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Abstract

to determine CMF effects on chromatin remodeling.

in addressing the clinical phenomenon of ‘chemobrain.’

Background: In this study, we examined the effects of cyclophosphamide, methothrexate, and 5-Fluorouracil
(CMF) drug combination on various aspects of learning and memory. We also examined the effects of CMF on cell
proliferation and chromatin remodeling as possible underlying mechanisms to explain chemotherapy-associated
cognitive dysfunction. Twenty-four adult female Wistar rats were included in the study and had minimitter
implantation for continuous activity monitoring two weeks before the chemotherapy regimen was started. Once
baseline activity data were collected, rats were randomly assigned to receive either CMF or saline injections given
intraperitoneally. Treatments were given once a week for a total of 4 weeks. Two weeks after the last injection, rats
were tested in the water maze for spatial learning and memory ability as well as discrimination learning.
Bromodeoxyuridine (BrdU) injection was given at 100 mg/Kg intraperitoneally 4 hours prior to euthanasia to
determine hippocampal cell proliferation while histone acetylation and histone deacetylase activity was measured

Results: Our data showed learning and memory impairment following CMF administration independent of the
drug effects on physical activity. In addition, CMF-treated rats showed decreased hippocampal cell proliferation,
associated with increased histone acetylation and decreased histone deacetylase activity.

Conclusions: These results suggest the negative consequences of chemotherapy on brain function and that anti-
cancer drugs can adversely affect the self-renewal potential of neural progenitor cells and also chromatin
remodeling in the hippocampus. The significance of our findings lie on the possible usefulness of animal models

Background

The development of new chemotherapeutic agents and
new regimens for breast cancer therapy has led to a
reduced risk of recurrence and a higher rate of survival
in this patient group. The majority of breast cancer sur-
vivors receive chemotherapy but unfortunately they also
report chemotherapy-associated cognitive compromise.
For example, in the first of a series of cross-sectional
studies in women with early breast cancer, cognitive
impairment was observed in 75% of patients after cyto-
static treatment [1-3]. Although the results of subse-
quent cross-sectional trials assessing cognitive function
during or after chemotherapy are less dramatic, all of
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them reported substantial cognitive impairment rates of
16% to 50%, suggesting detrimental cytostatic side
effects on cognitive function [4-6]. The cognitive deficits
reported in these studies range from very subtle to more
severe and are observed in a wide range of brain func-
tions, including memory, concentration, and speed of
information processing, and can be noticed up to 10
years after completion of cytotoxic treatment.

Although the existence of chemotherapy-induced cog-
nitive deficits has become almost universally recognized,
other recently published studies raised some doubts on
this phenomenon because they failed to confirm the
adverse effects of chemotherapy on cognitive function
[7-9]. The inconsistent findings reported to date make
conclusions regarding a link between chemotherapy and
cognitive impairment tenuous and underscore the need
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for further research in this area. The inconsistencies
reported are most probably due to the inherent metho-
dological limitations in studies involving human sub-
jects, which include small samples, less than adequate
controls, and most importantly failure to account for
other factors (e.g., disease-related complications, stress,
other co-morbidities) that could affect cognitive perfor-
mance. The inherent methodological difficulties and
ethical issues associated with conducting studies in clini-
cal settings also lead to the inability to separately iden-
tify the effects of chemotherapy and malignancy itself
on cognitive function. As well, the possible mechanisms
of chemotherapy-related cognitive dysfunction remain
poorly understood.

Currently, there are few animal studies that provide
insight into the effects of chemotherapy on cognitive
function. For instance, reports show that high-dose
intravenously administered methotrexate reduce sponta-
neous activity and diminish startle response to loud
noise or vibrissal stimulation [10,11] in male rats.
Furthermore, high-dose intraperitoneal injections of
methotrexate result in enhanced occurrence of seizures
in mice and an impairment of long-term memory in a
passive avoidance task [10]. Other studies that examined
cyclophosphamide, doxorubicin, and 5-Fluorouracil
given intraperitoneally also show that these drugs can
cause a disruption of learning and memory across a
variety of task such as water maze, avoidance condition-
ing, object recognition, as well as cue-specific and con-
textual fear conditioning tasks [12-16]. However, one
study did not find any cognitive effects of treatment
with 5-Fluorouracil on rat behavior [17] suggesting that
even in animal models reported results on chemother-
apy-induced cognitive impairment is far from being con-
gruent, which may be attributed to the different drugs,
dosing, and route of administration used.

To address the above issues we examined the effects
of cyclophosphamide, methotrexate, and 5-fluorouracil
(CMF) on a broad range of memory processes in female
rats (Figure 1). CMF is an adjuvant chemotherapy
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widely used clinically [18] and together with the assess-
ment of different memory processes, this study has the
potential to serve as a model for examining whether the
cognitive changes observed in breast cancer survivors
are associated with chemotherapy rather than the malig-
nancy itself. In addition, we measured activity level to
determine the influence of fatigue, a symptom clinically
associated with chemotherapy, on behavioral tasks
performance.

Hippocampal cell proliferation has been implicated in
learning and memory; and memory processing requires
the coordinated effort of transcription factors and
numerous enzymes and coregulators that modify and
remodel chromatin structure, the covalent modification
of histone tails (for review see [19]). Enzymes that regu-
late chromatin remodeling are known as histone acetyl-
transferases and histone deacetylases [20]. Thus, we also
examined whether changes in hippocampal cell prolif-
eration and histone modifications may be possible
mechanisms involved in chemotherapy-related cognitive
dysfunction.

Results

Chemotherapy Induces Fatigue and Weight Changes
During Treatment

Because of the possible confounding influence of other
factors on cognitive performance, we examined whether
chemotherapy can induce fatigue and weight loss. Our
results showed a significant decrease in general activity
during the treatment period but baseline levels were
restored once the chemotherapy was discontinued (Fig-
ure 2A) suggesting that these cytotoxic drugs can cause
fatigue symptoms. We also found a significant difference
in weight between the chemotherapy- and saline-treated
rats, in that those in the saline group continued to gain
weight over the 4-week period compared to rats that
received CMF (Figure 2B); however, the weight of rats
in the chemotherapy group did not significantly differ
from their baseline values. Although all rats in the study
remained healthy throughout the experiment, repeated
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Figure 2 Physical Activity and Body Weight. General physical activity significantly decreased in the CMF group compared to the saline group
during the treatment period but fatigue decreased once the drugs were discontinued (A). In contrast, no weight loss was seen in the CMF
group during the treatment period (B). However, the CMF group failed to normally gain weight compared to the saline group although they
remained healthy throughout the study and no overall reduction in food intake was observed. *p < 0.05.

Treatment period

administration of CMF over the 4-week period resulted
in the inability to gain weight even though no overall
reduction in food intake was observed suggesting that

the cytotoxic drugs might have an effect on gastrointest-
inal function.

Chemotherapy Induces Memory Impairment

Rats were tested in a series of water maze tasks designed
to assess spatial learning and long-term memory of a
fixed location. A significant within-subjects effect was
seen for swim latency during the acquisition phase (first
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4 days of testing) wherein all rats learned to perform the treated rats did not perform the task as well as the sal-
task efficiently over the four testing days (Figure 3). Sig-  ine-treated group until the third day of testing. But
nificant group differences were seen in mean swim  despite the longer mean swim latency and path length
latency and path length in that the chemotherapy- demonstrated by the chemotherapy-treated group in the
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Figure 3 Spatial Learning and Memory. Significantly increased mean swim latency (A) and path taken to reach the goal (B) was seen in the
CMF group. However, these rats eventually performed as well as the saline group in the spatial learning and memory tasks on the last day of
testing. *p < 0.05.
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beginning days of the trial, they eventually performed as
well as the saline-treated groups. However, no signifi-
cant treatment x time interaction was seen. No signifi-
cant differences were seen in swimming speed in the
chemotherapy- and saline-treated groups across the test
days. These results suggest a chemotherapy-induced
transient spatial learning impairment.

On the fifth day of behavioral testing, a probe trial was
performed for 60 seconds wherein rats were placed in
the water maze without the goal/platform. Time spent
swimming in the quadrant of the pool where the goal/
platform was located during the first 4 days of trial (cor-
rect quadrant) was divided by the time spent swimming
in the other three quadrants of the pool (wrong quad-
rants). In the probe trial (recall phase) a significant dif-
ference was seen in that the chemotherapy-treated
animals spent less time in the correct target quadrant
area where the goal was previously located compared to
the saline-treated group (Table 1). These results suggest
that although the cytotoxic drugs have a transient effect
on learning a simple task (acquisition), chemotherapy
can induce some degree of persistent memory impair-
ment as evidenced in the probe trial performance. How-
ever, no significant differences were seen in swimming
speed suggesting the absence of motoric impairment.
Furthermore, no significant differences were seen in the
cued trial (Table 2) suggesting the absence of visual pro-
blems that can affect behavioral performance.

In the discrimination-learning task a significant within
subjects effect was seen for mean swim latency across
the test days as all rats learned to perform the task effi-
ciently over the 4 days of testing (Figure 4). An overall
significant main effect of treatment was also seen. Speci-
fically, chemotherapy-treated rats demonstrated longer
mean swim latency compared to the saline-treated rats.
Analysis of the number of choices made by the rats in
locating the correct platform in the discrimination-
learning task also showed an overall significant main
effect of treatment. Saline-treated rats regularly choose
P" (the correct goal) during the trials, while the che-
motherapy-treated group made more errors by often
choosing P~ (the incorrect goal) in the first 3 trial days
(Figure 4). Although the chemotherapy-treated rats
demonstrated longer mean swim latency and made
more errors in the beginning days of the trial, they
eventually learned to perform the task. In addition, a

Table 1 Probe Trial

CMF Saline
32%* 66%

Time spent swimming in correct quadrant of the pool

The CMF group spent significantly less time swimming in the correct
quadrant of the pool during the probe trial compared to the saline group.
Less amount of time spent swimming in the correct quadrant illustrates
deficits in recalling learned information. * p < 0.05.
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Table 2 Cue Learning Trial.
CMF Saline
Mean swim latency (sec) 16.05 + 1.01 16.92 + 092
Path Length (cm) 511 £ 29 488 + 22

No significant differences were seen in the CMF-treated and saline groups
when tested in the water maze with a visible pole suggesting the absence of
visual impairments.

trend toward an interaction between treatment and time
was seen. These data suggest that chemotherapy can
induce transient impairment in the performance of sim-
ple learning and memory task but persistent cognitive
dysfunction in the more complex test.

Chemotherapy Decreases Cell Proliferation in the
Hippocampus

The total number of BrdU-labeled cells in the dentate
gyrus of the hippocampal region was quantified to
determine cell proliferation. A significant main effect of
treatment was seen in that the number of BrdU-positive
cells per hippocampal volume decreased by approxi-
mately 20% in all rats subjected to the chemotherapeutic
regimen compared to the saline group (Figure 5). These
results suggest that there is a basal level of proliferative
activity present in the mature nervous system evidenced
by the presence of BrdU-positive cells in saline-treated
rats but cytotoxic drugs can reduce cell proliferation.

Chemotherapy Induces Histone Modifications in the
Hippocampus

Since the most studied mechanism of chromatin remo-
deling associated with learning and memory processes is
histone modifications, we examined levels of histone
acetylation and HDAC activity. Our results show signifi-
cantly increased acetylation of histone H3 in the hippo-
campus and prefrontal cortex of chemotherapy-treated
rats compared to the saline group, whereas no signifi-
cant group changes seen in the striatum (Figure 6).
Acetylation of histone H3 in the chemotherapy-treated
rats is approximately 21% and 47% greater in the hippo-
campus and prefrontal cortex, respectively, when com-
parison to the saline group. In contrast, overall HDAC
activity was significantly inhibited in the hippocampus
of chemotherapy-treated animals by approximately 37%
(Figure 6). These results suggest that the cytotoxic drugs
can influence epigenetic modifications in certain regions
of the brain.

Discussion

In the present study using an animal model, we show
learning and memory impairment following CMF
administration, a drug combination that is widely used
as chemotherapeutic agents in the treatment of human
breast cancer. Since the behavioral tasks used in this
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study assess various aspects of learning and memory
which can be dissociated and linked to different brain
regions, the chemotherapy-induced deficits seen in both
the spatial learning task and discrimination-learning
tests provide insight into the areas that may be affected
by the drugs. That is, the spatial memory evaluated in
the water maze is a form of reference memory that
depends on the functional integrity of the hippocampus
while the ability to perform the discrimination-learning

task depends on the functional integrity of the caudate
nucleus and striatal structures. Since we demonstrate
that CMF treatment resulted in impaired performance
in both hippocampal- and non-hippocampal-dependent
tasks, our results suggest that the adverse effects of
these chemotherapeutic drugs are not limited to one
region of the brain. Nevertheless, it is important to note
that the effects of CMF on learning and memory while
statistically significant are relatively small when
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Figure 5 Cell Proliferation. Representative samples of BrdU labeling seen in the dentate gyrus of the hippocampal region in the CMF and
saline groups (upper panel). Scale bar = 60 um. CMF administration significantly decreased cell proliferation in the hippocampal region (lower

Saline

compared to cognitive impairments that result from
injury to the hippocampus and striatum. For instance,
the learning and memory deficits seen in the water
maze tests occurred only in the first 3 days of testing
suggesting the transitory nature of the cognitive impair-
ment. However, CMF-treated rats showed significant
impairment in the discrimination-learning task through-
out the test days when compared to the saline-treated
rats suggesting the possibility that the water maze may
lack sufficient complexity to detect subtle learning

differences between the groups thus, behavioral perfor-
mance will likely be affected by a “ceiling effect.”

Our behavioral testing results parallel those of others
that demonstrate cognitive impairment in rats and mice
following administration of either methotrexate alone,
cyclophosphamide alone, or the combination of metho-
trexate and 5-fluorouracil [12,13,15,16]. However, our
data are at odds with others that showed no evidence of
impaired cognitive performance in female rats when
behavioral testing was conducted 7 weeks after
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Figure 6 Histone Modifications in the Hippocampus. Representative samples of acetyl-H3 immunoreactivity in the hippocampus in the CMF
and saline groups (upper panel). Scale bar = 40 um. CMF administration significantly increased histone acetylation in the hippocampus, striatum,
and prefrontal brain regions (lower panel, left). However, overall decreased in histone deacetylase activity was seen in the hippocampus of CMF-
treated rats when compared to the saline group (lower panel, right). *p < 0.05.
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cyclophosphamide or 5-fluorouracil administration [17].
The discrepancy in findings between our study and
those of others may be attributed to the timing of beha-
vioral testing; namely behavioral testing in our study
was conducted two weeks after the last CMF injection
when chemotherapy may still be readily available in the
system, thus providing information on the short-term
effects of the drugs. It is also possible that because of
the longer treatment-testing interval in the Lee et al
study [17], there may be some recovery of cognitive
function in their animals compared to the rats tested in
our study.

General activity levels and weight was also examined
in the present study to ensure that behavioral differ-
ences between chemotherapy- and saline-treated rats are
due to cognitive processes rather than drug-induced
effects on performance ability. Although it is possible
that drug-related side effects of fatigue and weight loss
might have contributed to the cognitive impairment
seen in the CMF-treated rats, this is unlikely for the

following reasons: 1) while general activity decreased
during the first 3 weeks of CMF administration it
started to recover on the last week of treatment, and 2)
even though daily food intake of the rats injected with
CMEF was significantly reduced for the first 3 days rela-
tive to the saline-treated animals, normal appetite
rebounded beginning on day 4. In fact, one week after
starting the CMF treatment rats that received the drugs
actually had an overall increase in food intake compared
to their pre-chemotherapy values. Thus, by the time
behavioral testing was performed the transient changes
in both general activity and body weight induced by
CMF would likely have not contributed to the cognitive
impairment seen in these rats.

The production of new neurons in the subgranular
zone of the dentate gyrus is a well-characterized phe-
nomenon in the mammalian brain that is related to
learning and memory (for review see [21]). In the pre-
sent study, we showed that CMF treatment significantly
reduced the total number of proliferating cells in the
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dentate gyrus using BrdU-labeling and our data are in
line with those reported by others that used the endo-
genous marker, Ki-67 [12,13]. These results are hardly
surprising because both in vitro and in vivo data suggest
a susceptibility of hippocampal regions to chemothera-
peutic agents even at doses lower than those used in
standard treatments [12,13,22]. For example, increased
cell death and decreased cell division in the subventricu-
lar zone have been reported with administration of che-
motherapeutic agents. Chemotherapeutic agents
assumed to have minimal penetration into the CNS
actually do enter the brain in small quantities (i.e., sub-
clinical concentrations), and these quantities might be
enough to cause toxicity and damage to neural progeni-
tor cells [23]. Since the learning and memory impair-
ments seen in our study are associated with decreased
cell proliferation in the neurogenic area of the hippo-
campus, it is possible that chemotherapy-related cogni-
tive dysfunction is caused by the disruption of
endogenous adult hippocampal neurogenesis. Although
it is possible that the decreased hippocampal cell prolif-
eration seen in the CMF-treated rats does not have an
effect on the differentiation and survival of the adult-
born cells, in this study we primarily focused on poten-
tial influence of histone modifications on cell prolifera-
tion; however, the issue of CMF effects on the different
phases of the neurogenesis process warrants further
investigation in future studies.

Epigenetic mechanisms are often associated with
learning and memory [24] and there is increasing evi-
dence that histone modifications are in part responsible
for regulating the process of adult hippocampal neuro-
genesis [25]. Here we demonstrate increased histone H3
acetylation and decreased HDAC activity in the hippo-
campus of the CMF-treated rats when compared to the
saline-treated group. This is a surprising finding because
histone acetylation is the post- translational modification
on histones associated with enhanced learning and
memory. A possible explanation for this unexpected
finding is that the decreased HDAC activity may have
contributed to the increased histone acetylation seen in
the CMF-treated rats. It is possible that chemotherapeu-
tic agents in general have HDAC inhibitor properties
and this line of reasoning is supported by a recent study
demonstrating that the mechanism of action of metho-
trexate is achieved through the downregulation of
HDAC activity [26]. Moreover, our data that increased
histone H3 acetylation in the hippocampus is not asso-
ciated with enhanced cell proliferation is also surprising
since epigenetic mechanisms have been implicated in
neurogenesis. A possible explanation of this finding is
that the method we used in the present study to mea-
sure acetylation/deacetylation only provides general
information on histone modification. Examining specific
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epigenetic regulation of transcriptional pathways may be
more valuable such as whether CMF-induced acetylation
of the p53 pathway that leads to apoptosis [27] dampens
the acetylation of the basic helix-loop-helix transcription
factors that regulates cell proliferation; thus, these issues
warrant further investigation in future studies.

Conclusion

In sum, the present study provides evidence that anti-
cancer drugs can adversely affect the self-renewal poten-
tial of neural progenitor cells and also chromatin remo-
deling in the hippocampus, which might be potential
mechanisms in explaining chemotherapy-induced cogni-
tive dysfunction. Our results also show the negative con-
sequences of chemotherapy on brain function, apart
from its potentially confounding physical side effects.
Although more work is needed to establish the full
extent of cognitive change following chemotherapy, our
results on the degree of memory deficits seen in the
CMEF-treated rats parallel the human data in that clinical
reports show cognitive deficits reported in chemother-
apy-treated cancer patients to be typically mild to mod-
erate in severity, and while they may impact day-to- day
functioning, it is not necessarily apparent. Thus, the pre-
sent results show that animal models can be useful in
addressing the phenomenon of ‘chemobrain.’

Methods

Subjects

Adult (4 months of age) female Wistar rats obtained
from Harlan Laboratories (Madison, Wisconsin) were
housed in pairs in a pathogen-free vivarium under con-
trolled condition (temperature 22 + 1°C and humidity
70 + 5%) and a 14:10 hour light:dark cycle was main-
tained. All animals were housed in the same room so
that temperature, humidity, and lighting conditions are
similar for all groups. Animals had free access to food
(regular rat chow) and water delivered through an auto-
mated and filtered system. Animals were also handled
daily throughout the study so that they could get accli-
mated to the research personnel thereby decreasing
stress. Experiments (see Study Design) started two
weeks after arrival of the animals and all experimental
protocols in this study were approved by the Institu-
tional Animal Care and Use Committee and in accor-
dance with the National Institutes of Health guidelines.

Activity Measurement

Continuous activity monitoring was performed using a
microtelemetry device (Data Science International, St.
Paul, MN) to evaluate presence of fatigue due to che-
motherapy. The device was implanted via laparotomy
through a 1 c¢m incision in briefly anesthetized rats (gas
anesthesia of 2.5% isofluorane and 30% oxygen mixture
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delivered through a cone). After telemetry implantation,
rats were monitored every 10 minutes until fully awake
then daily for presence of pain; if pain was observed
(demonstrated as continuous scratching) then topical
lidocaine was applied. The individual receiver boards
that contain an infrared motion sensor placed under the
floor of each cage continuously monitored general activ-
ity (frequency [Hz]). These data were fed into a periph-
eral processor connected to a computer, where they
registered as activity counts and stored every 5 minutes.
Activity counts were generated by any locomotion in
the cage as detected by the infrared sensor from the
implanted telemetry. The individual telemetry devices
were calibrated before implantation and baseline activity
level was collected for one week before the start of the
chemotherapy protocol.

Chemotherapeutic Regimen

Two weeks after recovery from minimitter implantation,
rats were randomly assigned to either chemotherapy (n
= 12) or saline control (n = 12) group. Rats in the che-
motherapy group received the drug combination of
cyclophosphamide (40 mg/Kg; Sigma-Aldrich, St. Louis,
MO), methotrexate (37.5 mg/Kg; Wyeth Ayerst, Itasca,
IL), and 5-fluorouracil (75 mg/Kg; Sigma-Aldrich, St.
Louis, MO) dissolved in normal saline. Rats in the con-
trol group received normal saline of equal volume to
control for the effects of stress induced by the injection.
The dosages selected were based on our preliminary
work, which showed that animals tolerated these doses
with minimal weight loss or death. Both CMF and nor-
mal saline injections were given intraperitoneally once a
week for a total of 4 weeks and rats were weighed every
other day during the chemotherapeutic regimen. Rats
were also monitored daily for other possible toxicity
effects of chemotherapy (n = 0) such as apathy, exces-
sive grooming, motor impairment, hair loss, and
diarrhea.

Cognitive Testing
Two weeks after the final CMF or saline injections, rats
were tested in the water maze to evaluate cognitive
impairment. The delay in behavioral testing was done to
allow the animals to recover from the drug-induced fati-
gue that may confound the behavioral tests results. Both
hippocampal and non-hippocampal learning and mem-
ory processes, were assessed. All testing were done
approximately 2 hours prior to the onset of the dark
cycle to ensure that it is close to the rats” active period.
Spatial learning and memory (acquisition and recall),
tasks sensitive to hippocampal dysfunction were exam-
ined using the water maze task. The water maze appara-
tus consisted of a circular tub made of galvanized steel
measuring 1.52 m in diameter; and the interior surface
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was painted white. The use of a large tub decreased the
probability that the rats will find the goal/platform by
chance. During testing, the tub was filled with tepid
water (22 + 2°C) and made opaque by the addition of
powdered milk. An inverted white flowerpot, submerged
2 cm beneath the water’s surface served as the goal/plat-
form and the opaqueness of the water enabled the goal/
platform to be concealed. Extramaze cues, such as over-
head lighting, windows and room noise were held con-
stant during testing. The pool was divided into four
quadrants of equal surface area and the starting loca-
tions for testing were assigned north, south, east, and
west. The goal/platform was located in the middle of
the southeast quadrant approximately 22 cm from the
pool rim. The day before actual testing started, rats
were allowed a habituation swim for 10 seconds without
the platform. The habituation swim and consistent
water temperature throughout the test days were neces-
sary to minimize animal stress during water maze test-
ing. Animals received four trials a day for four
consecutive days. A different starting point was used on
each of the four daily trials and the order of starting
points was random. If the rat failed to find the hidden
platform within 3 minutes, they were guided to the plat-
form and given a swim latency score of 180 seconds.
The animals were allowed to stay on the platform for 20
seconds then towel-dried until the next trial. A mini-
mum of two minutes was used between trials to provide
a rest period for the animals and avoid “practice effect.”
During the trials, swim latency (time to reach the plat-
form) and the path taken by the animals to reach the
platform were recorded by a video camera connected to
an image analyzer (Water Maze System Version 4.20,
Columbus, OH) and these data were used to assess per-
formance in the water maze task. In addition, swimming
speed (path length/swim latency) was used to assess the
motoric activity of the rats in performing the task. Black
shoe polish was applied on top of the animals’ head to
facilitate video camera tracking as rats swim in the
water maze. On the fifth day, a probe trial was per-
formed wherein the goal/platform was removed from
the pool. In addition, rats were tested in a cued trial for
one day (4 trials) following the water maze task where
they were allowed to swim in the tub to locate a visible
pole attached to the goal. The cued trial was performed
to control for potential visual problems that may influ-
ence performance in the water maze.

The rats also received discrimination-learning test
after two days of rest following the cued trials. The dis-
crimination-learning task is sensitive to dysfunction
involving the striatum. In this task the rats had to discri-
minate between black and white visible goals to find the
hidden platform and all extra-maze cues in the room
were covered. The goal painted white was placed on top
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of the hidden platform to provide escape (P") from the
water (located in the southeast quadrant); whereas the
other one painted black was floating (P") and not able to
offer sufficient buoyancy to support the rat (located in
the southwest quadrant). Both visible goals were placed
8 cm above the water level. For this task, the additional
measure obtained was the number of correct choices of
P" compared to P~ since the aim was to train the rats to
avoid P.

Cell Proliferation

The thymidine analog Bromodeoxyuridine (BrdU; Che-
micon, Temecula, CA) was used to label proliferating
cells. BrdU incorporates into the genetic materials on
mitotic division within 2 hours after injection, after
which it can be detected immunohistochemically in the
daughter cells [28]. BrdU was dissolved in 0.9% sterile
NaCl and filtered at 22 pm. The resulting solution was
injected at 100 mg/kg intraperitoneally in all rat groups.
Injections were given 4 hours prior to euthanasia.

Tissue Preparation

All rats were euthanized using CO, inhalation, the
brains removed, cut in half sagitally and immediately
placed in liquid nitrogen until processed. Half of the
brain was used for immunohistochemistry (detection of
cell proliferation and histone acetylation) while the
other half was used for determination of histone deace-
tylase (HDAC) activity. The half used for immunohisto-
chemistry was fixed in 4% paraformaldehyde in 0.1 M
phosphate buffer (pH 7.3) overnight then cryoprotected
before sectioning.

Immunohistochemistry

The fixed brains were sectioned at 30 pm thickness
using a cryostat. Tissue sections were obtained covering
the entire hippocampal region in its rostro-caudal exten-
sion and the free-floating section method was used for
immunohistochemistry to examine histone modifications
and hippocampal cell proliferation. For detection of
BrdU-labeled nuclei, DNA was denatured to expose the
antigen before incubation in anti-BrdU primary anti-
body. Briefly, free-floating sections were pretreated in
50% formamide/50% 2xsaline-sodium citrate buffer
(SSC) at 65°C for 2 h, rinsed in 2xSSC, and then incu-
bated in 2 N HCI at 37°C for 30 min. Tissues were then
rinsed in borate buffer (pH 8.5) for 15 minutes and
placed in 0.6% H202 in Tris-buffered saline (TBS) for
30 minutes to block endogenous peroxidase, followed by
several rinses in TBS (pH 7.5). Tissues were then placed
in TBS/0.1% Triton X-100/3% donkey serum (TBS-TS)
for 1 hour followed by incubation with anti-BrdU pri-
mary antibodies at a concentration of 1:400 (monoclonal
mouse; Boehringer Mannheim; Indianapolis, IN) in TBS-
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TS overnight at 4°C. The following day, the primary
antibody was detected using biotinylated immunoglobu-
lin G (IgG) donkey anti-mouse secondary antibodies
(Vector Laboratories; Burlingame, CA) at a concentra-
tion of 1:200 for 2 hours. Tissues were then rinsed in
TBS and incubated in avidin-biotin complex (ABC kit;
Vector Laboratories) for 1 hour at room temperature.
Immunoreactions were visualized by treatment of sec-
tion with hydrogen peroxide and 3,3’- diaminobenzidine
tetrahydrochloride in Tris buffer (pH 7.3). After thor-
ough rinsing, the tissue sections were mounted on gela-
tin-coated slides and dried, and coverslips were applied.
To minimize intergroup and interbrain staining variabil-
ity and to ensure reproducibility of results, tissues from
all experimental groups were run simultaneously and
under identical conditions.

The total number of BrdU-positive cells in the granule
cell layer and its corresponding sample volume were
determined in 8 coronal sections, 240 pum apart, using
the optical disector method (Stereolnvestigator, Micro-
Brightfield, Colchester, VT). Briefly, each section was
examined at a magnification of 40x, and an unbiased
counting frame was positioned randomly across the den-
tate gyrus area. The 1st focal plane (i.e., the top of the
tissue section where cells came into focus) was identi-
fied, and cells in this field of view were disregarded. A
focal plane (approximately 3 um apart) was then gradu-
ally passed through each section by adjusting the focus
of the microscope slowly, and the labeled cells encoun-
tered while focusing through the section were counted.
The number of labeled cells was related to the number
of sections counted and was multiplied by the reference
volume to provide an unbiased estimation of the total
number of BrdU-positive cells. Reference volume in the
dentate gyrus was obtained using the Cavalieri principle,
wherein the granule cells were counted at random sys-
tematic sampling points superimposed onto the image
projected on the computer. The reference volume was
the product of the sum of the number of points that fell
within the boundaries of the granular layer and the
mean post- processing thickness of Nissl-stained sec-
tions. The section thickness of 30 um (microtome set-
ting) was used because it was assumed that the net
error by using the whole-section thickness for the
volume was smaller than the error introduced by mea-
suring the postprocessing section thickness on each
slide and counting in a fixed fraction of it.

For detection of histone acetylation, tissues were first
sequentially treated with 0.3% hydrogen peroxide in PBS
for 30 minutes then rinsed with 0.1 M phosphate buf-
fered saline (pH 7.3) and placed in the blocking solution
of 3% serum, 0.1% Triton-X, and 1% bovine serum albu-
min for 1 hour. After blocking, tissues were washed in
phosphate buffered saline (PBS) followed by incubation
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for 24 hours at 4°C in rabbit anti-acetyl-H3 (1:1000;
Upstate Cell Signaling, Bellirica, MA) with gentle agita-
tion. Anti-acetyl-H3 recognizes histone acetylation at
the Lys9 and Lys14 residues. The primary antibody was
detected using preadsorbed biotinylated IgG secondary
antibodies (1:200, Vector Laboratories, Burlingame, CA)
for 1 hour at room temperature. The tissues were then
washed and incubated in avidin-biotin complex (ABC
kit, Vector Laboratories, Burlingame, CA) for one hour
at room temperature. Immunoreactions were visualized
by treatment of tissue sections with hydrogen peroxide
and 3,3’-diaminobenzidine tetrahydrochloride (DAB) in
Tris buffer (pH 7.3). After thorough rinsing, the tissue
sections were mounted on gelatin-coated slides, dried,
and coverslipped. Tissues from all experimental groups
were run simultaneously and under identical conditions
to ensure reproducibility of results. In addition, a pre-
dilution test was done to ensure specificity of the anti-
body and negative controls, involving deletion of the
primary antibody, were used to rule out any nonspecific
interactions. Quantification of histone H3 changes in
the hippocampus, striatum, and prefrontal cortex was
determined by the surface area covered by anti-acetyl-
H3 immunoreactivity using an area-fractionator grid
defined by the Stereolnvestigator (MicroBrightfield, Col-
chester, VT) computerized analysis system as previously
described [29].

Histone Deacetylase (HDAC) Activity

To determine histone deacetylation, HDAC activity was
measured from the total cell lysate after whole hippocam-
pal tissues were homogenized using a nuclear extraction
kit (Sigma, St. Louis, MO). Total HDAC activity (class I
and II HDACs) was determined according to the manu-
facturer’s instructions for the colorimetric HDAC activity
assay kit (BioVision Research, Mountain View, CA) by
measuring the deacetylation of acetylated lysine side
chains. The optical density (OD) of the samples was mea-
sured using an ELISA plate reader at 405 nm (Spectra
MR; Dynex Technologies, Chantilly, VA). The results
were calculated as OD per milligram of protein and then
converted to percentage of control.

Statistical Analysis

The SAS general linear model (SAS Institute, North
Carolina) procedures for one-way analysis of variance
(ANOVA) were used to examine effects of experimental
conditions (chemotherapy vs. saline groups) on epige-
netic modifications (histone acetylation and HDAC
activity). Repeated measures ANOVA were used to
examine chemotherapy effects on weight loss, activity,
and behavioral performance to determine differences in
latency, path length, swimming speed, exploration time,
and discrimination ratio. All error bars represent +
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standard error of the mean (SEM) of the sample size
used in the study.
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