications in
disease state. Biochim Biophys Acta 2009, 1791:646-658.

Gavish M, Bachman AN, Shoukrun R, Katz Y, Veenman L, Weisinger G,
Weizman A: Enigma of the peripehral benzodiazepine receptor.
Pharmacol Rev 1999, 51:629-650.

Pini S, Martini C, Abelli M, Muti M, Gesi C, Montali M, Chelli B, Lucacchini A,
Cassano GB: Peripheral-type benzodiazepine receptor binding sites in
platelets of patients with panic disorder associated to separation anxiety
symptoms. Psychopharmacology 2005, 181:407-411.

Bazzichi L, Giannaccini G, Betti L, Mascia G, Fabbrini L, Italiani P, De Feo F,
Giuliano T, Giacomelli C, Rossi A, Lucacchini A, Bombardieri S: Alteration of
serotonin transporter density and activity in fibromyalgia. Arthritis Res
Ther 2006, 8:R99.

Bazzichi L, Giannaccini G, Betti L, Italiani P, Fabbrini L, Defeo F, Giacomelli C,
Giuliano T, Rossi A, Uccelli A, Giusti L, Mascia G, Lucacchini A,

Bombardieri S: Peripheral benzodiazepine receptors on platelets of
fibromyalgic patients. Clin Biochem 2006, 39:867-872.

Park S, Harrold JA, Widdowson PS, Williams G: Increased binding at 5-
HT1A, 5-HT1B and 5-HT2A receptors and 5-HT transporters in diet-
induced obese rats. Brain Res 1999, 847:90-97.

Huang XF, Huang X, Han M, Chen F, Storlien L, Lawrence AJ: 5-HT2A/2C
receptor and 5-HT transporter densities in mice prone or resistant to
chronic high-fat diet-induced obesity: a quantitative autoradiography
study. Brain Res 2004, 1018:227-235.

Considine RV, Sinha MK, Heiman ML: Serum immunoreactive-leptin
concentrations in normal-weight and obese humans. N Engl J Med 1996,
334:292-295.

Ramos EJB, Meguid MM, Campos ACL, Coelho JCU: Neuropeptide Y, a-
melanocyte-stimulating hormone and monoamines in food intake
regulation. Nutrition 2005, 21:269-279.

Jequiert E: Leptin signaling, adiposity and energy balance. Ann NY Acad
Sci 2002, 967:379-388.

Kjerrulf M, Berke Z, Aspegren A, Umaerus M, Nilsson T, Svensson L, Camejo-
Hurt E: Reduced cholesterol accumulation by leptin deficient (ob/ob)
mouse macrophages. Inflamm Res 2006, 55:300-309.

Giannaccini G, Giusti L, Santini F, Marsili A, Betti L, Mascia G, Pelosini C,
Baroni S, Ciregia F, Fabbrini L, Lucacchini A, Vitti P, Pinchera A: Tubby
protein in human lymphocytes from normal weight and obese subjects.
Clin Biochemistry 2007, 40:806-809.

Matarese G, La Cava A: The intricate interface between immune system
and metabolism. Trends Immunol 2004, 25:193-200.

Marazziti D, Rossi A, Dell'Osso L, Palego L, Placidi GP, Giannaccini G,
Lucacchini A, Cassano GB: Decreased platelet [*H]-paroxetine binding in
untreated panic disorder patients. Life Sci 1999, 65:2735-2741.

Marazziti D, Dell'Osso B, Baroni S, Masala |, Di Nasso E, Giannaccini G,
Conti L: Decreased density of peripheral benzodiazepine receptors in
psychiatric patients after a suicide attempt. Life Sci 2005,
77:3268-3275.

Marazziti D, Dell'Osso L, Rossi A, Masala |, Baroni S, Armani A, Giannaccini G,
Di Nasso E, Lucacchini A, Cassano GB: Decreased platelet [*H]-paroxetine
binding sites in suicide attempters. Psychiatry Res 2001, 103:125-131.
Charnay Y, Cusin |, Vallet PG, Muzzin P, Rohner-Jeanrenaud F, Bouras C:
Intracerebroventricular infusion of leptin decreases serotonin transporter
binding sites in the frontal cortex of the rat. Neurosci Lett 2000, 283:89-92.


http://www.ncbi.nlm.nih.gov/pubmed/14749507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14749507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6416815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6416815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11054597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11000478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11000478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11000478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18824000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18824000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18824000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18824000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20600583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20600583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17631921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17631921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19286473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19286473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19286473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10581326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15830231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15830231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15830231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16790074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16790074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16919618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16919618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10564740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10564740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10564740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15276882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15276882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15276882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15276882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8532024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8532024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15723758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15723758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15723758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12079865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16955393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16955393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15039046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15039046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10622283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10622283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10622283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16014308?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16014308?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11549401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11549401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11549401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10739882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10739882?dopt=Abstract

Giannaccini et al. BMC Neuroscience 2011, 12:18
http://www.biomedcentral.com/1471-2202/12/18

26.

27.

28.

29.

30.

31

32.

33.

Giannaccini G, Betti L, Palego L, Schmid L, Fabbrini L, Pelosini C, Gargini C,
Da Valle Y, Lanza M, Marsili A, Maffei M, Santini F, Vitti P, Pinchera A,
Lucacchini A: Human Serotonin Transporter Expression during
Megakaryocytic Differentiation of MEG-01 Cells. Neurochem Res 2010,
35:628-635.

Hurley JH, Zhang S, Bye LS, Marshall MS, Depaoli-Roach AA, Guan K, Fox AP,
Yu L: Insulin signaling inhibits the 5-HT,c receptor in choroid plexus via
MAP-kinase. BMC Neurosci 2003, 9:4-10.

Giatti S, Pesaresi M, Cavaletti G, Bianchi R, Carozzi V, Lombardi R, Maschi O,
Lauria G, Garcia-Segura LM, Caruso D, Melcangi RC: Neuroprotective effects
of a ligand of translocator protein-18KDa (Ro5-4864) in experimental
diabetic neuropathy. Neuroscience 2009, 164:520-529.

Rotondo A, Giannaccini G, Betti L, Chiellini G, Marazziti D, Martini C,
Lucacchini A, Cassano GB: The serotonin transporter from human brain:
Purification and partial characterization. Neurochem Int 1996, 28:299-307.
Ramacciotti CE, Coli E, Paoli R, Marazziti D, Dell'Osso L: Serotonergic
activity measured by platelet [*H]-paroxetine binding in patients with
eating disorders. Psychiatry Res 2003, 118:33-38.

Selleri S, Bruni F, Costagli C, Costanzo A, Guerrini G, Ciciani G, Costa B,
Martini C: 2-Arylpyrazolo[1,5-a]pyrimidin-3-yl Acetamides. New Potent
and Selective Peripheral Benzodiazepine Receptor Ligands. Bioorg Med
Chem 2001, 9:2661-2671.

Martini C, Chelli B, Betti L, Montali M, Mancuso M, Giannaccini G, Rocchi A,
Murri L, Siciliano G: Peripheral benzodiazepine binding sites in platelets
of patients affected by mitochondrial diseases and large scale
mitochondrial DNA rearrangements. Mol Med 2002, 8:841-846.

Mc Pherson GA: KINETIC, EBDA, LIGAND, LOWRY: A collection of radio-
ligand binding analysis programs. Biosoft, Cambridge. UK; 1985.

doi:10.1186/1471-2202-12-18

Cite this article as: Giannaccini et al: Serotonin transporter (SERT) and
translocator protein (TSPO) expression in the obese ob/ob mouse. BMC
Neuroscience 2011 12:18.

Page 8 of 8

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/20041293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20041293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19665520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19665520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19665520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8813248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8813248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12759159?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12759159?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12759159?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12759159?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11557354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11557354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12606819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12606819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12606819?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Analysis of blood chemical parameters
	[3H]-paroxetine and [3H]-PK11195 binding parameters
	Autoradiography of brain coronal sections

	Discussion
	Conclusion
	Methods
	Materials
	Animals
	Sample preparation
	Brain and kidney tissues
	Blood collection for plasma chemical analysis
	Blood collection for platelet separation

	Membrane preparation
	Preparation of cerebral membranes
	Preparation of platelet and kidney membranes
	Protein assay

	[3H]-paroxetine and [3H]-PK11195 saturation binding experiments
	[3H]-paroxetine and [3H]-PK11195 autoradiography on brain coronal sections
	Data analysis

	Acknowledgements
	Author details
	Authors' contributions
	References

