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Neural computation of visual imaging based on
Kronecker product in the primary visual cortex
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Abstract

Background: What kind of neural computation is actually performed by the primary visual cortex and how is
this represented mathematically at the system level? It is an important problem in the visual information
processing, but has not been well answered. In this paper, according to our understanding of retinal
organization and parallel multi-channel topographical mapping between retina and primary visual cortex V1, we
divide an image into orthogonal and orderly array of image primitives (or patches), in which each patch will
evoke activities of simple cells in V1. From viewpoint of information processing, this activated process,
essentially, involves optimal detection and optimal matching of receptive fields of simple cells with features
contained in image patches. For the reconstruction of the visual image in the visual cortex V1 based on the
principle of minimum mean squares error, it is natural to use the inner product expression in neural
computation, which then is transformed into matrix form.

Results: The inner product is carried out by using Kronecker product between patches and function architecture
(or functional column) in localized and oriented neural computing. Compared with Fourier Transform, the
mathematical description of Kronecker product is simple and intuitive, so is the algorithm more suitable for neural
computation of visual cortex V1. Results of computer simulation based on two-dimensional Gabor pyramid
wavelets show that the theoretical analysis and the proposed model are reasonable.

Conclusions: Our results are:
1. The neural computation of the retinal image in cortex V1 can be expressed to Kronecker product operation and
its matrix form, this algorithm is implemented by the inner operation between retinal image primitives and primary
visual cortex’s column. It has simple, efficient and robust features, which is, therefore, such a neural algorithm,
which can be completed by biological vision.
2. It is more suitable that the function of cortical column in cortex V1 is considered as the basic unit of visual
image processing (such unit can implement basic multiplication of visual primitives, such as contour, line, and
edge), rather than a set of tiled array filter. Fourier Transformation is replaced with Kronecker product, which
greatly reduces the computational complexity. The neurobiological basis of this idea is that a visual image can be
represented as a linear combination of orderly orthogonal primitive image containing some local feature. In the
visual pathway, the image patches are topographically mapped onto cortex V1 through parallel multi-channels and
then are processed independently by functional columns. Clearly, the above new perspective has some reference
significance to exploring the neural mechanisms on the human visual information processing.
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Background
Human vision can be considered as a perfect image
information processing device, it can easily recognize
object’s position, size, and orientation, pose in space,
and so on. For a long time, visual scientists, computa-
tional neuroscientists, image processing experts and
computer vision researchers make great effort to explore
the neural mechanism of humans’ remarkable visual
abilities or how the retina image is represented in the
primary visual cortex, which is related with the follow-
ing two questions: what kind of neural computation is
actually performed by the primary visual cortex, and
how this is described mathematically.
It is well known that there is a one-to-one topographi-

cal mapping between retina and cortex V1, which deter-
mines projecting relations in visual space and represents
some transformations from retina to cortex V1 [1-16].
Currently, it is believed that responses of neurons in
cortex V1 can be simulated by a set of tiled spatio-tem-
poral filters array. So the function of cortex V1 is to
make a spatial local Fourier Transform. Theoretically,
these filters involve many processes about spatial fre-
quencies, orientations, motion and velocities (frequen-
cies in temporal space) [17-23].
Is this notion consistent with the actual biological

visual information processes? Research in neurobiology
indicates that the metabolism and decay of neurons do
not affect the visual function. Every neuron performs a
simple ON-OFF function and transfers the information
through spikes. So a dead neuron can easily be replaced
by other nearby neurons [3,24,25]. In case of a compli-
cated function, this replacement would be difficult.
Therefore, the simplicity of algorithms not only reduces
error rates to the minimum, but also guarantees repeat-
ability and stability, i.e. robustness.
Complex computations can be carried out by parallel

computations of neuronal groups with high efficiency.
So we believe that the actual computations in retinal
image must be simple, repeatable and robust and be
performed by individual neurons at the system level and
by neuronal groups with high efficiency. They are
obvious requirements for neural computations in V1.
Then, how is the topographical mapping from retina

to V1 be realized? Many neurobiological experiments
and visual computational models show that when every
primitive (edge, corner and contour) in the visual image
finds matches in the receptive fields densely distributed
on V1, only the neurons whose frequencies and orienta-
tions are similar to those of the primitive fire [26].
Therefore, the patterns of the fired neurons correspond
to the primitives in the visual image, which may be
represented by a topographical mapping, reflecting the
adjustment of the visual image to neurons in V1, and

reflecting distributive and parallel visual information
processing between retina and V1[27,28]. In this paper,
we discuss the mathematical representation of this infor-
mation processing and use the normalized matching
measure (i.e. energy function) to measure the matching
extent [29].
This paper proposes a model of neural information

processing based on the topographical map in place of
Fourier Transform. In this model, the functional col-
umns are not considered as sets of tiled filters, but basis
elements of the visual information, including orientation
selectivity and feature matching [2,30-32]. The visual
image carried by spike trains is processed by Kronecker
product with functional columns in V1. So synchro-
nously parallel computations on the whole image can be
performed by receptive field-to-receptive field rather
than by pixel-to-pixel, and be represented by Kronecker
product between matrixes. Its complexity is greatly
reduced as compared with Fourier transform and other
matrix computations [33,34]. What is more, this algo-
rithm can simulate stimulations of the elements in the
visual image to cortical neurons as the embodiment of
simple neural functions. The aggregative computation
based on simple functions is one of plausible approaches
of the visual cortex in realizing topographical mapping.
Numerical simulations are carried out to justify the

above notions. In our experiments, receptive fields of
neurons in V1 are simulated by hierarchical Gabor func-
tions [35-40]. Visual image is the feature image of Lenna
processed by pre-processing (filtered) in front of the
pathway. Results of our algorithm are consistent with
theoretical expectations.

Results
The visual pathway (’what’ pathway [41]) from retina
across LGN to V1 is modelled. The following discus-
sions are focussed on: 1. the optimal detection in V1 of
retinal image R(x, y); 2. the optimal matching between
R (x, y) and firing pattern of neuronal groups in V1;
3. Kronecker product obtained by optimal detection
and matching; 4. determination of kernel function
G(x, y); 5. realization of Kronecker product; 6. numerical
experiments and discussions.

Image division and cortical response
As a first step of visual perception, external stimuli
form a retinal image R(x, y). In the retina, a ganglion
cell receives inputs from about 103~104 photo-receptor
cells. If the size of a ganglion cell’s receptive field is a =
Δx × Δy, the total imaging area of R(x, y) in the retina
is A, which is divided into M × N patches with the
same size a as that of a ganglion cells receptive field,
namely A = (M × N)a. Here a is referred to as sub-
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region, therefore, a indicates only its size; and the par-
tially small image covered by the area a is called image
unit or image primitive, and expressed by r(a). In this
way, a patch or the image primitive at the i line and the
j column can be denoted as ri , j (a)(i = 1,2,..., M;
j = 1,2,..., N), and the entire image included in the area
A is also expressed by R(A), as shown in Figure 1. That
is to say, the whole image R(A) can be also formed
from (M × N) patches by means of orderly putting

patches together, i.e. R A r ai jj

N

i

M
( ) ( ),  .

Figure 1. Visual image R(x, y) is divided into M × N
local patches according to a ganglion cell’s receptive
field.
This division involves two aspects. First, every patch

ri,j(a) contains local features (such as shapes of receptive
fields and orientations) at (i, j) with area (Δx × Δy),
while a pixel at (i, j) only contains intensity information.
Second, in the parallel multi-channel vision system,

every channel only deals with a local patch. Obviously
this division is consistent with parallel and multi-chan-
nel properties of a vision system, and in a topographical
mapping any patch can be located in the retina, so the
neural processing based on functional columns can be
realized and the corresponding mathematical description
is possible. A patch ri,j(a) will activate the corresponding
ganglion cell and output a coded firing spike train. This
is transferred across LGN into V1 as a topographical
mapping. Then, the firing spike train is decoded and the
image represented by ri,j(a) is restored. A Kronecker
product of the restored image with functional columns
Bk,l(s) in V1 [40,41,33] leads to firing of neurons in
receptive fields having similar orientation and bandwidth
(that is so-called firing under a preferential stimulus).
We denote the firing pattern of one singular neuron (or
simple cell) as ji,j(b), where b denotes the area of the
receptive field of the neuron. Since, A, the retinal image
area, will be enlarged in the cortex V1 [42], for simpli-
city, with a magnification factor z = 2h (h = 0,1,2,...); if
the area of image on the cortex V1 is denoted by B, we
have B = zA = 2h A, b = za = 2h a. In this way, the
spatial sum of all signals ji,j(b) in an orderly manner
will form the overall firing pattern, that is

( ) ( ),B bi jj

N

i

M   , which represents a reconstruc-

tion of the retinal image R(A) on V1.

Optimum detection in V1
For a single neuron in the functional columns, its recep-
tive field consists of orientation, band-pass and spatial
location [43,44], with a strong selectivity with respect to
visual image R(x, y) topologically mapped from the
retina. When some patch ri,j(a) in visual image R(x, y)
shows properties at specific orientation and specific fre-
quency similar to some receptive field gi,j(b), the corre-
sponding neuron will respond strongly. In other words,
when a local patch coincides with the receptive field of
a neuron at its sensitive orientation and sensitive fre-
quency, the neuron fires most strongly, which means a
detection and matching of functional columns in V1 to
local retinal patch’s features ri,j(a), as a random process,
in other words, which is a detection and matching in a
random process. Therefore, this process can be
expressed as [45]

g b r a n i ji j i j i j
h

i j, , , ,( ) ( ) , , ,   2 1 2  (1)

where ri,j(2
h a) is a patch from input image R(A) con-

taining basic features such as orientation, edge, and con-
tour within the receptive field. Here ni,j is Gaussian
white noise with zero mean and variance  n

2 . It is
assumed here that the noise environment in different
visual pathways is the same, i.e. ni,j is the same. ai,j is

Figure 1 Visual image R (x, y) is divided into M × N local
patches according to a ganglion cell’s receptive field.
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weight coefficient that can reflect excitation strength of
an image primitive to neuron gi,j(b). We want to know
what value of ai,j can strongly activate neuron gi,j(b) to
fire. Obviously, ai,j is an unknown estimated coefficient.
If we make K observations on the random process (1),
in other words, we carry out K sampling on the random
process (1), then formula (1) can be written in the fol-
lowing general form

g b r a n k Ki j k i j i j
h

k
i j k, , , ,( ) ( ) , , ,   



     2 1 2  (2)

According to maximum likelihood estimation and
least mean square error rule [45,46]
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The optimum estimation of ai,j is
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, ( ) is a ratio coefficient.

We can see ai ,j reaches its optimum value
ˆ ˆ, i j  ML 1 when image patch ri,j(a) coincides with
receptive fields feature gi,j(b), i.e. ai,jri,j (2

h a) = gi,j(b).
So, ˆ , i j can be taken as the measure for matching
extent between neuronal receptive field gi, j(b) and patch
ri,j(a) in image R(A).
Above process is illustrated in Figure 2, where the

local patch is a horizontal edge and an optimal match-
ing is found in receptive fields of horizontal orientation
with a strong response. No optimal matches are found
in receptive fields of other orientations, so we have
weak responses.
Figure 2. Selective matching between ri,j(a) (a horizon-

tal edge) and different receptive fields in functional col-
umns. The receptive field gi ,j(b) with horizontal
orientation responses strongly.
It is worthy noting that the multi-scale processing

function of a visual pathway is to guarantee a clear
image at a proper resolution in V1. So, the optimal
matching is related with some resolution. When the
scale or resolution changes, the optimal matching may
concentrate on different extents of details, or may
include or exclude some details, as is determined by the
circumstances when the vision system is “observing” the
world.

Figure 2 Selective matching between ri,j (a) (a horizontal edge) and different receptive fields in functional columns. The receptive field
gi,j (b) with horizontal orientation response strongly.
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The whole matching between the retinal image and
receptive field patterns in V1
In the previous section, we have described the local
matching or detection (formula 3). Next we will analyze
the image matching as a whole, to obtain a mathematical
representation of the neural firing pattern in V1. It is
understood that the topographical mapping from retinal
image R(x, y) to V1 is actually a stimulating process of R
(x, y) with respect to simple selective cells with features
of orientation, bandwidth and so on. Receptive fields G(x,
y) of activated neurons are combined to form the global
firing pattern F(x, y) in the cortex, as the responding
process of simple cell groups to the visual image. So, the
firing process can be regarded as a global matching
between G(x, y) and R(x, y) at the system level, and even-
tually responding pattern F(x, y) will be formed. Many
methods can be used to measure the extent of matching.
However, in order to ensure a minimal reconstruction
error, we adopt the following measure:

   [ ( , ) ( , )] minG x y R x y dxdy

B

2
(5)

where B is the imaging region in V1.

G x y R x y dxdy G x y dxdy R x y dxdy

B B B

( , ) ( , ) [ ( , )] [ ( , )]   2 2
(6)

Let  RG

B

MAX

B

R x y G x y dxdy R x y dxdy  ( , ) ( , ) , ( , )2
. In

the optimal matching in region B, we will have R(x, y) =
G(x, y), as is the case when the equal operation is
adopted in formula (5) and lRG reaches its maximum
value lMAX. Therefore, we can define the normalized
matching coefficient rrg as follows:

 
rg

RG

MAX

R x y G x y dxdy
B

R x y dxdy
B

 




( , ) ( , )

[ ( , )]2 (7)

Obviously when rrg = 1, G(x, y) and R(x, y) reaches a
complete match. In other words, the receptive fields of all
activated neurons in V1 are combined to form the same
responding pattern F(x, y) as the whole visual image. It
shown that this process can be mathematically described
as follows by multiplication of R(x, y) and G(x, y)

 ( , ) ( , ) ( , )x y R x y G x y  (8)

It can be seen later, R(x, y) and G(x, y) can be
expressed as matrix form, for this reason, the formula
(8) is essentially an inner product operation, it is not
only more elegant on the mathematical form, but also
more clear on the neurobiological significance.

Additionally, we can see the normalized matching
coefficient rrg is equivalent to â in the previous section.

Determination of integral kernel function
In formula (8), the role played by receptive fields G(x, y)
of cortical neurons is the same as the integral kernel in
wavelet transform [46,47]. It can be described as
oriented and bandwidth two-dimensional Gabor func-
tion G(x, y)l,s,θ,j,g [34-39]

G x y
x y x

x
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 
 
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where g is the ratio of the length in the major axis direc-
tion to that of in minor axis direction, usually set to a con-
stant 0.5; s is derivative of Gauss, determining the size of
receptive fields; � is the phase, when � = 0; π; G(x, y)l,s,θ,j,g
is symmetric about the origin; when � = -(π/2); (π/2),
G(x, y)l,s,θ,j,g is anti-symmetric about the origin; Θ is the
optimal orientation, and l is the wavelength. These argu-
ments should be determined by experimental results from
morphology and biophysics, but the exact data are not avail-
able so far [48]. One plausible way is to set the arguments
according to input image features in an input-driven topolo-
gical mapping [2]. This will be explained in the last section.
Substituting (9) into (8) and considering the cortical

responses to orientation and bandwidth properties, we
replace F(x, y) with F(x, y),l,s,θ,j,g

 ( , ) ( , ) ( , )

( , ) exp

, , , , , , , ,x y R x y G x y
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It is also the inner product, because the formula can be
also expressed as matrix form. The formulae (8) and (10),
as the inner product, which shows such an important neu-
robiological fact, that is, in the visual pathway topographi-
cal mapping indicates accurate positioning of retinal
image in the visual cortex, therefore, these primitives can
only respectively activate cells which are in the corre-
sponding locations in visual cortex. Since it is a one to one
excitation, scanning and convolution is no longer needed.

Comparison of inner product with convolution
For comparison, the convolution operation may be
expressed as follows

 ( , ) ( , ) ( , ), , , , , , , ,x y R u v G x u y v dudv            (11)

We know that convolution and cross-correlation
operations are essentially filtering operations in the
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frequency domain, which is not needed for V1, because
such a filtering operation would lead to loss of high-
and low-frequency information from the retinal pic-
ture. The second reason is that the scan process in
such operations (convolution and cross-correlation) is
a calculation with a high cost (see the section of
discussion in this paper, for detail), in which,
G(x, y)l,s,θ,j,g should be taken as the template to scan
the whole image R(x, y) from top to bottom and from
left to right. Obviously, it is not an effective method,
because this scanning will cause too many responses of
corresponding cells and the energy cost is too great.
Mathematically, the discrete convolution of formula

(11) can be expressed as

 ( , ) ( , ) ( , ), , , , , , , ,x y R k l G x k y l
lk

            (12)

For some point (x0, y0) in an image, G(x0 - k, y0 - l)l,s,θ,j,g
is moved around on the image (by changing k and l) to rea-
lize an optimal match between F(xk, yk) and R(x, y). The
matched simple cell then is activated. Figure 3 shows an
example, in which the visual image R(x, y) is a small hori-
zontal or vertical line. Obviously, a horizontal line in
R(x, y) excites numerous cells whose receptive fields have
an orientation similar to a horizontal line, and a similar
effect occurs for a vertical line. Such a calculation comes
with a high costs in time and complexity.
Figure 3. Convolution operation for horizontal lines

(A) and vertical lines (B) in image patches in R(x, y).
The use of the inner product reveals that neuron firing

caused by a visual stimulus is in fact a simple function.
This is a simpler neural computation than the cross-cor-
relation and convolution operations, because it needs
only multiplication between corresponding pixels of
F(x, y)l,s,θ,j,g and R(xk, yk). It is worth pointing out that
the product R(xk, yk)F(xk, yl)l,s,θ,j,g means that the retinal
image R(xk, yk) excites all cortical cells and forms a global

activity pattern F (x, y)l,s,θ,j,g in V1. Different visual sti-
muli will excite and form different activity patterns corre-
sponding to that stimulus; the differences in activity
patterns occur only in a topographically connected
weight coefficient of the pixels of R(xk, yk) with the corre-
sponding pixels of F(x, y)l,s,θ,j,g in a fully mapping neural
computation. Generally, the weight coefficients corre-
sponding to detailed image information are much smaller
than those corresponding to contour and edge informa-
tion. The intensity of the spike firing of simple cells
excited by the details of the stimulus is also weaker than
the intensity corresponding to contours and edges.

The inner product R x y G x yk l k l

lk

( , ) ( , ) , , , ,     in
equation (8) reveals the collective calculation of a simple
neuronal “on” or “off” function. From this, we can see
that the calculation of the inner product is very well sui-
table to the visual system in that it satisfies the prere-
quisites of efficiency, simplicity, and robustness and also
provides an optimal means of detection under the con-
dition of least-mean-square-error reconstruction.
In fact, formula (9) reflects a specific wavelet transform

on retinal image R(x, y) by basis function G(x, y)l,s,θ,j,g.
This formula reflects the neural firing stimulated by the
retinal image at the system level. Next we will discuss
how to process visual images according to this formula.
Two important problems will be discussed, that is, how
to divide visual image R(x, y) according to structures and
functions of the visual pathway and how to express the
orientation selectivity of functional columns in V1 by
two-dimensional wavelet function G(x, y)l,s,θ,j,g.

Kronecker product in V1
Usually, visual image R(x, y) is independently transferred
to LGN through 1 million ganglion cells, and then reaches
the layers of 4Ca and 4Cb in V1, and finally an image is
reproduced in V1. Obviously, every image patch ri,j(a) is
transferred through one channel. Suppose the number of

Figure 3 Convolution operation for horizontal lines (A) and vertical lines (B) in image patches in R(x, y).
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channels is M × N, which means visual image R(x, y) is
divided into M × N units. As pointed out in previous sec-
tion, each patch is assumed to have the same size as the
receptive field of a ganglion cell, namely, a = Δx × Δy. The
area of the whole image is A. In every channel only one
patch of [Ri,j(a)]M × N, with local features, is transferred.
All ri,j(a) are added to form [Ri,j(a)]M × N.
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The receptive field of a neuron distributed in V1 is gi, j
(b). After being stimulated by [Ri,j(a)]M × N, a response
pattern [Fi,j(b)]M × N (a M × N matrix) is formed from
theses receptive fields as:
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(14)

According to neurophysiology and neuroanatomy [43], cor-
tical modules are densely distributed in V1, with approxi-
mately 103 modules; the area of each module is approximately
1.8 mm × 1.8 mm, containing two function columns for both
left and right eyes. Thus, the area related with every function
column Bk,l (s) is 0.9 mm × 0.9 mm. At the system level,
before adequate neurophysiological and neuroanatomical
knowledge may be available, these function columns are
assumed to have the same function and be composed of many
receptive fields with different orientations and frequencies [3].
In this paper, the receptive fields of the function col-

umn can be represented as a matrix. As in Figure 4, each
row of the matrix represents eighteen oriented receptive
fields of the same type uniformly distributed from 0° to
180°. Each column of the matrix represents eight types of
receptive fields (orthogonal Gabor of different frequen-
cies) with a same orientation. So [Bk,l(s)]K × L is made up
of 144 elements gi,j (b) (k = 1,2,..., K; l = 1,2,..., L)
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g b g b g b
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(15)

Figure 4. Functional columns as basic information
processing units. (A) Eight representative types of recep-
tive fields in function columns in V1; (B) Orientations
range from 0° to 180° with a same interval of 10°; (C)
An example of receptive field calculated by formula (9).
Therefore, some edge or contour located at (i, j) in ret-

inal image [Ri,j(a)]M × N with area a will find a best match
with the receptive field gi,j(b) of the same orientation and
shape. When rrg = 1, it means the patch at (i, j) in [Ri,j

(a)]M × N completely matches the cortical module [Bk,l(s)]

K × L with the specific orientation. Then the neuron is
activated with the strongest response. The process of this
image reconstruction is shown in figure 5.
Figure 5. Optimal matching between a patch (upper

right corner of the hat) and receptive fields of specific
orientations in cortical modules [Bk,l(s)]K × L.
When all theM × N patches in retinal image [Ri,j(a)]M × N

simultaneously (in a parallel manner) activate topo-
graphically corresponding neurons, response pattern
[Fi,j(b)]M × N is formed in V1. At the system level, this pro-
cess can be described by Kronecker Product.
Optimal responding of a neuron in V1 is actually

reached through detection of cortical module [Bk,l(s)]K × L

with respect to a patch ri,j(a) in retinal image [Ri,j(a)]M × N,
which can be represented as a product of them,
i.e. ri,j(2

h a)[Bk,l(s)]K × L
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(16)

Where |max for {ri,j(2
ha)Bk,l(s)| k = 1,2,...8; l = 1,2,...,18}

means taking the maximum in [ri,j(2
ha)g1,1(b)...,ri,j(2

ha)
g1,18(b);...,ri,j(2

ha)g8,18(b)]. When i = 1,2,..., M; j = 1,2,..., N,
it is equal to Kronecker product between [Ri,j(a)]M × N

and [Bk,l(s)]K × L. The two matrixes are not necessarily of
the same dimension. It can be represented as
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Figure 4 Functional columns as basic information processing units. (A) Eight representative types of receptive fields in function columns in
V1; (B) Orientations range from 0° to 180° with a same interval of 10°; (C) An example of receptive field calculated by formula (9).

Figure 5 Optimal matching between a patch (upper right corner of the hat) and receptive fields of specific orientations in cortical
modules [Bk,l (s)]K × L.
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Where ⊗ denotes Kronecker product, |max for ∀{ri,j
(2h a)Bk,l(s)}, âML = 1 or rrj = 1 denotes the maximal
of all products between ri,j (2

h a) and B1,1(s), B1,2(s),...,
B8,18 (s) (As the result of an improvement of signal-to-
noise ratio, the noise is reduced). In a neurobiological
sense, only stimuli with optimal orientation and fre-
quency may activate the strongest response of simple
cells in V1. Formula (16) represents the activated pat-
tern corresponding to a typical image. This pattern can
be represented as a matrix
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(18)

In formula (17), [Fi,j(b)]M × N is the representation of
retinal image [Ri,j(2

h a)]M × N in V1, which involves an
essential difference with the traditional coding.
As is known, an image I(x, y) can be represented as a

linear combination of orthogonal basis functions
ψi,j(x, y)

I x y a x yi j i j

j

N

i

M

( , ) ( , ), ,

 

11

(19)

where ai,j are weights. Obviously, the intersection of
ai,jψi,j(x, y) is not null, i.e.

a x yi j i j

i j

M N

, ,

,

,

( , )  
 1 1
 (20)

That is to say, the intensity at any location (x, y) in
image I(x, y) is contributed by all basis functions
ψi,j(x, y) (i = 1,2,..., M; j = 1,2,..., N), so the computation
can be highly complicated. In our case, the orthogonal
division of input images makes every patch ri ,j(a)
orthogonal as shown in Figure 6; at the same time, the
following condition is satisfied:

r x yi j

i j

M N

,

;

;

( , )   
 1 1
 (21)

Figure 6. Orthogonal division of a visual image.
Therefore, every patch ri,j(a) can be processed inde-

pendently by functional columns. This is consistent with
the neural mechanism of cortical information proces-
sing, and reduces computational complexity as well.

Discussion
Currently, it is widely believed that simple cells densely
distributed in V1 function similarly as a tiled set of
selective spatio-temporal filters, while V1 carries out

Figure 6 Orthogonal division of a visual image.
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operations similar to the local complex Fourier trans-
form. Theoretically, various kinds of neural processing
about frequency, orientation, motion and other spatio-
temporal operations can thus be performed [49,50].
In this way, the responding property F(x, y)l,s,θ,j,g in

V1 is realized by a convolution between image R(x, y)
and receptive fields G(x, y)l,s,θ,j,g [39].

 ( , ) ( , ) ( , )

( , ) ( , )

, , , , , , , ,

,

x y R x y G x y

R u v G x u y v

         

 

 

   ,, , ,   dudv
(22)

That is to say, G(x, y)l,s,θ,j,g is taken as a template to
scan the whole image R(x, y) from above to bottom and
from left to right. For example, if G(x, y)l,s,θ,j,g is a hor-
izontal orientation receptive field, it will match to many
edges with a similar orientation in R(x, y), so many cells
in V1 are activated. The activated pattern F(x, y)l,s,θ,j,g
is shown in Figure 3. A similar activated pattern corre-
sponding to a vertical edge is shown in Figure 3(b).
This is not an effective method for it stimulates too
many responses of relative cells and costs a large
amount of energy [51].
While in our case, in order to reconstruct retinal

image [Ri,j(a)]M × N, we only calculate activated pattern
ji,j(b) = ri,j(2

h a)Bk,l(s) of the receptive field stimulated
by every patch ri,j(a) according to formula (15), and
then the location of every patch is determined according
to the topological mapping to V1 according to formulas
(17) and (18). Finally, the whole activated pattern [Fi,j

(b)]M × N stimulated by image [Ri,j (a)]M × N is obtained.
Obviously, the related computation is much less compli-
cated, which thus is more consistent with the multi-
channel parallel processing mechanism in biology vision.
In order to compare computational complexity of the

two ways of computation, we discretize formula (22) as

( , ) ( , ) ( , )

, , , ; , , ,

i j r m n g i m j n

i M j N
n

N

m

M

  

 
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

11

1 2 1 2  

(23)

Every element j(i, j) in array [Fi,j(b)]M × N involves
M × N times of calculations, making the total calcula-
tions for all elements as M2 × N2.
While in our case, the main computation is ji,j(b) = ri,

j(2
h a)Bk,l(s), so the total number of calculations are

M × N × K × L (K <<M, L <<N). So the computation of
Kronecker product is much less complicated than that
of convolution.
We already noticed that a number of other

researchers have developed linear-nonlinear models
based on response properties of visual neurons
[52,53], or on optimal nonlinear transformation [54].

In essence, they are a combination of linear filtering
and divisive inhibition model; all of the models have
been used to model the nonlinear responses of visual
neurons and primary visual cortex. In terms of our
proposed model, as already pointed out that theoreti-
cal analysis and simulated results show that at the
system level, the inner product operator reflects the
nature of the excitation of neurons in the cortex V1
by local characteristics of the external stimuli. This is
also a plausible assumption for neural computation in
the cortex V1. Therefore, it may have some reference
value in investigations of neural mechanisms in visual
information processing.

Conclusions
It is understood that the retinal image must be in one-to-
one correspondence with cortex V1, for all subsequent
processing will extract information from V1 and the
information kept in V1 is vital. Only in this way, the
brain can perceive a vision through the retinal image
with high fidelity. Neurophysiology shows that when a
retinal image topographically projects to the visual cor-
tex, corresponding neurons will be activated. The whole
activated pattern is a copy of the retinal image with high
fidelity. In view of signal processing, product ri,j(2

h a)Bk,l

(s) means that receptive fields gi,j (b) in V1 are activated
when stimulated by retinal image ri,j(a). Therefore, this
operator is consistent with this neurobiology mechanism.
It involves both the simple function of a single neuron
and the population function of neuronal groups. ji,j (b) is
the local activated pattern corresponding to patch ri,j(a).
Different stimuli produce different activated patterns of
neuronal groups. The signals activated by details in visual
stimuli are much weaker than those activated by con-
tours. According to our understanding of the precise
reconstruction of retinal images in the visual process,
and based on multi-channel parallel processing features
of the visual pathway, a visual image is divided into basic
image units (patches) or primitives, which are topogra-
phically mapped onto the visual cortex by a one-to-one
correspondence, by means of multiplication computing,
features contained in image’s primitives can be extracted
by thousands of visual cortical modules in parallel and
synchronously, where only an inner product (or Kro-
necker product)is needed, then an image will be formed
in the primary visual cortex. This algorithm is simple,
efficient and in line with the current knowledge about
the neural mechanism of visual information processing,
the mathematical description is also appropriate to the
visual neural computation.
Visual information processing that is actually carried

out in V1 is very important, but so far our knowledge of
it at the system level remains inadequate [55-57] apart
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from Hubel and Wiesel’s discovery [43] in the 1960s
and Field and Olshausen’s sparse coding theory [58] in
the 1990s. Therefore, the neural computation model
based on available knowledge about structure and func-
tion of V1 [59-65], presented in this paper may throw
some light towards that direction, of course, will require
further proof in neurobiology.
The next step of the studies on the visual information

processing will be focussed on functional modules in
cortex V1.

Methods
In numerical simulations, according to a resolution of
10°/50 μm, we divide orientations of receptive fields in
function columns into 18 parts ranged from 0° to 180°
with a same interval of 10°, i.e. 10°,200°,...,180°. Eight
types of receptive fields are chosen in Gabor function
G(x, y)l,s,θ,j,g according to formula (8); the result is
shown in Figure 7.
Figure 7. Three representations of eight types of

receptive fields in function columns in V1 calculated by

Figure 8 Image reconstruction by topological mapping and Kronecker product. (A) Source image Lenna; (B) Retinal image [Ri,j(2
h a)]M × N;

(C) Receptive fields array Bk,l(s) of functional columns in V1; (D) The whole activated pattern of receptive field image [Fi,j(b)]M × N ; (E),(F) and (G)
A part of activated pattern [Fi,j (b)]M × N in V1 calculated by formulas 14-16 (upper right corner of the hat).

Figure 7 Three representations of eight types of receptive fields in function columns in V1 calculated by Gabor function, in which
orientations 0°, 10°, 20°, ..., 180° in turn.
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Gabor function, in which orientations 0°, 10°, 20°, ...,
180° in turn.
And the arrays Bk,l(s) are formed according to formula

(13). Then the test image Lenna is divided into M × N
patches according to formula (11). The activated pattern
of every receptive field ji,j (b) stimulated by a patch ri,j
(a) is calculated by formula (14). The whole activated
pattern [Fi,j(b)]M × N stimulated by [Ri,j(a)]M × N is pro-
cessed by formulas (16) and (17). A simulated example
of the whole activated pattern is shown in Figure 8.
Figure 8. Image reconstruction by topological mapping

and Kronecker product (A)Source image Lenna; (B)Ret-
inal image [Ri,j(2

h a)]M × N; (C) Receptive fields array
Bk,l(s) of functional columns in V1; (D) The whole acti-
vated pattern of receptive field image [Fi,j(b)]M × N; (E),
(F) and (G) A part of activated pattern [Fi,j (b)]M × N in
V1 calculated by formulas 14-16 (upper right corner of
the hat).
In numerical experiments, we also consider the case

when a part of cortex is damaged, i.e. functional col-
umns at these locations do not function as they should
in the image processing. We assume that the damaged
positions are those with i = 5, j = 9; i = 7, j = 2; i = 11,
j = 15. The corresponding result is shown in Figure 9. It
can be seen that the damaged functional columns do
not affect the integrity of the image, for other columns
have made compensation for the damaged ones.
Figure 9. Result (only of the upper right part of the

hat shown) corresponding to the damaged function col-
umns at i = 5, j = 9; i = 7, j = 2; i = 11, j = 15.
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