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Abstract
Background: Overexpression and abnormal accumulation of aggregated α-synuclein (αS) have been linked to 
Parkinson's disease (PD) and other synucleinopathies. αS can misfold and adopt a variety of morphologies but recent 
studies implicate oligomeric forms as the most cytotoxic species. Both genetic mutations and chronic exposure to 
neurotoxins increase αS aggregation and intracellular reactive oxygen species (ROS), leading to mitochondrial 
dysfunction and oxidative damage in PD cell models.

Results: Here we show that curcumin can alleviate αS-induced toxicity, reduce ROS levels and protect cells against 
apoptosis. We also show that both intracellular overexpression of αS and extracellular addition of oligomeric αS 
increase ROS which induces apoptosis, suggesting that aggregated αS may induce similar toxic effects whether it is 
generated intra- or extracellulary.

Conclusions: Since curcumin is a natural food pigment that can cross the blood brain barrier and has widespread 
medicinal uses, it has potential therapeutic value for treating PD and other neurodegenerative disorders.

Background
Parkinson's disease (PD) affects 1% of the population over
the age of 65 and is the second most common progressive
neurodegenerative disorder after Alzheimer's disease
(AD) [1,2]. The classical symptoms of PD include resting
tremor, muscular rigidity and bradykinesia [2,3] resulting
from the progressive loss of dopaminergic neurons in the
substantia nigra region of the brain [3,4]. Intracellular
inclusions known as Lewy bodies (LB) and Lewy neurites
(LN), composed primarily of insoluble aggregates of
ubiquitin and α-synuclein (αS), are neuropathological
hallmarks of PD found in many regions of the brain and
central nervous system (CNS) [4-6]. Point mutations and
multiplication of the αS gene are associated with rare
early onset familial forms of the disease, further implicat-
ing the role of αS in PD [7-10]. The increased degenera-
tion of dopaminergic neurons in the substantia nigra of
PD animal models correlates with increased levels of LBs
and LNs in this region of the brain and strongly suggests

that overexpression of αS selectively targets dopaminer-
gic neurons [11-13]. While it is unclear why dopaminer-
gic neurons are more susceptible to degeneration by αS,
the oxidation of dopamine and exposure to neurotoxins
such as rotenone [14,15] and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) [16-19] generate excessive
reactive oxygen species (ROS), promoting mitochondrial
complex I dysfunction [15,20,21] and depleting glutathi-
one levels [22,23] ultimately causing acute Parkinsonism
in animal and cell models. In addition, overexpression of
both wild type (WT) and mutant αS results in formation
of cytoplasmic inclusions and degeneration of dopamin-
ergic neurons in mouse and Drosophila models [11-
13,24].

αS is a presynaptic protein expressed at synaptic termi-
nals in the CNS [25,26]. While αS is a natively unfolded
protein, the monomeric form can misfold and aggregate
into larger oligomeric and fibrillar forms which are linked
to the pathogenesis of PD. Recent studies have implicated
small soluble oligomeric and protofibrillar forms of αS as
the most neurotoxic species [27-30]. While previous
studies provide good evidence for the intracellular toxic-
ity of αS in PD, there is also evidence showing an extracel-
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lular component as well [27-29,31,32]. Monomeric and
oligomeric forms of αS have been detected in blood
plasma and cerebrospinal fluid of PD patients [27,31-33],
and exposure to extracellular pre-aggreated αS induces
cytotoxicity in primary mesencephalic neuron-glia and
human neuroblastoma cell cultures [28,29,34,35].

Since generation of ROS has been correlated with onset
of PD, anti-oxidants may have therapeutic value. Cur-
cumin, a polyphenolic compound commonly used as
food additives in Asian cuisine, has anti-oxidant proper-
ties and suppresses inflammatory responses of brain
microglial cells [36-38]. Curcumin was also shown to
have protective effects in neurodegenerative disease by
either reducing inflammation and oxidative damage in
AD [36-39], or by inhibiting protein misfolding and
aggregation in Creutzfeld-Jakob disease [40] and PD
[41,42].

Given these numerous beneficial properties, curcumin
shows promise as a therapeutic agent for neurodegenera-
tive diseases. We show that curcumin can provide protec-
tion against αS-induced cytotoxicity in SH-SY5Y
neuroblastoma cells by decreasing cytotoxicity of aggre-
gated αS, reducing intracellular ROS, inhibiting caspase-3
activation and ameliorating signs of apoptosis. We also
show that either extracellular addition of oligomeric αS
and intracellular overexpression of αS increases genera-
tion of intracellular ROS in SH-SY5Y cells and both have
similar cytotoxic effects resulting in induced caspase-3
activity and apoptosis.

Results
Curcumin protects SH-SY5Y cells against extracellular αS-
induced cytotoxicity
Extracellular incubation of SH-SY5Y cells with oligo-
meric but not monomeric or fibrillar αS induced signifi-
cant cytotoxicity (Fig. 1) in agreement with previous
studies implicating oligomeric αS as the toxic species [27-
30]. While co-incubation of curcumin does not alter the
monomeric and pre-formed oligomeric αS morphologies,
it does destabilize pre-formed αS fibrils (Fig. 1A, Addi-
tional file 1), consistent with previous results [41]. PAGE
and AFM size distribution data also confirm that cur-
cumin does not alter the molecular weight or size of the
oligomeric αS species (Fig. 1B and 1C). Toxicity assays
show that addition of curcumin significantly reduces the
αS-induced toxicity induced by pre-formed oligomeric
αS while co-incubation of curcumin with pre-formed αS
fibrils shows a significant increase in toxicity (Fig. 1D).
Co-incubation of curcumin with monomeric αS does not
alter cytotoxicity (Fig. 1D) similar to incubation with cur-
cumin and Tris buffer alone (Table 1). Toxicity studies of
curcumin alone towards SH-SY5Y cells showed no toxic
effects at concentrations below 5 μM (data not shown).
Since only oligomeric αS aggregates induced toxicity in

SH-SY5Y cells, subsequent experiments were performed
with oligomeric αS to determine the protective effects of
curcumin against αS.

Extracellular addition of αS generates excessive ROS
When oligomeric αS was added extracellularly to SH-
SY5Y cells, the intracellular ROS level significantly
increased from 100 ± 3.8 (control) to 165.4 ± 11.8 (Fig.
2A), indicating that extracellular αS enhances ROS levels
in SH-SY5Y cells. Treatment with curcumin substantially
reduces this increase in intracellular ROS levels to 118.5 ±
4.6 (Fig. 2A). Curcumin and Tris buffer alone did not
affect ROS levels (Fig. 2A). The ability of curcumin to
reduce ROS levels generated by oligomeric αS is consis-
tent with results obtained using anti-oxidants in MPP+

PD models [17,20,43] providing further evidence that
ROS plays a central role in the selective degeneration of
dopaminergic neurons in PD.

Curcumin inhibits caspase-3 activity and apoptosis 
induced by extracellular αS
In addition to increasing ROS levels, extracellular incuba-
tion of SH-SY5Y cells with oligomeric αS also activates
caspase-3 activity and triggers apoptosis. Caspase-3
activity in the oligomeric αS-treated sample increased by
2.4-fold compared to the control, while pre-incubation of
curcumin with αS reduced the increase in caspase-3 acti-
vation by almost half (Fig. 2B). Addition of curcumin and
Tris buffer alone had no significant effects on caspase-3
activity (Fig. 2B). Extracellular addition of oligomeric αS
to SH-SY5Y cells also induced apoptosis in the cells as
marked by the changes in morphologies of the cell nuclei.
While the control SH-SY5Y cells had regular nuclei with
uniformly dispersed chromatin and intact cell membrane
(Fig. 3A), cells incubated with oligomeric αS showed
signs of apoptosis as indicated by condensed nuclei and
intense fluorescence staining with Hoechst dye (Fig. 3B).
Pre-incubation of curcumin with αS reduced nuclear
damage induced by extracellular oligomeric αS (Fig. 3C)
while curcumin alone did not affect the nuclear morphol-
ogy of the cells (Fig. 3D).

Curcumin reduces ROS and cytotoxicity induced by 
intracellular overexpression of αS
While curcumin provided substantial protection against
extracellular αS-induced toxicity, PD pathology includes
intracellular aggregation and accumulation of αS. We
evaluated whether extracellularly added curcumin can
also protect against intracellularly induced αS toxicity by
overexpressing αS in SH-SY5Y cells by transient transfec-
tion with a WTsynEGFP gene. The αS-transfected cells
showed intracellular eGFP fluorescence, indicating αS
expression (Fig. 4A). The level of αS overexpression was
estimated to be around 10% from 3 independent experi-



Wang et al. BMC Neuroscience 2010, 11:57
http://www.biomedcentral.com/1471-2202/11/57

Page 3 of 10

Figure 1 Oligomeric αS induces cytotoxicity in SH-SY5Y cells. Conformation and cytotoxicity of αS with and without curcumin addition observed 
by AFM imaging, PAGE and LDH assay. (A) AFM images of αS alone: (i) monomeric αS, (ii) pre-formed oligomeric αS and (iii) fibrillar αS; and αS co-
incubated with curcumin for 2-h: (iv) monomeric αS, (v) pre-formed oligomeric αS and (vi) and fibrillar αS. Scale bar = 1 μm. (B) Pre-formed oligomeric 
αS samples, with and without curcumin were separated on a 10% Tris/Tricine native PAGE gel and analyzed using silver staining. (C) Height distribution 
of oligomeric αS samples. Particle heights of pre-formed oligomeric αS samples, with (--) and without curcumin (-) were analyzed using AFM and SPIP 
software. (D) LDH activity of SH-SY5Y cells incubated with different morphologies of αS with or without co-incubation with curcumin. LDH release was 
expressed as a percentage of the Tris control samples. Data was reported as mean ± SE, n = 4. **p < 0.01 compared with the untreated control samples.
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ments, which was typical for this cell line [9]. The eGFP
fluorescence intensity and the αS levels were markedly
reduced in the curcumin treated sample, suggesting a
suppressive effect of curcumin on αS expression (Fig. 4A).
Intracellular ROS levels in the αS-transfected cells
increased over 2-fold compared to untransfected cells,
while treatment with curcumin reduced the increase in
ROS level to just 40% over the control value (Fig. 4B).
Similarly, intracellular αS increased LDH release by 40%

compared to the control cells and addition of curcumin
reduced the LDH increase to just 20% (Fig. 4C). The over-
expression of αS significantly increased ROS and LDH
levels and addition of curcumin alleviated these effects,
even with the low expression levels studied. Curcumin
therefore has similar potent protective effects against αS
cytotoxicity regardless of whether αS toxicity is induced
extra- or intracellularly.

Discussion
A key pathological feature of PD is the formation of cyto-
plasmic inclusions containing ubiquitin and αS known as
LBs and LNs in the dopaminergic neurons of the substan-
tia nigra region of the brain [3,4]. The many factors that
influence αS aggregation and the subsequent down-
stream cytotoxic events that lead to neuronal cell death

Table 1: Curcumin neutralizes αS-induced cytotoxicity in SH-SY5Y cells

Sample LDH (% 
control)

SE p-value Viability (% 
control)

SE p-value

Tris buffer 
(control)

100 2.4 NA 100 4.3 NA

αS 121.5 3.5 0.005a 67.9 1.9 0.004a

αS + curcumin 99.7 5.3 0.018b 89.1 4.1 0.008b

Curcumin 99.3 4.9 0.936 96.8 5.6 0.501

Cytotoxicity was measured using LDH assay and cell viability was determined using resazurin reduction assay. SH-SY5Y cells were incubated 
with Tris buffer (control), αS, αS+curcumin and curcumin for 48 hr before analysis. The LDH release and cell viability were expressed as a 
percentage of the untreated samples. Data was reported as mean ± SE, n = 4. acompared with the control; bcompared with αS-treated 
samples.

Figure 2 Curcumin reduces αS-induced intracellular ROS genera-
tion and inhibits caspase-3 activation in SH-SY5Y cells. SH-SY5Y 
cells were incubated with Tris buffer, oligomeric αS, αS+curcumin and 
curcumin and the intracellular ROS and caspase-3 activity were deter-
mined using cell based assays. (A) Intracellular ROS was determined by 
DCF fluorescence. DCFH-DA was then added to each well and the 
plate was incubated at 37°C for an additional 1 hr. The fluorescence in-
tensity of DCF was measured at Ex485 nm and Em535 nm, respectively. The 
increase in DCF fluorescence was expressed as a percentage of the 
control and is a direct measurement of intracellular ROS due to the ox-
idation of DCFH-DA to DCF by intracellular ROS. (B) Caspase-3 activity 
was determined by the absorbance of pNA substrate. After 24 h of 
treatment, the cells were detached, lysed and an equal protein loading 
was added to the 2× reaction buffer with DTT and DEVD-pNA sub-
strate. After 1 hr of incubation at 37°C, the absorbance intensity was 
measured at 405 nm and the caspase-3 activity was reported percent-
age of the Tris buffer control. Data was analyzed using one way ANOVA 
followed by Bonferroni post-hoc test and reported as mean ± SE, n = 4. 
**p < 0.01, ***p < 0.001, compared with the untreated samples; and 
##p < 0.01, ##p < 0.001, compared with αS-treated samples
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Figure 3 Curcumin ameliorates αS-induced morphological 
changes in SH-SY5Y cells evaluated by fluorescence microscopy. 
After 48 hr incubation, cells were fixed with 4% paraformaldehyde, 
stained with Hoechst 33342 (5 mg/mL) and analyzed using a Nikon 
TE300 fluorescence microscope. Fluorescence micrographs (100× 
magnification) of the (A) control cells, (B) cells exposed to αS, (C) cells 
exposed to αS+curcumin and (D) curcumin.
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Figure 4 Curcumin reduces intracellular ROS and cytotoxicity of transiently transfected WTαS-EGFP SH-SY5Y cells. Localization of WTαS-
EGFP and protective effects of curcumin in transiently transfected SH-SY5Y cells. (A) Representative images of WTαS-EGFP transfected cells in the ab-
sence (i-iii) and presence of curcumin (iv-vi) were captured using a Nikon TE300 fluorescence microscope. Scale bar = 50 μm. (B) ROS levels and (C) 
cytotoxicity of the untransfected control, αS-transfected and αS-transfected+curcumin were measured. For LDH assay, cell culture media was collect-
ed after 48 hr and the LDH release was expressed as a percentage of the untransfected samples. For ROS measurements, DCFH was added to each 
well and the DCF fluorescence was measured at Ex485 nm and Em535 nm after an additional incubation at 37°C for 30 min. DCF fluorescence was ex-
pressed as a percentage of the untransfected control reported as mean ± SD, n = 3. **p < 0.01; ***p < 0.001, compared with the untransfected control, 
#p < 0.05; ###p < 0.001 compared with αS-transfected sample analyzed using one way ANOVA followed by Bonferroni post-hoc test.



Wang et al. BMC Neuroscience 2010, 11:57
http://www.biomedcentral.com/1471-2202/11/57

Page 6 of 10
are being actively studied. Several point mutations in the
αS gene which correlate to rare familial early-onset PD
and rapid progression of the disease [7-9] accelerate
aggregation of αS and favor formation of nonfibrillar oli-
gomeric forms. Recent studies have suggested that solu-
ble oligomeric and protofibrillar structures are the toxic
species [27-30], and that these forms can permeabilize
plasma membranes, alter intracellular function, induce
oxidative stress and trigger apoptosis in cells [30,44,45].
Epidemiological studies have also suggested that expo-
sure to environmental agents such as neurotoxins and
pesticides [16,17] cause an increase in oxidative damage
to the cells by suppressing mitochondrial complex I activ-
ity and reducing glutathione levels [22,23], thereby
increasing the risk for PD.

Oxidative stress plays a major role in aging and is asso-
ciated with several neurodegenerative diseases including
PD [46], where an increase in ROS accompanies αS
aggregation and degeneration of dopaminergic neurons
[15,47,48]. Intracellular overexpression of αS generates
excess ROS and causes oxidative stress to the cells
[23,46], leading to disruption in redox homeostasis cell
metabolism, free radical generation, lipid peroxidation,
cholesterol and protein oxidation [46,49]. Excess ROS
causes plasma membrane damage, mitochondrial dys-
function, defects in the glutathione peroxidase expression
and reduction in glutathione levels, all of which render
the brain more susceptible to oxidative stress [46,49,50].
In this study, we find that extracellular addition of oligo-
meric αS and intracellular overexpression of αS in SH-
SY5Y cells both increase ROS levels by almost 2-fold. The
αS-induced increase in ROS levels in our current study
shows similar oxidative damage to the SH-SY5Y cell as
previous MPP+ PD cell models, where MPP+ selectively
targets and degenerates dopaminergic neurons due to
excess generation of ROS [13,15,18]. Prolonged exposure
to MPP+ and other neurotoxins has been shown to acti-
vate caspase-3 [16,19,51], an important effector caspase
in the final apoptotic cascade leading to cell death. If oxi-
dative stress exacerbates the etiology of PD, then agents
that can simultaneously attenuate ROS damage and sup-
press caspase-3 activation may hold promise for the treat-
ment of PD and other neurodegenerative diseases.

Here we show that curcumin, a natural phenolic food
additive, effectively inhibits activation of caspase-3 (Fig.
2B) and ameliorates signs of apoptosis (Fig. 3) induced by
extracellular addition of oligomeric αS to SH-SY5Y cells.
We also demonstrated that curcumin reduces intracellu-
lar overexpression of αS and reduces ROS generation
[15,46,48].

Conclusions
Overexpression and abnormal accumulation of oligo-
meric αS is key in the pathogenesis of PD [14,48,52], and

numerous studies suggest that there is both an intra- and
extracellular component to αS toxicity in PD
[12,24,31,32,53]. We recently demonstrated that an anti-
oligomeric αS antibody fragment binds oligomeric αS on
the surface of SH-SY5Y cells, verifying the presence of
intracellularly produced oligomeric αS on external cell
membrane surfaces [29]. Here we show that extracellular
addition of oligomeric αS induces similar cytotoxic
effects as intracellular overexpression of αS, and that
these αS-induced cytotoxic effects are similar to those
reported in MPTP Parkinsonian models. We also show
that curcumin can significantly reduce the cytotoxicity
induced by extracellular or intracellular αS aggregates,
suggesting it may have value for treating PD. Since extra-
cellularly added curcumin provides protection even
against intracellularly induced αS toxicity, our results
suggest that there is a significant extracellular or cell sur-
face component of αS-induced toxicity in PD models,
which is consistent with a recently published report of
interneuronal transmission of extracellular αS pathology
in neuronal cells [53]. However, additional studies are
needed to further elucidate the mechanism of αS-
induced cytotoxicity and its subsequent pathogenesis and
progression to induced-apoptosis in PD.

Methods
α-synuclein aggregation
αS was prepared and purified in our lab as previously
described [28,54]. Purified αS was lyophilized and stored
at -80°C until further use. Stocks of the lyophillized αS
were first dissolved in DI water and subsequent dilutions
were made in Tris buffer (25 mM Tris, 150 mM NaCl, pH
7.4). The various forms of αS samples (70 μM) were pre-
pared by dissolving the αS stock in Tris buffer. Mono-
meric αS samples were utilized immediately after dilution
with Tris buffer, oligomeric αS were generated by incu-
bating the samples at 37°C for 5-7 days (without shaking)
while predominantly fibrillar morphologies of αS were
generated by incubation at 37°C for up to 30 days (with-
out shaking). αS morphologies were verified by AFM
before use. All other chemicals were purchased from
Sigma-Aldrich (Sigma-Aldrich, MO) and used as is with-
out further treatment unless otherwise specified.

Co-incubation of curcumin with pre-formed αS samples
Curcumin stocks (1 mg/mL) were prepared in dimethyl
sulfoxane (DMSO) and stored at -20°C in dark conditions
until use. Curcumin was diluted to 140 μM with Tris buf-
fer in a 2:1 molar ratio of curcumin to pre-formed αS
sample.

Atomic Force Microscopy
A 10 uL aliquot of each sample was applied to a piece of
freshly cleaved mica, incubated at room temperature for
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10 minutes, rinsed with DI water and dried under a gentle
stream of N2 gas. Topographic AFM images were
acquired using OTESPA tips (k = 40 N/m, fo = 300-kHz)
(Veeco, Santa Barbara, CA) at scan rates of 2 Hz with 512
× 512 pixel resolution on a Nanoscope IIIa TM-AFM
(Veeco, Santa Barbara, CA). AFM images were analyzed
with the scanning probe imaging processor software
(SPIP, Image Metrology) to generate height distribution
plots, as previously described [55].

PAGE and silver staining
Oligomeric αS samples, with and without curcumin were
separated on a 10% Tris/Tricine native PAGE and devel-
oped using Pierce silver stain kit according to manufac-
turer's protocol. (Thermo Scientific, Rockford, IL).

Cell culture and transient transfection of SH-SY5Y cells
SH-SY5Y-human neuroblastoma cells were maintained
and grown as described previously [28,29]. Transient
transfection of SH-SY5Y cells was performed using
TransFast™ transfection reagent according to the manu-
facturer's protocol (Promega, Madison, WI) with slight
modification. SH-SY5Y cells were grown for 4 days (50-
65% confluency) in a 6-well plate in vitro before transfec-
tion. A transfection mixture consisting of a 1 μg aliquot of
wildtype α-synuclein/eGFP (WTsynEGFP) fusion protein
plasmid DNA (Clontech, Palo Alto, CA) and TransFast™
reagent (1:2 v/v) in serum free media was pre-incubated
in the dark for 15 min at room temperature before addi-
tion to the cells. Cell culture media was removed and the
transfection mixture (500 μL) was added to each well and
incubated for 1 hr at 37°C, followed by addition of com-
plete media with serum (500 μL). The culture plates were
incubated and grown in a 5% CO2 atmosphere at 37°C for
48 hrs. A 10 μL aliquot of curcumin (4 μM final concen-
tration) was added 48 hr post-transfection and the cells
were incubated for another 24 hr before analysis. Previ-
ous studies have shown that the α-synuclein fusion pro-
tein aggregates similarly to α-synuclein alone, and that
eGFP expression does not induce toxicity [56].

Cytotoxicity by lactate dehydrogenase assay
Cytotoxicity of samples towards SH-SY5Y cells was mea-
sured using a lactate dehydrogenase (LDH) assay as
described [57]. Cells were seeded (2 × 104 cells/mL) in a
96-well plate 24 hr prior to the following treatment con-
ditions: (a) pre-formed oligomeric αS (2 μM), (b) co-incu-
bated samples of αS (2 μM) with curcumin (4 μM), (c)
curcumin (4 μM) and (d) Tris buffer control. After incu-
bating cells with each treatment for 48 hr, cytotoxicity of
each sample was determined by measuring the reduction
of iodonitrotetrazolium salt by LDH enzyme using a Wal-
lac 1420 plate reader (Perkin Elmer, USA) at 490 nm and

650 nm. The values were expressed as a percentage of the
Tris buffer control. Experiments were repeated a mini-
mum of three times.

Cell viability by resazurin reduction assay
Cell viability was determined using a resazurin reduction
assay [58]. Viable cells convert resazurin (blue) to resoru-
fin (pink), and the degree of cell death can be measured
directly by either absorbance or fluorescence spectrome-
try. Resaruzin stocks (10 mM) were made in DMSO and
kept at -20°C until use when they were diluted to a 100
μM working solution with Tris buffer. Cells were seeded
(5 × 104 cells/mL) in a 48-well plate 24 hr prior to expo-
sure to the treatment conditions described above. Follow-
ing treatment for 48 hr, cell culture media was removed
and the cells were resuspended with 200 μL Tris buffer.
An aliquot (10 μL) of resaruzin (20 μM final concentra-
tion) was added to each well and incubated at 37°C for an
additional 3 hr. Absorbance of resorufin was measured at
560 nm and 600 nm. Cell viability of each sample was cal-
culated by subtracting the background OD600 nm from
OD560 nm and reported as a percentage of the Tris buffer
control.

Measurement of intracellular ROS formation
The formation of intracellular ROS was measured using a
fluorescent probe, 2,7-dichlorofluorescein diacetate
(DCFH-DA) as described [59]. The cells were seeded (2 ×
104 cells/mL) in a 96-well plate and were incubated for 48
hrs prior to ROS measurement with the conditions
described above. After treatment, the cells were washed
twice and resuspended in 100 μL Tris buffer. DCFH-DA
(10 μM final concentration) was added to each well and
the cells were incubated for 1 hr at 37°C in dark condi-
tions. The fluorescence intensity of dichlorofluorescein
(DCF, the oxidized species of DCFH-DA) was measured
using a fluorescence spectrophotometer with excitation
wavelength of 485 nm and emission wavelength of 535
nm.

Determination of caspase-3 activity
Caspase-3 activity was determined using the Caspase-3/
CPP32 colorimetric assay kit following the manufac-
turer's protocol (BioVision, Inc., CA). Since caspase-3 is a
pre-apoptotic marker, measurements of caspase-3 activ-
ity were taken after 24 hr incubation with the various
treatments to ensure proper detection. Briefly, cells (106

cells/mL) were exposed to different treatments as
described above for 24 hr, detached and lysed on ice for
10 min. The supernatant was removed and the total pro-
tein concentration of each sample was determined using
a bicinchoninic acid assay (BCA, Pierce, Rockford, IL).
Cell lysate was then diluted to 150 μg with lysis buffer for
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each assay. An equal loading amount of lysate (50 μL) was
mixed with 50 μL of 2× reaction buffer with 10 mM
dithiothreitol (DTT) and 5 μL DEVD-pNA substrate (200
μM) and incubated at 37°C for 1 hr. The absorbance of
released p-nitroanilide (pNA) was measured at 405 nm
using a plate reader. The increase in caspase-3 activity
was determined by comparing the absorbance of the
treated sample with the absorbance of the Tris buffer
control sample.

Fluorescence microscopy and nuclear staining
WTsynEGFP-transfected cells were evaluated 48 hr post-
transfection using a Nikon TE300 fluorescence micro-
scope at an excitation wavelength of 488 nm with a 40×
magnification objective. For nuclear staining, untrans-
fected SH-SY5Y cells were seeded on glass coverslips and
allowed to attach for 24 hr. The cells were fixed with 4%
paraformaldehyde for 25 min, washed twice in cold Tris
buffer, and stained with Hoechst 33342 (10 μg/mL) for 15
min. Nuclear morphology was observed using a 100×
magnification objective. Images were captured and pro-
cessed by MetaMorph software (Molecular Devices,
USA). Cells stained by Hoechst 33342 with diffused
nuclei were scored as viable, while cells with reduced
nuclei, condensed chromatin, and increased fluorescence
were considered apoptotic.

Statistical Analysis
Data was presented as mean ± SE from at least three
independent experiments. Statistical analysis was evalu-
ated using either Student's t-test or using a one-way
ANOVA followed by Bonferoni post-hoc test for all pair-
wise comparison. A p-value of < 0.05 was considered as
significant.
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