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Abstract

Background: Pseudoreplication occurs when observations are not statistically independent, but treated as if they
are. This can occur when there are multiple observations on the same subjects, when samples are nested or
hierarchically organised, or when measurements are correlated in time or space. Analysis of such data without
taking these dependencies into account can lead to meaningless results, and examples can easily be found in the
neuroscience literature.

Results: A single issue of Nature Neuroscience provided a number of examples and is used as a case study to
highlight how pseudoreplication arises in neuroscientific studies, why the analyses in these papers are incorrect,
and appropriate analytical methods are provided. 12% of papers had pseudoreplication and a further 36% were
suspected of having pseudoreplication, but it was not possible to determine for certain because insufficient
information was provided.

Conclusions: Pseudoreplication can undermine the conclusions of a statistical analysis, and it would be easier to
detect if the sample size, degrees of freedom, the test statistic, and precise p-values are reported. This information
should be a requirement for all publications.

Background
The majority of neuroscience experiments include some
type of inferential statistical analysis, where conclusions
are reached based on the distance between the observed
results from some hypothetical expected value. Disco-
vering how the brain and nervous system work requires
the proper application of statistical methods, and inap-
propriate analyses can lead to incorrect inferences,
which in turn leads to wasted resources, biases in the
literature, fruitless explorations of non-existent phenom-
ena, distraction from more important questions, and
perhaps worst of all, ineffectual therapies that are
advanced to clinical trials [1,2]. Pseudoreplication is a
particularly serious error of analysis that has not
received much attention in the neuroscience literature,
and which Hurlbert defined over twenty years ago as
the “... use of inferential statistics to test for treatment

effects with data from experiments where either treat-
ments are not replicated (though samples maybe) or
replicates are not statistically independent” [3]. Put sim-
ply, it is a confusion between the number of data points
with the number of independent samples, and can be
illustrated with the following example. Suppose the fol-
lowing information was provided in the Methods section
of a manuscript: “Ten rats were randomly assigned to
either the treatment or the control group, and perfor-
mance on the rotarod (a test of motor coordination)
was tested on all the rats on three consecutive days. Dif-
ferences between groups were assessed with a two-tailed
independent samples t-test, with p < 0.05 considered
statistically significant.” Then in the Results section the
authors report that “the treatment group did signifi-
cantly better than the control group (t28 = 2.1; p =
0.045).” Have the authors analysed the data correctly?
No. With a sample size of ten rats, there should only be
eight degrees of freedom (df = n1 + n2 - 2, where n1 and
n2 are the number of independent samples in each
group) associated with this statistical test. The concept
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of degrees of freedom is perhaps not the most intuitive
statistical idea, but it can be thought of as the number
of independent data points that can be used to estimate
population parameters (e.g. means, differences between
means, variances, slopes, intercepts, etc.), and whenever
something is estimated from the data, a degree of free-
dom is lost. Therefore the total df is equal to the sample
size only if all the samples are independent: measuring
the height of ten unrelated individuals provides ten
independent pieces of information about the average
height of the population from which they were drawn;
measuring the height of one person ten times provides
only one independent piece of information about the
population. In the above rat example, the three observa-
tions from each rat (from the three days of testing) were
treated as independent samples, and hence the 28
degrees of freedom arose from thinking that the fifteen
data points in each group contain independent informa-
tion about the effect of the treatment (n1 = n2 = 15, and
so 15 + 15 - 2 = 28). Incidentally, the correct analysis
with a t-statistic of 2.1 on 8 df has a corresponding p-
value of 0.069. In addition to the incorrect degrees of
freedom, there is also the problem of false precision,
which is discussed at greater length below (see Figure
1). However, it should be noted here that the df pro-
blem has greater relevance when sample sizes are small,
but false precision is arguably of greater concern in
general.
The assumption of independence means that observa-

tions within each group or treatment combination are
independent of each other. An alternative way of expres-
sing this concept is to say that the errors (residual
values) are independent, once the effects of all the other
explanatory variables have been taken into account. In
addition, other variables that are not included in the
analysis (e.g. the order in which the samples were
obtained) must not influence the outcome or be corre-
lated with the residuals. The remainder of the introduc-
tion will define some commonly used terms, illustrate
why pseudoreplication is problematic, and finally, dis-
cuss the four situations in which it can arise.
The terms sample, replicate, observation, experimental

unit, n, and experiment have overlapping meanings, are
often used interchangeably, and can have different
meanings based on the context. An experimental unit is
defined as the smallest entity that can be randomly
assigned to a different treatment condition [4]. A person
or a rat are typical experimental units, because they can
be allocated to different treatments. The sample size is
usually reported as the “n” and is defined as the number
of experimental units, but the term is slightly ambiguous
because one could take two blood samples from a rat (in
the morning and afternoon for example) and therefore
there are twice as many samples as rats, but the “sample

size” still refers to the number of rats. An observation
occurs whenever a value of an outcome variable is
recorded, and it is equivalent to the number of data
points; if there are twenty rats and only one observation
is taken on each rat, then the number of observations
equals the sample size (n). If multiple observations are
taken from each rat, then observations within each rat
are not independent and therefore all of the observa-
tions cannot be summed to give a total sample size. In
cell culture experiments, the whole procedure is often
repeated three or more times and reported as three
“independent replicate experiments”. In this case n is
the number of experiments. The term experiment is
ambiguous in this context because all of the indepen-
dent trials or runs taken together can be thought of as
“the experiment”. Replicates also typically refers to inde-
pendent observations, and hence the term pseudorepli-
cation when this is not the case. However, Cumming et
al. use replicates to refer to “repetition of measurements
on one individual in a single condition, or multiple mea-
surements of the same or identical samples”, and thus
they use the term replicate to refer to observations that
are not independent [5]. The difference here is between
biological replicates which are independent (e.g. two
unrelated rats are biological replicates) and technical
replicates which are not independent (e.g. dividing a
blood sample from a single rat into two sub-samples,
and measuring the concentration of a substance in each
sub-sample). In this paper, replicates refers to biological
replicates unless otherwise indicated; references to sam-
ples or sample size (n) refer to the number of indepen-
dent values, and observations are used to refer to
individual data points, which most likely are not inde-
pendent (but observations could be independent if there
is only one observation per animal for example). The
term pseudoreplication is used synonymously with lack
of independence of observations, correlated observa-
tions, and correlated errors.
Pseudoreplication leads to the wrong hypothesis being
tested and false precision
Ignoring lack of independence leads to two major pro-
blems. The first is that the statistical analysis is not test-
ing the research hypothesis that the scientist intends, in
other words, the incorrect hypothesis is being tested.
This is illustrated in Figure 1, where two rats are
sampled from a population, and the interest is in deter-
mining whether the rats come from a population with a
mean of 50 on some arbitrary outcome variable (shown
horizontally on the right), or is their value far enough
away from 50 that we conclude that they come from a
different population. This can be stated as H0: μ = 50
(the null hypothesis), and H0: μ ≠ 50 (alternative
hypothesis). Ten measurements are made on each rat
and a one-sample t-test can be used to compare the
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mean of this single sample of rats to a hypothesised
population value. The incorrect analysis would give t19
= -7.75, a p-value of 2.7 × 10-7, and a 95% confidence
interval (CI) from 32.9 to 40.2. The correct analysis
would give t1 = -2.07, p = 0.287, and 95% CI = (-46.3,
119.4). The change in p-value between the two analyses
is six orders of magnitude, which demonstrates the
importance of dealing with pseudoreplication appropri-
ately. When calculating standard errors and confidence
intervals, and making inferences between different
groups with statistical tests, the assumption is that all
the values are independently drawn from the parent
population, but clearly the rat that the observation came
from partly determines what that value is. Statistical
analyses performed on such data without regard for this
structure are often meaningless (in this case the

researcher would falsely conclude that the mean of the
sample is less than 50). The incorrect 95% confidence
interval does not include the true population mean,
while the correct 95% CI spans the whole distribution
(as one would expect–with only two independent pieces
of information there is little certainty about the true
population value). Multiple observations on each rat
provides increased precision for estimating the true
mean for that rat, but does not directly provide
increased precision for estimating the population mean
in the way that increasing the number of rats does. As
the number of samples within each rat increases, the
incorrect error bar in Figure 1 will get increasingly nar-
rower, while the correct error bar will remain the same
—as it should, because no new information about the
population of rats will be obtained by further sampling
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Figure 1 An example of pseudoreplication. Two rats are sampled from a population with a mean (μ) of 50 and a standard deviation (s) of
10, and ten measurements of an arbitrary outcome variable are made on each rat. The first (incorrect) 90% CI uses all 20 data points and does
not account for the hierarchical nature of the data. For the second 90% CI, the mean of the ten values for each rat are calculated first, and then
only these two averaged values are used for the calculation of the CI. The error bar on the left is incorrect because each of the 20 data points
are not a random sample from the whole population, but rather samples within two rats. This is evident from the fact that the 10 points are
normally distributed around the mean of their respective rats, but not normally distributed around the population mean (horizontal grey line), as
would be expected when independent samples are randomly drawn from a population. Increasing the number of observations on each rat does
not lead to a more precise estimate of μ, which requires more rats. Note that 90% CI are plotted for clarity because the graph needs to be
greatly compressed to display the 95% CI.
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of these two rats. This idea is also extended to cases
where there is more than one experimental group or
condition; it is necessary to distinguish between those
measurements that are independent samples from the
population and which increase precision and decrease
uncertainty about the population parameters (which is
what the hypotheses tests are testing), and those mea-
surements that only increase the precision of the value
for a particular subject.
The second problem that arises is that correlations

between observations can lead to calculated p-values
that are either higher or lower than the true p-value.
For the above example, “correlation between observa-
tions” refers to the degree of similarity of the observa-
tions within each rat, relative to the observations
between rats. This is called the intraclass correlation
(IC) and is expressed as a ratio of variances. We can
model the data in Figure 1 as

yij i ij    

where yij are the values of the response, i is an index
indicating the rat that the observation comes from (i =
1 or 2 in this example), and j is an index for the obser-
vation within each rat (j = 1,...,10). The grand mean (the
average of the 20 y values) is denoted by μ, ai is the
amount by which the mean of each rat is above or
below the grand mean, and εij are the residuals, which is
the distance of each of the 20 values from the mean of
their respective rat. The intraclass correlation can then
be calculated as

IC 



 

2

2 2

where 
2 is the variance of the means of the rats

about the grand mean, and  
2 is the variance of the

residuals (i.e. the unexplained variance). The variability
in the data is therefore partitioned into the variability

between rats (
2 ) and the variability within rats ( 

2 ).
As can be seen from the above equation, as  

2 gets
large, IC approaches zero, and when all the observations
within each rat are identical ( 

2 = 0), IC approaches
one. The IC can thus be interpreted in a similar manner
to the Pearson correlation, but restricted to positive
values. For the above rat example, 

2 = 83.3 and  
2

= 16.6 giving IC = 0.83, which indicates that the obser-
vations within each rat are highly correlated.
A detailed analysis by Scariano and Davenport showed

that both the Type I (false positive) and Type II (false
negative) error probabilities can be affected by within
group correlations [6,7]. When there is a positive within
group correlation (the more common situation), the
Type I error probability (a) will be greater than 0.05,
and the greater the correlation the greater the number
of false positives. For example, a two independent group
comparison with n = 10 in each group and with a mod-
est within group correlation of IC = 0.30 would give an
a probability of 0.37; in other words, 37% of the time
(and not 5%) the null hypotheses would be (erroneously)
rejected. Thus when there is a positive correlation, null
hypotheses will be rejected too often, and this is the rea-
son that violating the independence assumption can be
more serious than violating the normality or equal var-
iances assumption [8]. The four situations in which
pseudoreplication can arise are discussed next and sum-
marised in Table 1.

Repeated measurements on the same experimental unit
A common situation is when observations are taken at
different times or under different experimental condi-
tions on the same subjects, and this is usually a planned
part of the experimental design. Data of this type are
typically analysed with a paired-samples t-test if there
are only two conditions or time points, or a repeated
measures (RM) analysis of variance (ANOVA) if there
are more than two time points. There are a number of
advantages of such designs, including a reduction in the

Table 1 Four situations in which pseudoreplication can arise.

Situation Example Solutions

Repeated measures Growth curve 1. Include subject as a random effect

2. Repeated measures ANOVA

3. Summary-measure analysis

Hierarchical/nested Multiple brain sections 1. Include random effects

Multiple coverslips/wells 2. Average over observations

Litter effects

Correlated in time Time of day testing occurs 1. Include time as covariate

Circadian effects 2. Include sample number as a covariate

Correlated in space Multiple incubators 1. Include random effects

Cage effects 2. Average over observations
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number of animals or participants used, and increased
statistical power because subjects act as their own con-
trol. The important distinction is that observations from
different subjects are independent of each other, but not
the observations within each subject. These data are
often analysed correctly (in the sense that paired sam-
ples t-tests are used instead of independent samples t-
tests), possibly because undergraduate statistics courses
for biologists usually cover the difference between
“within subjects” and “between subjects” designs.
Data with a hierarchical structure
A second common design where pseudoreplication can
occur is when data are hierarchically organised. Biologi-
cal data are often sampled at different spatial scales or
levels of biological organisation. For example, several
brains may be sliced into sections, and a number of
regions on a section may be examined histologically (or
maybe just the left and right side of the brain), and per-
haps only a certain number of cells within each region
would be examined. Thus there is a hierarchy, with the
whole brain (animal) at the top, sections within a brain,
regions within a section, and cells within a region (see
reference [9] for a graphical example of hierarchical his-
tological data). If cells are the unit of interest, then typi-
cally many cells are examined per brain. Consider an
experiment with two experimental conditions (treatment
vs. control), with one rat in each condition. The out-
come variable is the number of synapses on cells in the
CA3 region of the hippocampus, and 100 cells are
examined in each rat. This would give 2 rats × 100 cells
per rat = 200 data points. The incorrect way to analyse
this data is with a t-test with an n of 200 (similar to the
example in Figure 1). This is incorrect because differ-
ences due to the treatment are completely confounded
with natural animal-to-animal differences between the
two rats. The standard deviation (SD), in the denomina-
tor of the t-statistic is meant to represent the variability
between rats, not within rats. Furthermore, the standard
error (SD/ n ) is a measure of the uncertainty asso-
ciated with the means of the population of rats, not the
populations of cells within rats. The n in Equation 1
must therefore represent the number of independent
observations, which in this case is the number of rats,
not the number of cells

t
XControl XTreatment

SD n
 

/
, (1)

where X is the group mean. Cells within rats will
tend to be more similar than cells between rats and
therefore are not independent of each other. Including
all of the 200 data points in the analysis as if they were
independent gives a false estimate of the precision (i.e.
the error term is too small) because t gets big as n

gets big. Two rats will never be exactly the same and
therefore it is simply a matter of taking enough mea-
surements on two rats to show that they are statistically
different. This point generalises to experiments with
more than two groups and more than one factor. If the
experiment had used two rats in each experimental con-
dition and 50 cells were observed in each rat, there
would still be 200 data points (observations) in total,
but the same problem remains, although the treatment
effect is not completely confounded with the inter-rat
variability.
Another common case of hierarchically structured

data is when multiple animals are born in a litter. Ani-
mals within a litter are not independent because they
share the same parents and the same prenatal and early
postnatal environment, and animals are therefore nested
within litters [10,11]. Laboratory animals are often
highly inbred and genetically identical (or very similar),
but epigenetic and developmental factors may play a
role, and two rats from the same litter are likely to be
more similar than two rats from two different litters,
and litter effects have been found on a variety of out-
come variables, including life span [2], body weight
[12,13], total brain volume (after controlling for body
weight [13]), behavioural tests (rotarod [14], possibly
prepulse inhibition [15]), and plasma concentrations of
various substances (leptin [16], glucose, insulin, trigly-
cerides [17]). It is likely that litter effects are present in
many response variables, but few papers mention how
these were dealt with in the experimental design stage,
or whether the data were examined for the presence of
litter effects. If all animals in the control condition are
from one litter while all the animals in the treatment
condition are from another litter, then the treatment
effects will be completely confounded with litter effects,
making it difficult to attribute differences between con-
ditions to the effect of the treatment.
Other examples include applying treatments to cages

of rats rather than individual rats (e.g. administering a
substance in the drinking water), or applying treatments
to pregnant females but examining the effect in the off-
spring. Here, cage and pregnant females are the experi-
mental units, and not the individual animals since the
treatments can only be applied to whole cages and preg-
nant females and not to the individuals animals. This
type of experimental design is often referred to as a
split-plot design and is characterised by the restrictions
on randomisation; it needs to be distinguished from a
design where individual rats can be randomised to dif-
ferent conditions. In addition, cells in the same flask or
well of a cell-culture experiment are not independent;
they will tend to be more similar than cells in different
flasks or wells and will be subject to the same uncon-
trolled effects.
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Observations correlated in space
Observations may be correlated in space because multi-
ple measurements taken at one location will all be
affected by the idiosyncratic aspects of that location. For
example, 96-well plates often contain small amounts of
fluid, and wells near the edges of the plate may evapo-
rate faster than wells in the centre, and thus alter the
concentration of substances such as metabolites,
secreted hormones, etc. Placing the control samples in
the first column of the plate and the treated samples in
the second column would therefore not be a good idea.
This is also the reason why microarrays have replicate
probes for the same gene scattered throughout the array
and not placed beside each other, as this accounts for
any spatial effects in the quality of the array that may
have arisen during manufacturing or handling. Spatial
dependence may also arise in incubators for culturing
cells. A large cell culture experiment may use two incu-
bators, but differences particular to each incubator may
affect the outcome variable. For example, the tempera-
ture and humidity levels may be different, or these vari-
ables may fluctuate more in one incubator than another,
perhaps because one may be used more and thus the
door is opened more often as people access their sam-
ples. Good experimental design would dictate that the
treated samples are not placed in one incubator while
the control samples are in the other, as it would be
impossible to separate the effect of the treatment from
the effect of the incubator.
Observations correlated in time
Unlike repeated measurements on the same samples,
observations that are correlated in time are often not a
planned feature of the experimental design, but arise
from the sampling protocol, the phenomenon under
investigation, or the way in which the experiment is
conducted. In addition, observations need not be on
the same subject. For example, rats have a circadian
rhythm in the stress hormone corticosterone, which
peaks at the beginning of the dark (active) phase, and
gradually decreases throughout the night [18]. Suppose
that plasma corticosterone concentration is the main
outcome variable and blood samples from twenty rats
need to be taken. If the sampling starts at the begin-
ning of the dark phase (i.e. at the peak concentration)
and takes 2 hours to complete, there might be an over-
all decrease in corticosterone concentration in rats that
were sampled at later time points compared to earlier
ones. This could confound the results if the first ten
rats were the control rats and the next ten were in the
treatment group, as it would be difficult to distinguish
treatment effects from circadian effects. It would there-
fore be better to alternate rats from each group when
sampling the blood. A circadian effect would not be
eliminated, but it could now be taken into account by

including time or sample number in the model, which
would not be possible if treatment is confounded with
time. One example of such a time-dependence between
sample number and the main outcome variable is dis-
cussed in reference [19].

Methods
The proportion of papers that had pseudoreplication in
a large number of journals was not quantified because
the majority of papers do not provide sufficient infor-
mation for this to be assessed [20]. In addition, the
purpose of this paper is not to determine the preva-
lence of pseudoreplication in the neuroscientific litera-
ture but to (1) bring the problem to the attention of
the neuroscience community, (2) demonstrate the vari-
ety of forms it can take, (3) show how to detect
instances of it in publications, and (4) provide alterna-
tive analytical methods for dealing with it—and these
objectives can be better accomplished with a detailed
examination of a few specific papers. It is also in the
spirit of Hurlbert’s original paper on the topic: “The
citing of particular studies is critical to the hoped-for
effectiveness of this essay. To forego mention of speci-
fic negative examples would be to forego a powerful
pedagogic technique” [3].
A single recent issue of Nature Neuroscience (August

2008; Volume 11, Number 8) was therefore examined as
a “case study”. This journal was chosen because it has
detailed instructions for reporting the results of statisti-
cal analyses (although not always followed), and as a
consequence, a greater proportion of manuscripts have
sufficient information to assess the analyses. In addition,
this is a leading neuroscience journal, and the implica-
tion is that if errors of this sort can be found in studies
generally considered to be of high quality, then they are
also likely to be found elsewhere. This particular issue
was chosen simply because of its suitability in illustrat-
ing the points being made. It is therefore not necessarily
representative of other issues.
The simulated data in Figure 1 was produced with R

(version 2.8.0) [21,22].

Results
Of the nineteen papers published in the August 2008
issue of Nature Neuroscience, seventeen papers (89%)
used inferential statistics; of these, only three (18%) had
sufficient information to assess whether there was pseu-
doreplication. Of these three, two appeared to have
pseudoreplication. Of the fourteen papers that used
inferential statistics but did not provide sufficient infor-
mation, five (36%) were suspected of having pseudore-
plication, but it was not possible to determine for
certain. A table summarising this information can be
found in Additional File 1.
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Manuscripts with pseudoreplication
Fiorillo et al. performed electrophysiological recordings
from the brains of two macaque monkeys [23]. We can
sympathise with the desire to use as few animals as pos-
sible (especially non-human primates), but neurons
from the same brain are not independent: they are iden-
tical genetically, they have the same developmental his-
tory, and they share the same environment, and thus
two neurons from the same brain will respond to an
experimental stimulus in a similar manner (compared to
two neurons from two different brains). Additional tech-
nical considerations include neurons receiving inputs
from the same structures (perhaps even being inner-
vated by the same neuron), and they can be intercon-
nected either directly via gap junctions or synapses, or
indirectly via interneurons. The paper presents data
from 42 and 62 neurons (for both monkeys combined;
Figure three C and four C in their paper) and inferential
statistical tests are performed between two experimental
conditions. Unfortunately, the inter-neuron variability is
conflated with the inter-animal variability and the analy-
sis must reflect this distinction. It should be noted that
this type of analysis is standard in the neurophysiology
field, not because it is the optimal approach to address
research questions, but because of ethical considerations
limiting the number of primates used, and because it is
technically easier to record from more neurons in one
monkey rather than to record from more monkeys.
However, such an experiment with two animals is lim-
ited mainly to descriptive statistics such as means and
standard deviations.
In another paper, Sato et al. classified rod terminals in

the retina as either bipolar or not, and examined
whether the proportion of these two terminal types dif-
fered between control and pikachurin knockout mice
(Figure four E in their paper) using a Chi-square test
[24]. The figure caption indicates a total sample size of
n = 651; however, this is the number of rods and not
the number of mice, which is six (n = 3 for each geno-
type). One of the assumptions of the Chi-square test is
that observations must be independent; however the fac-
tors affecting whether a rod is bipolar or not will tend
to affect all rods in the same retina in a similar manner.
A more appropriate analysis would be to determine the
proportion (or percentage) of each rod type for each
individual mouse, resulting in six data points that would
have values between zero and one. An independent-
samples t-test could then be used to test whether the
mean proportion differed between the knockout and
control mice. With a sample size of only six, a t-test
would only detect large differences between groups and
would likely be underpowered. A potential trade-off
would be to examine fewer rods in each mouse and
examine more mice.

Both manuscripts used hierarchical sampling but did
not distinguish between the number of data points and
the number of independent observations. These types of
errors are not limited to this issue (e.g. see [25,26]) or
this journal, but can be found in other top general
science journals such as Cell [27], PNAS [28], and
Science [29].
Manuscripts with suspected errors
The following manuscripts possibly had pseudoreplica-
tion, but insufficient information was provided to deter-
mine for certain. They are nevertheless discussed
because they contain other types of analyses where
pseudoreplication can arise.
Toni et al. examined how new dentate gyrus neurons

integrate and form functional synapses with cells in the
hilus and CA3 region of the hippocampus [30]. They
examined the size of mossy fibre boutons and reported
in the Methods section that 20-21 boutons were ana-
lysed per time point in the CA3 region, and between
20-66 were analysed at each time point in the hilus. The
results were presented for the CA3 and hilus as t77 =
10.50, p < 0.001 and t156 = 0.54, p = 0.65. There appears
to be multiple observations on each mouse, unless the
number of mice was greater than 150 (the total number
of animals was not stated, but such a large number
seems unlikely for this experiment). In addition, the cor-
responding figure caption (Figure one in their paper)
states that the graph displays the means and standard
error of the means. However the error bars are so nar-
row that they are obscured by the data points of the
mean values. In both the graph and the analysis there
appears to be a misspecification of the structure of the
data, and the number of observations (the number of
data points) has been confused with the number of
independent observations (the number of mice). Other
studies by the first author used the same (likely incor-
rect) analysis [25,31].
Groc et al. examined the effect of corticosterone on

AMPA receptor trafficking and synaptic potentiation in
vitro [32]. The Supplementary Methods state the data
were analysed with t-tests and ANOVAs (or their non-
parametric equivalents) and that 2-6 different sets of
hippocampal cultures were used. The figure captions
however show very large n’s–greater than 1000 in one
case. Since degrees of freedom were not provided, it is
not known whether values were averaged before analy-
sis, but the large n’s suggest that they may not have
been.
Pocock and Hobert examined the effects of oxygen

levels on axon guidance and neuronal migration in C.
elegans [33]. The figure captions indicate that n’s were
typically over 100, and it is also stated that “data were
combined from three independent experiments”. The
data are displayed (Figure one B and one C in their
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paper) as the percentage of animals with a defect, which
suggests that some data reduction has occurred and the
values represent the mean percentage over the three
independent experiments. However, all of the analyses
were conducted with two-sample z-tests, which are typi-
cally used if the population standard deviations are
known, or if the sample size is sufficiently large (the t
distribution approaches the z distribution as n → ∞).
Since population standard deviations are not known and
need to be estimated from the data, a two-sample t-test
should have been used if the sample-size was three (i.e.
three experiments). Using a z-test in such a case leads
to an inflated Type I error rate (too many false posi-
tives). For example, a test statistic of 1.96 with a z-test
would give a two-tailed p-value just under 0.05
(0.049996), whereas a test statistic of 1.96 with a t-test
with n = 6 (two independent groups of n = 3) would
give a p-value of 0.122, leading to a different conclusion.
Therefore either a z-test was used where a t-test should
have been, or a z distribution was somewhat approxi-
mated by a large n, but then the n does not reflect the
number of independent experimental units. It should be
noted that there were very large differences between the
groups, and therefore the conclusions are unlikely to
change if the data were reanalysed.
Using electrophysiological recordings, Chen et al.

examined how the difficulty of a task affected the
activity of neurons in the primary visual cortex of two
monkeys [34]. The data were analysed with two-sample
nonparametric tests (Wilcoxon) and figure captions
stated n ’s for the number of neurons, but not the
degrees of freedom, and therefore it is not clear
whether each neuron was treated as an independent
observation or whether the data were averaged before
analysis. The latter is unlikely since there are only two
animals.
Serguera et al. examined how dopamine in the olfac-

tory bulb of female mice impairs the perception of
social odours contained in male urine [35]. Figure four
A in their paper presents data for the amount of time
five female mice spent sniffing five different concentra-
tions of male urine (25 observations in total). Each
female mouse was exposed to each of the five concen-
trations of male urine, and the outcome variable was
the ratio of time spent sniffing urine versus water. The
Methods section only states that the data in the paper
were analysed with a two-way ANOVA or t-test.
Clearly neither of these are appropriate for a one fac-
tor experiment with five levels, such as this. Since this
is a within-subjects design, where multiple observa-
tions are made on each mouse, it is not clear whether
the authors used the correct RM ANOVA, or whether
they treated the 25 observations as being independent.
They report the overall ANOVA analysis as F4 = 3.4, p

= 0.02. Given the available information, we can calcu-
late the p-values for both a one-way ANOVA and a
RM ANOVA (see below for how to calculate these
values). A one-way ANOVA with 4 and 20 df would
give p = 0.0282, whereas a RM ANOVA on 4 and 16
df would give p = 0.0341. Neither analysis corresponds
to their reported p-value of 0.02, but the one-way
ANOVA is closer (perhaps they truncated the value at
two decimal places), suggesting that they used the
incorrect analysis (the slight discrepancy in calculated
p-values might also be due to rounding error or differ-
ences in the software). Note that discrepancies between
p-values and their associated test statistics are com-
mon, even in top journals such as Nature and the BMJ
[36-39]. The F statistic would also be different if the
incorrect analysis was used, and so it is not just a mat-
ter of different degrees of freedom.
In ambiguous situations such as this, readers have to

form some sort of judgement regarding the statistical
competence of the authors. Based on other aspects of
their data analysis, one may be reluctant to give them
the benefit of the doubt. First, an F-test has two degrees
of freedom associated with it; however, throughout the
paper the authors only reported the numerator df and
not the error df (i.e. residual or denominator df). This
suggests that the authors (and perhaps reviewers and
editors) may not be aware that there are two dfs asso-
ciated with F-tests. Second, in Figure four C in their
paper, the authors tested whether the means of two
groups were significantly different with an ANOVA, and
then followed this analysis up with a posthoc test
between the same two groups! Not surprisingly, per-
forming the same test twice produced the same result.
This is an excellent example of unthinking, rote statisti-
cal analysis. The means of two groups can be compared
with either a t-test or an ANOVA F-test, and they will
produce identical results; the square of the t-statistic is
equal to the F-statistic, and both have an identical cor-
responding p-value (e.g. for independent groups: t N( )2

2

= F(1,N-G), where N is the number of independent sam-
ples and G is the number of groups). Finally, in Figure
seven in their paper, the authors present the number of
pregnancies carried to term in the female mice under
different experimental conditions. They analyse the data
with a Chi-square test, but placed asterisks over group
number four in the graph. A Chi-square test is an omni-
bus test, and it provides no information on whether a
specific group or condition is different from any other
group or condition, yet the authors decorated the figure
with asterisks over the group with the lowest number.
So did the authors use the correct repeated-measures
ANOVA analysis for the data in Figure four A? There is
not enough information to know for sure, and this is
left for the reader to decide.
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Discussion
In a well-publicised study, Ioannidis concluded that most
published research findings in the medical literature are
false [40]. One thing he assumed was that at least the sta-
tistical analyses were carried out correctly, and inappropri-
ate analyses such as those discussed in the present paper
will only increase the number of false conclusions. It is
likely that the standard of statistical analysis is much lower
in preclinical animal studies, which is due to a variety of
reasons, including (1) these studies are less likely to have a
statistician associated with them, (2) effects are often large,
and the correct conclusions can still be reached no matter
how bad the analysis is, (3) they are much less likely to be
a part of a meta-analysis [41] and therefore deficiencies in
the design, analysis or reporting are not highlighted, (4)
the cost of being wrong is minimal since no single animal
study will influence the treatment of patients or alter pub-
lic policy, and (5) experiments are not registered before
being conducted, giving greater scope for data dredging
and selective reporting. Registering animal experiments
has therefore been suggested as a way to improve the
quality of animal studies [41-44] or to have “animal subject
committees” to “...scrutinise drug trials in animals. The
task of such committees would be to assess sample size,
randomisation of treatments, blinding of observers, selec-
tion of animal subjects, statistical methods... “ [45]. These
suggestions are not realistic because the goals and there-
fore methods of preclinical research differ from clinical
trials [46]. For example, a typical preclinical grant will con-
tain many small experiments examining many disparate
outcomes (e.g. gene expression, behaviour, histopathology,
etc.), not one big study with a single primary outcome.
Furthermore, later experiments often depend on the
results of earlier experiments, and major details may be
modified as other studies are published or new methods
or techniques become available. Registration and further
scrutiny by committees will add a great deal of bureau-
cracy with only a small improvement in the quality of
experiments. Other ways to improve the quality of precli-
nical studies should be tried first.
The term pseudoreplication was coined by Hurlbert in

1984 [3], where he argued that current practices in the
ecological literature were inadequate, much like Altman
did in the medical literature [47]. Since Hurlbert’s origi-
nal publication, pseudoreplication has become less fre-
quent in ecological studies, but has not been eliminated
completely [48,49]. A natural question to ask is “how
common is pseudoreplication in the neuroscience litera-
ture?” Hurlbert found that almost 50% of studies that
used inferential statistics had some type of pseudorepli-
cation [3]. Subsequent studies found that the prevalence
had decreased to 32% [50] and 12% [48] in the ecologi-
cal literature. There is no a priori reason to think that

the neuroscience literature is better than other fields.
Indeed ecologists (in general) tend to have greater statis-
tical knowledge than many other biologists (most “statis-
tics for biologists” textbooks are written by those with a
background in ecology for example), possibly because
they cannot perform highly controlled experiments as
laboratory-based scientists can, and so the alternative is
to measure potential confounding variables and then
take them into account statistically. Given that there has
not been much discussion about pseudoreplication in
the neuroscience literature, one might speculate that the
prevalence is towards the higher end of the scale. There
have been some recent papers critical of common statis-
tical practices in the neuroimaging field, where lack of
independence is also a central issue [51].
Reporting guidelines
Medical studies involving human patients have detailed
reporting guidelines such as the CONSORT statement
[52,53], and there are also guidelines for biological stu-
dies such as the Uniform Requirements for Manuscripts
Submitted to Biomedical Journals by the International
Committee of Medical Journal Editors [54]. In 2004
Curran-Everett and Benos provided a set of guidelines
for reporting statistics in journals published by the
American Physiological Society [55], and in a follow-up
paper published three years later they reported that
these guidelines had little impact on subsequent practice
[56]. Cumming et al. have also made suggestions for
describing what error bars in figures should represent
[5].
In addition to the above guidelines, further specific

information should be provided in order to check
whether analyses were carried out correctly. These
include:
1. Report the sample size and number observations

for each experiment. The sample size (n) should refer
to the number of independent samples and not the
number of observations. If there is only one observation
per subject then the sample size and the number of
observations will be the same. However, if multiple
observations are made on each subject, then it is neces-
sary to distinguish the sample size from the observa-
tions, as it will allow readers to better understand the
design of the study. In addition, the most important rea-
son for the inclusion of these values is that they are
necessary to check the results when combined with the
information in the next guideline.
2. Report the value of the test statistic, degrees of

freedom, and exact p-value. These provide the neces-
sary information to check whether the analyses were
carried out correctly. They can also allow readers to
understand the analysis better if the verbal description
was ambiguous. If p-values are very small, then p <
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0.001 would suffice, but not p > 0.05, p < 0.05, or p <
0.01.
3. Error bars should correspond to the analysis.

Graphical measures of uncertainty such as confidence
intervals and standard errors of the mean should be
based on the number of independent samples, that is,
the graphical representation of the data should corre-
spond to the statistical analysis that was performed on
them. If there are two groups of five animals, with mul-
tiple observations, the t-test should have 10 - 2 = 8 df
and the error bars should be based on 10 . This is
similar to Cumming et al.’s third rule: “Error bars and
statistics should only be shown for independently
repeated experiments, and never for replicates” [5]. Here
they are referring to the fact that one run of the experi-
ment is the experimental unit, and not the number of
observations in each experiment (which they refer to as
replicates).
Without this information it is not possible for peer-

reviewers to adequately assess whether the statistical
tests were carried out appropriately, and they must
merely assume that the authors have performed the
analyses correctly. This is not something that can be
safely assumed, and a recent systematic survey identi-
fied a number of problems with the reporting, experi-
mental design, and statistical analysis of studies using
laboratory animals [20]. These guidelines need to be
made requirements for publication and therefore the
initial responsibility lies with journal editors. The Nat-
ure series of journals have already improved their
reporting requirements after a study showed numerous
errors in one of their journals [36], but there is still
room for further improvement. The European Journal
of Neuroscience has also recently issued guidelines
which are similar to those suggested above [57], and
these recommendations could be easily adopted by
other journals. Until journal requirements change,
reviewers must insist on this information being pro-
vided. Including all of the above information might
make the text difficult to read, especially if a number
of results are presented in succession. All of this infor-
mation therefore need not be presented in the main
text, and the full results can be reported in the online
supplementary material (which is available for most, if
not all journals), and the main text could include only
p-values and the sample size for example.
Remedies for pseudoreplication
Pseudoreplication does not necessarily imply that the
studies are flawed, and a reanalysis of the data may be
all that is required. It may however become apparent
that the sample size is too small to make any meaning-
ful inferences about the parameters of interest. Pseudor-
eplication can be dealt with prior to analysis, for
example by using only one mouse per litter for a

particular experiment, thus eliminating any litter effects.
Statistical methods for dealing with pseudoreplication
are available and four such methods are discussed below
and summarised in Table 1. Other options for ecological
studies are discussed by Millar and Anderson [58].
Averaging dependent observations
In the opening example with ten rats undergoing
rotarod testing on three consecutive days, the results
from the three days can be averaged so that each rat
contributes only one value to the analysis. This is parti-
cularly useful when there is no expected trend over the
days of testing, or if there is, it is not relevant to the
research question; for example, if three trials were sim-
ply used to get a better estimate of the rats’ motor func-
tioning. Similarly, in a hierarchical sampling design, one
could average values from multiple neurons in a rat to
obtain one value per rat that will then be carried for-
ward for statistical analysis. Averaging has the advantage
of simplicity, and common statistical tests can be
applied (e.g. t-test, ANOVA). A drawback is that infor-
mation is lost when averaging; for example, there may
be a different number of observations for each rat, and
the observations for some rats might be more variable
than for others. Therefore some estimates of the mean
response for each rat are more precise than others, but
this information is not used in the analysis and each
mean value is treated equally, rather than being
weighted according to its precision. It should also be
noted that averaging can lead to bias when the number
of observations is correlated with the outcome variable,
however this is more of a concern for observational stu-
dies and longitudinal clinical studies. This is not a major
concern for laboratory-based experimental studies,
where the number of observations is under control of
the experimenter, and any missing values typically occur
at random.
Summary-measure analysis
Another alternative to using the mean of a number of
dependent observations is to use some other relevant
value which captures a feature of interest, such as the
slope, intercept, or area under the curve [59]. This is
referred to as summary-measure analysis or derived-
variable analysis. Using the same rat example, suppose
the researcher was interested in whether there was a
change in rotarod performance over the three days,
such as a practice effect. For each rat, a regression
analysis could be carried out using day as the explana-
tory variable (x) and time spent on the rotarod as the
response variable (y). The slope of the regression line
would then be used for further analysis, perhaps to
compare whether one group improved faster than
another, and in the absence of a practice effect, the
values of the slopes should be centred around zero. As
above, it has the advantage of reducing many
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correlated observations to fewer independent observa-
tions, it is conceptually straightforward, and it allows
for the use of standard tests. The drawbacks are also
the same, namely, information is lost. In addition,
since there were only three time points, the estimates
of the slopes would have low precision (one slip by a
rat and the slope for that rat can change dramatically).
This analysis is not the recommended one and is only
given for completeness. An alternative analysis that
could be used is a repeated-measures ANOVA, where
day would be the within-subjects factor and condition
(treatment vs. control) would be the between subjects
factor.
There is also an important point to be made when

deciding whether to average over observations or to use
slopes as a summary measure (or a mixed model), and
it is based on whether the research question is (1) do
subjects with high values of x also have high values of y,
or (2) within each subject, are high values of x asso-
ciated with high values of y. These are different ques-
tions and are discussed in a series of papers by Bland
and colleagues [59-62]. In the first case, average all the
x and y observations on each subject, and then use
these for analyses. In the second case, analysis of the
slopes or mixed models can be used.
Separate analyses
Another option is to conduct separate analyses on each
of the three days, using an independent samples t-test at
each day. This means that more than one statistical test
is performed, raising the issue of whether corrections
for multiple tests should be made. Furthermore, there is
no integrated final result, only a collection of disjointed
p-values that may be difficult to interpret. What would
the interpretation be if there was no significant differ-
ence between groups on the first or third day of testing,
but there was a significant difference on the second day?
Should we conclude that there is a treatment effect
because there was at least one significant p-value, or
should we take a majority vote: two non-significant ver-
sus one significant p-value means that the treatment
really did not have an effect (and the unusual signifi-
cance of only the middle value considered a false posi-
tive)? It is complicated by the significant result being
the middle day and not the first or last day (we might
have explained the results in terms of practice effects).
Separate analyses are therefore not very useful, but they
are often performed to test whether there are significant
effects at each time point after a test for an overall main
effect. This goes by the name of posthoc testing, which
is routinely performed and mostly unnecessary [63]. It is
not uncommon to have a significant main effect of
treatment and then have none of the posthoc tests sig-
nificant. This is due to the reduced power of the post-
hoc tests.

Mixed models
As noted above, a repeated measures ANOVA is a com-
mon analyses for the rotarod example if there was inter-
est in testing for differences across the three days;
however, this method has been superseded by more
recent methods with superior properties that are called
random (or mixed) effects models, hierarchical models,
multilevel models, or nested models (different disci-
plines use different names for the same method) [64].
These are similar to the averaging and summary-mea-
sure methods discussed above, but instead of performing
the analysis in two steps (e.g. calculating the slope for
each rat, and then performing the analysis on the
slopes) the analysis is performed in one step. One
important advantage is that information on the precision
of the estimates is retained and used in the analysis
A key feature of these models is the distinction

between fixed and random effects. Fixed effects are the
familiar explanatory variables such as treatment, sex,
condition, and dose, and are usually something that the
experimenter is interested in testing directly. Fixed
effects affect the mean of the outcome variable; for
example, the effect of a treatment is to increase the
value of the outcome variable compared to a control
condition by a certain number of units. Random effects
are less familiar and are usually something that the
experimenter is not interested in directly (litter effects,
cage effects, differences between incubators, differences
between individual rats, etc.) but must be taken into
account. A variable can be treated as being either fixed
or random, but usually one is more appropriate, and the
interpretation of the results is different. For example, if
a researcher was interested in testing whether there are
differences between cages on some outcome variable,
twenty rats could be randomly assigned to four cages (5
rats per cage), labelled A-D. In this example there is no
other experimental variable, only the cage that the rat is
in. Treating cage as a fixed effect would lead to a one-
way ANOVA with four levels. If significant differences
are found between cages, then conclusions can only be
made about these four cages, and not about other unob-
served cages. If rats in cage C had particularly high
values, there is no reason why in a subsequent experi-
ment rats in a cage also labelled C would also have high
values, rather than rats in cage B for example. There is
nothing about the letter C on the front of the cage that
affects the mean value of rats in that cage, or that can
be used to predict the value of rats in other cages also
labelled C; thus the cage labels are said to be uninfor-
mative. Contrast this with a true fixed effect such as
dose of a drug; if the 50 mg/kg group had higher values
than the 0 mg/kg control group, then one would also
expect that the 50 mg/kg group would have the higher
values in a subsequent experiment (rather than the 0
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mg/kg group). If instead cage is treated as a random
effect (the more appropriate analysis), then these four
cages are treated as random samples from a population
of cages, and inferences can be made about the effect of
cages in general. A good discussion of the difference
between fixed and random effects can be found in refer-
ences [65] and [66].
One important drawback of the repeated measures

ANOVA is that the assumptions of compound symme-
try and sphericity are rarely met. These terms refer to
the correlation structure of the data. Returning to the
rat rotarod example, the correlation of the outcome
variable at each combination of time points can be cal-
culated (day one vs. day two, day one vs. day three, and
day two vs. day three). If these three correlations are all
similar, and in addition the variances at each day are
similar (homogeneity assumption), then the data are
said to be compound symmetrical. If differences rather
than correlations between each combination of time
points are calculated, then the data are said to be sphe-
rical if these difference scores all have the same variance
(see reference [67] for a discussion). These assumptions
are usually not met because observations closer in time
tend to be more highly correlated than observations
further apart. The traditional solution has been to adjust
the degrees of freedom of the F-statistic so that the
actual a-level is closer to the nominal a-level (few
papers actually mention using any correction, such as
the Greenhouse-Geisser or Huynh-Feldt). Modern statis-
tical methods can model different types of variance-cov-
ariance relationships directly, making ad hoc
adjustments to degrees of freedom unnecessary. Kristen-
sen and Hansen provide an excellent introduction and a
comparison of different analyses on rats [68] (and also a
nice graph illustrating the correlation structure of the
data) and Gueorguieva and Krystal discuss the advan-
tages of mixed models over repeated measures ANOVA
[64]; introductory books include Zuur et al. (with biolo-
gical examples; [69]), Crawley [65,70] and Faraway [71],
and a more comprehensive treatment can be found in
Pinheiro and Bates [72].
Mixed models and their extensions (generalised and

nonlinear mixed models) are the preferred methods for
analysing the type of data discussed in this paper and
are already being used to model litter effects [13] and
hierarchically structured data [9]. The above methods
do not exhaust the possibilities for dealing with data of
this type, but highlight some of the more common
methods and their advantages and disadvantages.
How to check reported values
When the necessary information is provided, it is easy
to check whether pseudoreplication has been handled
correctly, for this one needs to know the degrees of
freedom associated with common statistical tests, and

these are provided in Table 2 for reference. The
hypothetical rotarod example in the introduction can
now be easily checked. The authors stated that there
were ten rats and that they used an independent sam-
ples t-test; Table 2 indicates that the correct number of
df = 5 + 5 - 2 = 8, and not the 28 that the authors
reported. Even if degrees of freedom are not reported, it
is still possible to determine whether pseudoreplication
was handled correctly using standard software such as
OpenOffice Calc or MicroSoft Excel. Both of these pro-
grammes have a TDIST function which can calculate a
p-value given a t-statistic, degrees of freedom, and
whether the test is one or two-sided. If the dfs were not
reported for the rotarod example, we could check the
results with =TDIST(2.1; 8; 2), where 2.1 is the reported
t-statistic (note that only the absolute value is need; the
negative sign can be omitted), 8 is the correct number
of degrees of freedom, and 2 indicates that it is a two-
tailed test. The result is p = 0.07, which does not corre-
spond to the reported value of p = 0.045. Substituting
28 df for 8 in the above command does give p = 0.045,
and allows us to conclude that the reported analysis is

Table 2 Degrees of freedom associated with common
statistical tests.

Test Degrees of Freedom

T-test

Independent n1 + n2 - 2

Paired n - 1

One-way ANOVA G - 1 and n - G

Two-way Anova

Main effect of A GA -1

Main effect of B GB -1

A × B interaction (GA -1)(GB -1)

Error n - GAGB
One-way RM-Anova

Between subjects G - 1

Error (n -1)(G -1)

Two-way Mixed† ANOVA

Between subjects n(G - 1)

Groups G-1

Error G(n-1)

Within subjects N - nG

Obs Obs - 1

Group × Obs Interaction (G - 1)(Obs - 1)

Error N - nG - G (Obs - 1)

Linear Regression 1 and n - 2

Chi-square (R - 1)(C -1)

n1 = sample size of group one; n2 = sample size of group two; n = total
sample size; N = total number of observations (equal to n × Obs); G = number
of groups; GA = number of groups for Factor A; GB = number of groups for
Factor B; Obs = number of repeated observations on the same subject; R =
number of rows; C = number or columns. † “Mixed” refers to the presence of
both between and within subjects effects, and should not be confused with
mixed effects models described in the text.
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incorrect. The same procedure can be carried out in R
using the command pt(q = 2.1, df = 8, lower.tail =
FALSE)*2 (again, only the absolute value of the t-statis-
tic is needed).
A similar procedure can be carried out for ANOVA F-

tests using the =FDIST(test statistic; df1; df2) function
in OpenOffice/Excel and pf(q =, df1 =, df2 =, lower.tail
= FALSE) in R/S-Plus. This analysis may not be of
much use if the authors only report whether the p-value
was greater or less than 0.05, but it does provide a
method for checking partially reported results.

Conclusions
The problem of pseudoreplication has been recognised
for many years in ecology and related areas [3], as well
as in the medical literature, where Altman writes “In
some conditions it is possible to take several measure-
ments on the same patient, but the focus of interest
usually remains the patient. Failure to recognise this fact
results in multiple counting of individual patients and
can lead to seriously distorted results. Analysis ignoring
the multiplicity violates the widespread assumption of
statistical analyses that the separate data values should
be independent. Also, the sample size is inflated, some-
times dramatically so, which may lead to spurious statis-
tical significance” [73]. The neuroscience community
has not recognised the importance of dealing with this
type of data appropriately, although a recent paper has
highlighted the negative effect this can have on transla-
tional research [2].
Statistical competence will not happen overnight, but

stricter reporting requirements will make it easier to
detect pseudoreplication, and this requires the sample
size (n), degrees of freedom, the test statistic, and pre-
cise p-values to be reported, allowing many of these
errors to be detected at a glance. This information also
allows for a more detailed analysis if required, either by
editors, reviewers, or other readers.
Continuing with the present situation suggests that

statistical analysis is not really important, it’s just some-
thing scientists go through to obtain p-values that can
be tacked on to the end of sentences, or to calculate the
number of asterisks that can be used to decorate a
graph. Many medical advances are based on preclinical
animal research, it is therefore important that preclinical
studies are conducted, analysed, and reported correctly.

Response to Lazic
by Christopher D. Fiorillo
Email: fiorillo@kaist.ac.kr
Address: Department of Bio and Brain Engineering,

Korea Advanced Institute of Science and Technology,
Daejeon, Korea

Lazic makes many useful points about the misuse of
statistics. However, his article on pseudoreplication does
not demonstrate a clear understanding of the goals and
issues at stake in primate neurophysiology, nor does it
clarify the importance of independence in statistical
tests.
Lazic’s criticisms of my paper [23] generalize to vir-

tually all papers within the field of primate neurophy-
siology, in which the standard is to record from many
neurons, but in only two monkeys. That the field has
been able to make substantial progress is largely depen-
dent on there being relatively little variation from one
brain to another in most of the phenomena that have
been examined. (Although there is substantial variability
in responses across “trials” and across neurons). The
interest in virtually all and papers is inacross responses
within and across neurons, not in comparisons across
animals. Of course there could always be differences
between individual animals, and it is important not to
conflate variation across neurons with variation across
animals. My manuscript may indeed have given the
appearance of conflating the two. The data was in fact
presented separately for the two animals in the original
manuscript, but during the review process it was com-
bined for the sake of simplicity, as is common within
the field. The standard is that statistical significance
should be demonstrated separately within each monkey.
I did this for each monkey, although I only stated this
in the main text with respect to figure four c, but not
with respect to figure three c.
The statistic comparison that the author has ques-

tioned (in figures three c and four c) was designed to
test whether there is a difference in neuronal firing rates
(across the recorded population of neurons) between
responses to juice reward depending on when juice was
delivered following a conditioned stimulus. If one knows
the subject matter and reads my paper for more that
just statistical methods, then one has a strong prior
expectation that the statistical comparisons made in fig-
ures three c and four c will be highly significant, and
thus the statistical significance is not of much interest.
The interesting point of the figures, as described in the
main text, is that although significant, the differences
are surprisingly small relative to the very large difference
seen in comparing either of these responses to unpre-
dicted reward. The statistical significance that was quan-
tified in these figures was thus superfluous and could
have been omitted entirely. There were no statistical
tests performed on the important effect because it was
so large as to be obvious (see mean ± sem firing rates in
figures three b and four b). To paraphrase a colleague
who is an excellent scientist but a reluctant statistician,
it passed the “bloody ... obvious test.”
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Lazic also makes the point that “neurons of the same
brain are not independent.” If this statement does not sig-
nify confusion on the part of its author, it may nonetheless
confuse readers. There is an important difference between
physical or causal independence on the one hand, and
logical or statistical independence on the other. Neurons
in the same brain may be physically or causally related.
However, that fact in itself does not necessarily require
that the neurons are or are not statistically or logically
independent. Statistical independence is all that matters
with respect to statistical tests, and statistical dependencies
could be present regardless of whether the neurons are in
the same brain or different brains.
A second critical error that is often made is to confuse

the functioning of a physical system with our knowledge
of that system. Statistics and hypotheses are derived from
the latter. “Statistical independence” means that we, the
people performing the statistical test, do not have knowl-
edge of how two pieces of data (such as the firing rates of
two neurons) are related. We believe that neurons within
a defined population, clustered together in the same
region of the brain, are likely to have direct or indirect
physical interactions with one another, and likewise, to
display some sort of correlations in their firing rates. But
at the outset of a typical study, we do not know what
these correlations are, and thus it is rational for us to treat
the data from each neuron as independent. By contrast, if
we already knew neurons within clusters of known dimen-
sions to be tightly coupled to one another through gap
junctions, then we would probably try to avoid recording
from neurons within the same cluster, and when we did
obtain data from neurons in the same cluster, we might
average it together before doing an analysis of responses
across clusters. The data from my neurons was “statisti-
cally independent” because, at the time that I did the sta-
tistical test, I was ignorant of any relevant relationship
between the firing rates of discrete neurons. Given a differ-
ent state of knowledge, statistical independence may not
apply and another type of statistical test may be more
appropriate.
I strongly recommend Probability Theory, the Logic of

Science, in which E.T. Jaynes discusses these issues and
other “pathologies of orthodox statistics other “path “
[74]. It will be clear to anyone reading his text that
there are fundamental disputes within the field of prob-
ability and statistics that have yet to be fully resolved.
Given that information and probabilities are inherently
linked, this topic is of particular importance in studying
information processing within the nervous system [75].
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Many life science studies employ histological analyses,

frequently immunostaining of tissue sections, and incor-
porate this image data into papers. Although it used to
be that only the most representative images were dis-
played in paper figures, quantitative analysis along with
statistical analysis of data are often required to obtain
an analytical conclusion on immunostaining image data
for publication. The author, Lazic, mentioned in his
paper that the reason he picked Nature Neuroscience in
particular for his case study is that this journal has
detailed instructions for statistical analyses. As Lazic
mentioned, authors basically examine their results to
test whether or not their data is statistically significant,
and present their data with statistical analysis results in
their papers. This means that this journal requires high
quality data and expects researchers conduct their stu-
dies according to these requirements. In Lazic’s paper,
the author picked multiple examples, In including our
statistical analysis of our electron microscopy (EM), and
indicated that the statistical analysis method used in our
paper was inappropriate [24]. Lately, electron micro-
scopic (EM) analysis of the ultra-microstructure of ner-
vous tissues and neurons is employed as one type of
histological data in many papers. However, EM analysis
is in general very time consuming, technically difficult,
expensive, and limited by the availability of EM devices.
Thus, it should be noted that acquiring a large enough
number of samples for EM analysis is not easy. I sup-
pose that, for these reasons, many EM studies are not
accompanied by statistical analysis, or do not provide
sufficient information about their statistical analysis.
However, even under these conditions, we examined
more than two hundred ribbon synapses for both the
wild-type retina and the pikachurin null retina from
three mice. We counted as many synaptic terminals as
possible to increase the reliability of our analysis. First, I
would like to emphasize that these large numbers in our
EM analysis reflect our sincere attitude to conduct qual-
ity scientific research. Second, we used the Chi-square
test to analyze our EM data and determine using EM
images if the lack of bipolar terminus invagination in
photoreceptor ribbon synapses of the pikachurin null
retina is statistically significant compared to those of the
control retina. Lazic mentioned that the t-test should
have been used instead of the Chi-square test for this
analysis, because the Chi-square test is used for observa-
tions that are independent. We thought that some
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aspects of our EM data might correspond to indepen-
dent observations. In the wild-type retina, basically all
photoreceptor ribbon synapses are invaginated by the
bipolar terminus. However, in the EM analysis, which
uses ultra thin sections for observation, a significant
number of sections seem to lack the invagination of
bipolar dendritic tips even in the wild-type retina. We
observe the very ends of the dendritic tips and thus the
appearance of the ends depends on section angles that
are uncontrollable in EM analysis. In this case, we
thought that the appearance of invaginated bipolar cell
dendritic tips on EM sections could be considered ran-
dom and independent. Thus, we used the Chi-square
test to analyze our results. Since we were not completely
sure that our EM section analysis really corresponded to
random events after reading the Lazic paper, as Lazic
suggested, we re-calculated the percentage of invagi-
nated rod terminals by bipolar dendritic tips for each
individual mouse. We re-analyzed the data by using the
independent-samples t-test and obtained a similar result
to that of the Chi-square test. In this statistical analysis,
we found that 3% of rod terminals contain invaginated
bipolar terminals in the pikachurin null retina, whereas
56% of rod terminals contain invaginated bipolar term-
inals in the wild-type retina (t-test, P < 0.01).
In order to confirm this EM observation, we also

performed 3D electron tomography analysis and
described the result in the paper. Furthermore, the
results from other experiments including electroreti-
nogram and optokinetic responses also support our
conclusion that photoreceptor synaptic terminal for-
mation is impaired in the pikachurin null retina. Ulti-
mately, the Lazic paper points out some very
important issues in conducting appropriate statistical
analysis for biological studies. We understand that we
have to be very careful in choosing a suitable statisti-
cal method for analyzing our data in the future, how-
ever, the Lazic paper does not affect the conclusions
in our paper.
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